1
|
Zhuang H, Zheng F, Zhang H, Wang J, Chen J. Efficacious bioconversion of alginate/cellulose to value-added oligosaccharides by alginate-degrading GH5 endoglucanase from Trichoderma asperellum. Int J Biol Macromol 2024; 270:131968. [PMID: 38704059 DOI: 10.1016/j.ijbiomac.2024.131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Enzymatic degradation of lignocellulosic biomass provides an eco-friendly approach to produce value-added macromolecules, e.g., bioactive polysaccharides. A novel acidophilic GH5 β-1,4-endoglucanase (termed TaCel5) from Trichoderma asperellum ND-1 was efficiently expressed in Komagataella phaffii (∼1.5-fold increase, 38.42 U/mL). TaCel5 displayed both endoglucanase (486.3 U/mg) and alginate lyase (359.5 U/mg) enzyme activities. It had optimal pH 3.0 and strong pH stability (exceed 86 % activity retained over pH range 3.0-5.0). 80 % activity (both endoglucanase and alginate lyase) was retained in the presence of 15 % ethanol or 3.42 M NaCl. Analysis of action mode revealed that hydrolytic activity of TaCel5 required at least three glucose (cellotriose) residues, yielding mainly cellobiose. Glu241 and Glu352 are essential catalytic residues, while Asp106, Asp277 and Asp317 play auxiliary roles in cellulose degradation. TaCel5 displayed high hydrolysis efficiency for glucan and alginate substrates. ESI-MS analysis indicated that the enzymatic hydrolysates of alginate mainly contained disaccharides and heptasaccharides. This is the first detailed report of a bifunctional GH5 endoglucanase/alginate lyase enzyme from T. asperellum. Thus TaCel5 has strong potential in food and feed industries as a catalyst for bioconversion of cellulose- and alginate-containing waste materials into value-added products oligosaccharides, which was of great benefit both for the economy and environment.
Collapse
Affiliation(s)
- Huan Zhuang
- Department of ENT and Head & Neck Surgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Hengbin Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| |
Collapse
|
2
|
Liu X, Wang Y, Zhang R, Gao Y, Chen H, Dong S, Hu X. Insights into the transcriptomic mechanism and characterization of endoglucanases from Aspergillus terreus in cellulose degradation. Int J Biol Macromol 2024; 263:130340. [PMID: 38387642 DOI: 10.1016/j.ijbiomac.2024.130340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Filamentous fungi are the main industrial source of cellulases which are important in the process of converting cellulose to fermentable sugars. In this study, transcriptome analysis was conducted on Aspergillus terreus NEAU-7 cultivated using corn stover and glucose as carbon sources. Four putative endoglucanases (EG5A, EG7A, EG12A, and EG12C) from A. terreus NEAU-7 were efficiently expressed in Pichia pastoris. Among them, EG7A exhibited the highest enzyme activity (75.17 U/mg) with an optimal temperature of 40 °C and pH 5.0. EG5A and EG12A displayed specific activities of 19.92 U/mg and 14.62 U/mg, respectively, at 50 °C. EG12C showed acidophilic characteristics with an optimal pH of 3.0 and a specific activity of 12.21 U/mg at 40 °C. With CMC-Na as the substrate, the Km value of EG5A, EG7A, EG12A or, EG12C was, 11.08 ± 0.87 mg/mL, 6.82 ± 0.74 mg/mL, 7.26 ± 0.64 mg/mL, and 9.88 ± 0.86 mg/mL, with Vmax values of 1258.23 ± 51.62 μmol∙min-1∙mg-1, 842.65 ± 41.53 μmol∙min-1∙mg-1, 499.38 ± 20.42 μmol∙min-1∙mg-1, and 681.41 ± 30.08 μmol∙min-1∙mg-1, respectively. The co-treatment of EG7A with the commercial cellulase increased the yield of reducing sugar by 155.77 % (filter paper) and 130.49 % (corn stover). Molecular docking assay showed the interaction energy of EG7A with cellotetraose at -10.50 kcal/mol, surpassing EG12A (-10.43 kcal/mol), EG12C (-10.28 kcal/mol), and EG5A (-9.00 kcal/mol). Root Mean Square Deviation (RMSD) and Solvent Accessible Surface Area (SASA) values revealed that the presence of cellotetraose stabilized the molecular dynamics simulation of the cellotetraose-protein complex over a 100 ns time scale. This study provides valuable insights for developing recombinant enzymes and biomass degradation technologies.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanbo Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | | | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Characterization of a novel acidophilic, ethanol tolerant and halophilic GH12 β-1,4-endoglucanase from Trichoderma asperellum ND-1 and its synergistic hydrolysis of lignocellulosic biomass. Int J Biol Macromol 2024; 254:127650. [PMID: 38287580 DOI: 10.1016/j.ijbiomac.2023.127650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
A novel acidophilic GH5 β-1,4-endoglucanase (TaCel12) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 1.5-fold increase). Deglycosylated TaCel12 migrated as a single band (26.5 kDa) in SDS-PAGE. TaCel12 was acidophilic with a pH optimum of 4.0 and displayed great pH stability (>80 % activity over pH 3.0-5.0). TaCel12 exhibited considerable activity towards sodium carboxymethyl cellulose and sodium alginate with Vmax values of 197.97 μmol/min/mg and 119.06 μmol/min/mg, respectively. Moreover, TaCel12 maintained >80 % activity in the presence of 20 % ethanol and 4.28 M NaCl. Additionally, Mn2+, Pb2+ and Cu2+ negatively affected TaCel12 activity, while the presence of 5 mM Co2+ significantly increased the enzyme activity. Analysis of action mode revealed that TaCel12 required at least four glucose (cellotetraose) residues for hydrolysis to yield cellobiose and cellotriose. Site-directed mutagenesis results suggested that Glu133 and Glu217 of TaCel12 are crucial catalytic residues, with Asp116 displaying an auxiliary function. Production of soluble sugars from lignocellulose is a crucial step in bioethanol development, and it is noteworthy that TaCel12 could synergistically yield fermentable sugars from corn stover and bagasse, respectively. Thus TaCel12 with excellent properties will be considered a potential biocatalyst for applications in various industries, especially for lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou 310051, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| |
Collapse
|
5
|
Wen J, Miao T, Basit A, Li Q, Tan S, Chen S, Ablimit N, Wang H, Wang Y, Zheng F, Jiang W. Highly efficient synergistic activity of an α-L-arabinofuranosidase for degradation of arabinoxylan in barley/wheat. Front Microbiol 2023; 14:1230738. [PMID: 38029111 PMCID: PMC10655120 DOI: 10.3389/fmicb.2023.1230738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Here, an α-L-arabinofuranosidase (termed TtAbf62) from Thermothelomyces thermophilus is described, which efficiently removes arabinofuranosyl side chains and facilitates arabinoxylan digestion. The specific activity of TtAbf62 (179.07 U/mg) toward wheat arabinoxylan was the highest among all characterized glycoside hydrolase family 62 enzymes. TtAbf62 in combination with endoxylanase and β-xylosidase strongly promoted hydrolysis of barley and wheat. The release of reducing sugars was significantly higher for the three-enzyme combination relative to the sum of single-enzyme treatments: 85.71% for barley hydrolysis and 33.33% for wheat hydrolysis. HPLC analysis showed that TtAbf62 acted selectively on monosubstituted (C-2 or C-3) xylopyranosyl residues rather than double-substituted residues. Site-directed mutagenesis and interactional analyses of enzyme-substrate binding structures revealed the catalytic sites of TtAbf62 formed different polysaccharide-catalytic binding modes with arabinoxylo-oligosaccharides. Our findings demonstrate a "multienzyme cocktail" formed by TtAbf62 with other hydrolases strongly improves the efficiency of hemicellulose conversion and increases biomass hydrolysis through synergistic interaction.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology, University of Jhang, Jhang, Punjab, Pakistan
| | - Qunhong Li
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shenglin Tan
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shuqing Chen
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Nuraliya Ablimit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Mafa MS, Malgas S. Towards an understanding of the enzymatic degradation of complex plant mannan structures. World J Microbiol Biotechnol 2023; 39:302. [PMID: 37688610 PMCID: PMC10492685 DOI: 10.1007/s11274-023-03753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Plant cell walls are composed of a heterogeneous mixture of polysaccharides that require several different enzymes to degrade. These enzymes are important for a variety of biotechnological processes, from biofuel production to food processing. Several classical mannanolytic enzyme functions of glycoside hydrolases (GH), such as β-mannanase, β-mannosidase and α-galactosidase activities, are helpful for efficient mannan hydrolysis. In this light, we bring three enzymes into the model of mannan degradation that have received little or no attention. By linking their three-dimensional structures and substrate specificities, we have predicted the interactions and cooperativity of these novel enzymes with classical mannanolytic enzymes for efficient mannan hydrolysis. The novel exo-β-1,4-mannobiohydrolases are indispensable for the production of mannobiose from the terminal ends of mannans, this product being the preferred product for short-chain mannooligosaccharides (MOS)-specific β-mannosidases. Second, the side-chain cleaving enzymes, acetyl mannan esterases (AcME), remove acetyl decorations on mannan that would have hindered backbone cleaving enzymes, while the backbone cleaving enzymes liberate MOS, which are preferred substrates of the debranching and sidechain cleaving enzymes. The nonhydrolytic expansins and swollenins disrupt the crystalline regions of the biomass, improving their accessibility for AcME and GH activities. Finally, lytic polysaccharide monooxygenases have also been implicated in promoting the degradation of lignocellulosic biomass or mannan degradation by classical mannanolytic enzymes, possibly by disrupting adsorbed mannan residues. Modelling effective enzymatic mannan degradation has implications for improving the saccharification of biomass for the synthesis of value-added and upcycling of lignocellulosic wastes.
Collapse
Affiliation(s)
- Mpho Stephen Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, 0028 South Africa
| |
Collapse
|
7
|
Li Y, Song W, Han X, Wang Y, Rao S, Zhang Q, Zhou J, Li J, Liu S, Du G. Recent progress in key lignocellulosic enzymes: Enzyme discovery, molecular modifications, production, and enzymatic biomass saccharification. BIORESOURCE TECHNOLOGY 2022; 363:127986. [PMID: 36126851 DOI: 10.1016/j.biortech.2022.127986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Lignocellulose, the most prevalent biomass on earth, can be enzymatically converted into carbohydrates for bioethanol production and other uses. Among lignocellulosic enzymes, endoglucanase, xylanase, and laccase are the key enzymes, owing to their ability to disrupt the main structure of lignocellulose. Recently, new discovery methods have been established to obtain key lignocellulosic enzymes with excellent enzymatic properties. Molecular modification of enzymes to modulate their thermostability, catalytic activity, and substrate specificity has been performed with protein engineering technology. In addition, the enzyme expression has been effectively improved through expression element screening and host modification, as well as fermentation optimization. Immobilization of enzymes, use of surfactants, synergistic degradation, and optimization of reaction conditions have addressed the inefficiency of enzymatic saccharification. In this review, recent advances in key lignocellulosic enzymes are summarized, along with future prospects for the development of super-engineered strains and integrative technologies for enzymatic biomass saccharification.
Collapse
Affiliation(s)
- Yangyang Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weiyan Song
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuyue Han
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yachan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
8
|
Pathway engineering facilitates efficient protein expression in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:5893-5912. [PMID: 36040488 DOI: 10.1007/s00253-022-12139-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Pichia pastoris has been recognized as an important platform for the production of various heterologous proteins in recent years. The strong promoter AOX1, induced by methanol, with the help of the α-pre-pro signal sequence, can lead to a high expression level of extracellular protein. However, this combination was not always efficient, as protein secretion in P. pastoris involves numerous procedures mediated by several cellular proteins, including folding assisted by endoplasmic reticulum (ER) molecular chaperones, degradation through ubiquitination, and an efficient vesicular transport system. Efficient protein expression requires the cooperation of various intracellular pathways. This article summarizes the process of protein secretion, modification, and transportation in P. pastoris. In addition, the roles played by the key proteins in these processes and the corresponding co-expression effects are also listed. It is expected to lay the foundation for the industrial protein production of P. pastoris. KEY POINTS: • Mechanisms of chaperones in protein folding and their co-expression effects are summarized. • Protein glycosylation modifications are comprehensively reviewed. • Current dilemmas in the overall protein secretion pathway of Pichia pastoris and corresponding solutions are demonstrated.
Collapse
|
9
|
Mondal S, Halder SK, Mondal KC. Tailoring in fungi for next generation cellulase production with special reference to CRISPR/CAS system. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 2:113-129. [PMID: 38624901 PMCID: PMC8319711 DOI: 10.1007/s43393-021-00045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Cellulose is the utmost plenteous source of biopolymer in our earth, and fungi are the most efficient and ubiquitous organism in degrading the cellulosic biomass by synthesizing cellulases. Tailoring through genetic manipulation has played a substantial role in constructing novel fungal strains towards improved cellulase production of desired traits. However, the traditional methods of genetic manipulation of fungi are time-consuming and tedious. With the availability of the full-genome sequences of several industrially relevant filamentous fungi, CRISPR-CAS (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) technology has come into the focus for the proficient development of manipulated strains of filamentous fungi. This review summarizes the mode of action of cellulases, transcription level regulation for cellulase expression, various traditional strategies of genetic manipulation with CRISPR-CAS technology to develop modified fungal strains for a preferred level of cellulase production, and the futuristic trend in this arena of research.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Center for Life Sciences, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102 West Bengal India
| |
Collapse
|