1
|
Morais VND, Moreira LDPD, Gomes MJC, Grancieri M, Lucio HG, Toledo RCL, Mishima MDV, Costa NMB, da Silva BP, Stampini Duarte Martino H. Chia Oil ( Salvia hispanica L.) Improves the Intestinal Health of Wistar Rats Fed a Hypercaloric Diet. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-10. [PMID: 39689242 DOI: 10.1080/27697061.2024.2431271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND A diet rich in fat and sugar is present in society everyday life, leading to the development of metabolic changes, especially in intestinal microbiota. Chia oil is a source of alpha-linolenic acid, which has antioxidant and anti-glycemic effects. Based on this, we hypothesized that chia oil may promote intestinal health. OBJECTIVE The study aims to investigate the effects of chia oil on gut microbiota and intestinal health in Wistar rats fed a high-fat and high-fructose diet (HFHF). METHODS The animals were separated into two groups and received the following diets: standard murine diet (AIN-93M) (n = 10) and HFHF (n = 20) to induce metabolic changes (phase I) during eight weeks. After that, the AIN-93M group remained unchanged, while the HFHF group was divided into two groups: HFHF (n = 10) and HFHF with chia oil (HFHF+CO) (n = 10) for ten weeks (phase II, chia oil treatment). We analyzed immunoglobulin A (IgA) levels, cecal pH, short-chain fatty acids (SCFAs), intestinal permeability, intestinal microbiome composition, histomorphometry, and murinometric parameters. RESULTS Chia oil consumption increased alpha-linolenic acid intake, IgA levels, propionic acid production, cecum weight, goblet cell number, thickness and depth of intestinal crypts, and the thickness of both circular and longitudinal muscle layers of the colon, and decreased cecal pH. No change was observed in the alpha and beta diversity between the HFHF and HFHF+CO groups. The HFHF+CO diet increased the relative abundance of genera Lactobacillus sp., Faecalibacterium sp., and Erysipelatoclostridium sp., compared to the AIN-93M group. No difference was observed in the intestinal permeability among the groups. CONCLUSION Chia oil consumption is an alternative for improving the intestinal health of rats fed a HFHF diet.
Collapse
Affiliation(s)
- Violeta Nunes de Morais
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Haira Guedes Lucio
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | | | | |
Collapse
|
2
|
Zhang Y, Xu Q, Liu Y, Liu Y, Luo J, Liu J, Yu S. Brassica rapa L. (Tibetan Turnip) polysaccharide improves the immune function and regulates intestinal microbiota in immunosuppressive mice. J Food Sci 2024; 89:9816-9834. [PMID: 39455244 DOI: 10.1111/1750-3841.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024]
Abstract
In this paper, active polysaccharides were extracted from Brassica rapa L. polysaccharide (BRP), and structural characterization was preliminarily investigated. Its immunomodulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice were also explored, as well as its effects on intestinal microbiota. Results indicate that BRP is an acidic heteropolysaccharide with the main components of Ara, GalA, and GlcA and has α- and β-glycosidic linkages with pyranose bonds. The results of the study showed that BRP could effectively improve the thymus and spleen indices and repair Cy-induced immune tissue damage in immunosuppressed mice. Meanwhile, BRP increased the immune cell activity and antioxidant levels in mice. In addition, BRP increased the secretion of cytokines (IL-1β, IL-6, IL-10, and TNF-α) and immunoglobulins (IgA, IgG) in mouse serum. It also regulates the relative expression of genes related to the TLR4/NF-κB signaling pathways as well as regulates the diversity and composition of mouse intestinal microbiota. In conclusion, BRP was able to regulated the immune function in immunosuppressed mice, providing a theoretical basis for the development of immunomodulators.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qirui Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yong Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ying Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jie Luo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jia Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Siyu Yu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Yu P, Pan X, Chen M, Ma J, Xu B, Zhao Y. Ultrasound-assisted enzymatic extraction of soluble dietary Fiber from Hericium erinaceus and its in vitro lipid-lowering effect. Food Chem X 2024; 23:101657. [PMID: 39113740 PMCID: PMC11304871 DOI: 10.1016/j.fochx.2024.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Dietary fiber (DF) is an important active polysaccharide in Hericium erinaceus. Obesity can lead to a wide range of diseases. In this work, we investigated the in vitro lipid-lowering effect of soluble dietary fiber (SDF) from H. erinaceus, aiming to provide a basis for the subsequent development of lipid-lowering products. Ultrasound-assisted enzymatic extraction (UAEE) of SDF from H. erinaceus was performed. The optimal extraction parameters determined via single-factor experiments and response surface methodology (RSM) were as follows: Lywallzyme concentration, 1.0%; complex protease concentration, 1.2%; ultrasonication time, 35 min; and ultrasonication power, 150 W. In vitro lipid-lowering experiments revealed that the adsorption amount of cholesterol micelles by H. erinaceus SDF was 11.91 mg/g. The binding amount and binding rate of sodium taurocholate were 3.73 mg/g and 42.47%, respectively, and those of sodium glycocholate were 3.43 mg/g and 39.12%, respectively. The pancreatic lipase inhibition rate reached 52.11%, and the type of inhibition was competitive. Therefore, H. erinaceus SDF has good in vitro lipid-lowering ability.
Collapse
Affiliation(s)
- Panling Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xueyu Pan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianshuai Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Baoting Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
Sha JY, Chen KC, Liu ZB, Li W, Lu YS, Liu S, Ma JK, Qu D, Sun YS. Ginseng-DF ameliorates intestinal mucosal barrier injury and enhances immunity in immunosuppressed mice by regulating MAPK/NF-κB signaling pathways. Eur J Nutr 2024; 63:1487-1500. [PMID: 38748287 DOI: 10.1007/s00394-024-03378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/18/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE Dietary fiber (DF) has a good application prospect in effectively restoring the integrity of the intestinal mucosal barrier. Ginseng-DF has good physicochemical properties and physiological activity and shows positive effects in enhancing immunity. The aim of this study was to investigate the protective effect of Ginseng-DF on intestinal mucosal barrier injury induced by cyclophosphamide (CTX) in immunosuppressed mice and its possible mechanism. METHODS The effects of Gginseng-DF on immune function in mice were studied by delayed-type hypersensitivy, lymphocyte proliferation assay and NK cytotoxicity assay, the T lymphocyte differentiation and intestinal barrier integrity were analyzed by flow cytometry and western blot. RESULTS Ginseng-DF (2.5% and 5%) could attenuate the inhibition of DTH response by CTX, promote the transformation and proliferation of lymphocytes, and stimulate NK effector cell activity. At the same time, Ginseng-DF could restore the proportion of CD4+/CD8+ T lymphocytes induced by CTX to different extents, improved spleen tissue damage, promoted the secretion of immunoglobulin IgG, and enhanced body immunity. More importantly, Ginseng-DF could up-regulate the contents of TNF-α, IFN-γ, IL-6 and IL-1β in serum and intestine of immunosuppressed mice to maintain the balance between Th1/Th2 cytokines, and improve the permeability of intestinal mucosal barrier. Meanwhile, Ginseng-DF could reduce intestinal epithelial cell apoptosis and improve intestinal adaptive immunity in CTX-induced immunosuppressed mice by regulating MAPK/NF-κB signaling pathway. CONCLUSION Ginseng-DF can be used as a safe dietary supplement to enhance body immunity and reduce intestinal mucosal injury caused by CTX.
Collapse
Affiliation(s)
- Ji-Yue Sha
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | | | - Zheng-Bo Liu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Shun Lu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Shuang Liu
- Looking Up 9 Starry Sky Medical Research Center, Siping, 136000, China.
| | - Jian-Kai Ma
- Baker (Jilin) Special Medical Health Industry Co., Ltd., Changchun, 130102, China
| | - Di Qu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yin-Shi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
5
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Qu D, Bo P, Li Z, Sun Y. Effects of whole nutritional formula foods on nutritional improvement and intestinal flora in malnourished rats. Food Sci Nutr 2024; 12:1724-1735. [PMID: 38455205 PMCID: PMC10916550 DOI: 10.1002/fsn3.3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
Food for special medical purposes (FSMP) has received increasing attention as an enteral nutritional supplement. To investigate the effects of whole nutritional formula (WNF) containing dietary fiber and regular formula on nutritional supplementation and improvement of intestinal microecology, a rat malnutrition model was established with the formulations of WNF, FOS, and SDF (10, 20 g/kg bw) administered by gavage for 30 days. The results showed that the three formulations effectively improved the nutritional status of the malnourished rats, significantly increasing the level of IgG, increasing the abundance of Bacteroidetes, and affecting the content of propionic acid (PRO). The nutritional status of rats is closely related to growth performance, nutritional indexes, and immunoglobulin index, which cause changes in the composition of the intestinal flora. The above results showed that WNF positively affected the nutritional improvement, immune level, and intestinal health of rats. The comprehensive evaluation also suggested that the formulation containing ginseng water-soluble dietary fiber (ginseng-SDF) had the most significant effect.
Collapse
Affiliation(s)
- Di Qu
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
| | - Pan‐Pan Bo
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
- Institute of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchunJilinChina
| | - Zhi‐Man Li
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
| | - Yin‐Shi Sun
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
| |
Collapse
|
7
|
Sun R, Niu H, Li Y, Sun M, Hua M, Miao X, Su Y, Wang J, Li D, Wang Y. Fermented natto powder alleviates obesity by regulating LXR pathway and gut microbiota in obesity rats. J Appl Microbiol 2024; 135:lxae003. [PMID: 38192042 DOI: 10.1093/jambio/lxae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
AIM This study aimed to investigate the positive effect of natto powder on obese rats fed with a high-fat diet (HFD). METHODS AND RESULTS Sprague-Dawley rats were fed with a HFD for 8 weeks continuously and gavaged with natto powder, respectively, for 8 weeks starting from the ninth week. The results showed that natto powder significantly reduced the body weight of rats and maintained the balance of cholesterol metabolism in the body by inhibiting the activity of liver X receptors (LXR) target genes, increasing the active expression of cholesterol 7 alpha-hydroxylase, and reducing the active expression of sterol-regulatory element-binding protein and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Furthermore, natto powder increased the relative abundance of potentially beneficial microbiota in gut and decreased the relative abundance of obesity-related harmful bacteria, and also increased the Bacteroidetes/Firmicutes ratio and improved the composition of gut microbiota. CONCLUSIONS Natto powder maintains the balance of cholesterol metabolism by inhibiting the LXR pathway and regulating the gut microbiota.
Collapse
Affiliation(s)
- Ruiyue Sun
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
- Future Food (Bai Ma) Research Institute, Nanjing 211200, Jiangsu, China
| | - Honghong Niu
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Yueqiao Li
- Science and Technology Exchange and Cooperation Division, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Mubai Sun
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Mei Hua
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Xinyu Miao
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Ying Su
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Jinghui Wang
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Da Li
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Ying Wang
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang 110000, Liaoning, China
| |
Collapse
|
8
|
Wu Z, He J, Zhang Z, Li J, Zou H, Tan X, Wang Y, Yao Y, Xiong W. Propionic Acid Driven by the Lactobacillus johnsonii Culture Supernatant Alleviates Colitis by Inhibiting M1 Macrophage Polarization by Modulating the MAPK Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14951-14966. [PMID: 37788400 DOI: 10.1021/acs.jafc.3c00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this study, we investigated the effects of Lactobacillus johnsonii on the mouse colitis model. The results showed that the supernatant of the L. johnsonii culture alleviated colitis and remodeled gut microbiota, represented by an increased abundance of bacteria producing short-chain fatty acids, leading to an increased concentration of propionic acid in the intestine. Further studies revealed that propionic acid inhibited activation of the MAPK signaling pathway and polarization of M1 macrophages. Macrophage clearance assays confirmed that macrophages are indispensable for alleviating colitis through propionic acid. In vitro experiments showed that propionic acid directly inhibited the MAPK signaling pathway in macrophages and reduced M1 macrophage polarization, thereby inhibiting the secretion of pro-inflammatory cytokines. These findings improve our understanding of how L. johnsonii attenuates inflammatory bowel disease (IBD) and provide valuable insights for identifying molecular targets for IBD treatment in the future.
Collapse
Affiliation(s)
- Zhifeng Wu
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhui He
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyue Zhang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huicong Zou
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Wang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Xiong
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Jiang G, Ramachandraiah K, Tan C, Cai N, Ameer K, Feng X. Modification of Ginseng Insoluble Dietary Fiber by Enzymatic Method: Structural, Rheological, Thermal and Functional Properties. Foods 2023; 12:2809. [PMID: 37509900 PMCID: PMC10379364 DOI: 10.3390/foods12142809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, the effects of enzymatic modification using cellulase/xylanase on the composition and structural and functional properties of ginseng insoluble dietary fiber (G-IDF) were evaluated. Fourier transform infrared spectroscopy and scanning electron microcopy showed that enzymatic extraction treatment caused obvious structural alterations in ginseng-modified (G-MIDF) samples, which exhibited more porous and completely wrinkled surfaces. Comparing the peak morphology of G-MIDF with untreated IDF using X-ray diffractometry, the G-MIDF sample exhibited split peaks at a 2θ angle of 23.71°, along with the emergence of sharp peaks at 28.02°, 31.78°, and 35.07°. Thermo-gravimetric analysis showed that G-MIDF exhibited a specified range of pyrolysis temperature and is suitable for food applications involving processing at temperatures below 300 °C. Overall, it was evident from rheograms that both G-IDF and G-MIDF exhibited a resemblance with respect to viscosity changes as a function of the shear rate. Enzymatic treatment led to significant (p < 0.05) improvement in water holding, oil retention, water swelling, nitrite ion binding, bile acid binding, cholesterol absorption, and glucose absorption capacities.
Collapse
Affiliation(s)
- Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | | | - Chaoyi Tan
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Nanjie Cai
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Xiaoyu Feng
- School of Public Health, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
10
|
Fan X, Mai C, Zuo L, Huang J, Xie C, Jiang Z, Li R, Yao X, Fan X, Wu Q, Yan P, Liu L, Chen J, Xie Y, Leung ELH. Herbal formula BaWeiBaiDuSan alleviates polymicrobial sepsis-induced liver injury via increasing the gut microbiota Lactobacillus johnsonii and regulating macrophage anti-inflammatory activity in mice. Acta Pharm Sin B 2023; 13:1164-1179. [PMID: 36970196 PMCID: PMC10031256 DOI: 10.1016/j.apsb.2022.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Chutian Mai
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Zuo
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jumin Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Chun Xie
- Cancer Center, Faculty of Health Science; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Runze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Xiaojun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xingxing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Qibiao Wu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Peiyu Yan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| |
Collapse
|
11
|
Tao R, Lu K, Zong G, Xia Y, Han H, Zhao Y, Wei Z, Lu Y. Ginseng polysaccharides: Potential antitumor agents. J Ginseng Res 2023; 47:9-22. [PMID: 36644386 PMCID: PMC9834022 DOI: 10.1016/j.jgr.2022.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
As a famous herbal medicine in China and Asia, ginseng (Panax ginseng C. A. Meyer) is also known as the "King of All Herbs" and has long been used in medicine and healthcare. In addition to the obvious biological activities of ginsenosides, ginseng polysaccharides (GPs) exhibit excellent antitumor, antioxidant stress, and immunomodulatory effects. In particular, GPs can exert an antitumor effect and is a potential immunomodulator. However, due to the complexity and diversity in the structures and components of GPs, their specific physicochemical properties, and underlying mechanisms remain unclear. In this article, we have summarized the factors influencing the antitumor activity of GPs and their mechanism of action, including the stimulation of the immune system, regulation of the gut microbiota, and direct action on tumor cells.
Collapse
Affiliation(s)
- Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Dang G, Wang W, Zhong R, Wu W, Chen L, Zhang H. Pectin supplement alleviates gut injury potentially through improving gut microbiota community in piglets. Front Microbiol 2022; 13:1069694. [PMID: 36569061 PMCID: PMC9780600 DOI: 10.3389/fmicb.2022.1069694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
As pectin is widely used as a food and feed additive due to its tremendous prebiotic potentials for gut health. Yet, the underlying mechanisms associated with its protective effect remain unclear. Twenty-four piglets (Yorkshire × Landrace, 6.77 ± 0.92 kg) were randomly divided into three groups with eight replicates per treatment: (1) Control group (CON), (2) Lipopolysaccharide-challenged group (LPS), (3) Pectin-LPS group (PECL). Piglets were administrated with LPS or saline on d14 and 21 of the experiment. Piglets in each group were fed with corn-soybean meal diets containing 5% citrus pectin or 5% microcrystalline cellulose. Our result showed that pectin alleviated the morphological damage features by restoring the goblet numbers which the pig induced by LPS in the cecum. Besides, compared with the LPS group, pectin supplementation elevated the mRNA expression of tight junction protein [Claudin-1, Claudin-4, and zonula occludens-1 (ZO-1)], mucin (Muc-2), and anti-inflammatory cytokines [interleukin 10 (IL-10), and IL-22]. Whereas pectin downregulated the expression of proinflammatory cytokines (IL-1β, IL-6, IL-18), tumor necrosis factor-&alpha (TNF-α), and NF-κB. What is more, pectin supplementation also significantly increased the abundance of beneficial bacteria (Lactobacillus, Clostridium_sensu_stricto_1, Blautia, and Subdoligranulum), and significantly reduced the abundance of harmful bacteria, such as Streptococcus. Additionally, pectin restored the amount of short-chain fatty acids (SCFAs) after being decreased by LPS (mainly Acetic acid, Propionic acid, and Butyric acid) to alleviate gut injury and improve gut immunity via activating relative receptors (GPR43, GPR109, AhR). Mantel test and correlation analysis also revealed associations between intestinal microbiota and intestinal morphology, and intestinal inflammation in piglets. Taken together, dietary pectin supplementation enhances the gut barrier and improves immunity to ameliorate LPS-induced injury by optimizing gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Wenxing Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Liang Chen,
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Hongfu Zhang,
| |
Collapse
|
13
|
Sun X, Wang M, Xu C, Wang S, Li L, Zou S, Yu J, Wei Y. Positive Effect of a Pea-Clam Two-Peptide Composite on Hypertension and Organ Protection in Spontaneously Hypertensive Rats. Nutrients 2022; 14:4069. [PMID: 36235721 PMCID: PMC9571109 DOI: 10.3390/nu14194069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
In the present study, we prepared pea peptides with high angiotensin-converting enzyme (ACE) inhibitory activity in vitro using an enzymatic hydrolysis of pea protein and compounded them with clam peptides to obtain a pea-clam double peptide. The effects of the two-peptide composite and pea peptides on hypertension and the damage-repair of corresponding organs were studied in spontaneously hypertensive rats (SHRs). We found that both pea peptides and the two-peptide composite significantly reduced the blood pressure upon a single or long-term intragastric administration, with the two-peptide composite being more effective. Mechanistically, we found that the two-peptide composite could regulate the renal renin-angiotensin system (RAS), rebalance gut microbial dysbiosis, decrease renal and myocardial fibrosis, and improve renal and cardiac function and vascular remodeling. Additionally, hippocampal lesions caused by hypertension were also eliminated after two-peptide composite administration. Our research provides a scientific basis for the use of this two-peptide composite as a safe antihypertension ingredient in functional foods.
Collapse
Affiliation(s)
- Xiaopeng Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Min Wang
- Chenland Nutritionals, Inc., Invine, CA 92614, USA
| | - Chuanjin Xu
- The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266071, China
| | | | - Li Li
- Chenland Nutritionals, Inc., Invine, CA 92614, USA
| | - Shengcan Zou
- Chenland Nutritionals, Inc., Invine, CA 92614, USA
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
14
|
Gu WT, Li LY, Rui WJ, Diao ZW, Zhuang GD, Chen XM, Qian ZM, Wang SM, Tang D, Ma HY. Non-targeted metabolomic analysis of variation of volatile fractions of ginseng from different habitats by HS-SPME-GC-MS coupled with chemometrics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3583-3597. [PMID: 36043471 DOI: 10.1039/d2ay01060g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cultivated ginseng (CG), transplanted ginseng (TG) and mountain cultivated ginseng (MCG) classified by the habitat type all belong to Panax ginseng and were reported to have similar types of secondary metabolites. Nonetheless, owing to the distinctly diverse habitats in which these ginseng types grow, their pharmacological effects differ. In the present study, an emerging analytical approach involving headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was established to effectively distinguish among CG, TG and MCG. First, the volatile components were analysed and identified by using the NIST library combined with measured retention indices (Kovats', RI), and a total of 78 volatile components were finally characterized, which included terpenes, alcohols, esters, aldehydes and alkynols. Furthermore, multivariate statistical approaches, principal component analysis (PCA) and orthogonal partial least-squares discrimination analysis (OPLS-DA) were subsequently utilized to screen for compounds of significance. Under optimized HS-SPME-GC-MS conditions, 12, 16, and 16 differential markers were screened in the CG-TG, CG-MCG and TG-MCG groups, respectively. Our study suggested that HS-SPME-GC-MS analysis combined with metabolomic analytical methods and chemometric techniques can be applied as potent tools to identify chemical marker candidates to distinguish CG, TG and MCG.
Collapse
Affiliation(s)
- Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lin-Yuan Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Company Limited, Guangzhou 51006, China
| | - Wen-Jing Rui
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhong-Wen Diao
- Guangzhou Forensic Science Institute, Guangzhou 51006, China
| | - Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiao-Mei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hong-Yan Ma
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Qu Q, Zhao C, Yang C, Zhou Q, Liu X, Yang P, Yang F, Shi X. Limosilactobacillus fermentum-fermented ginseng improved antibiotic-induced diarrhoea and the gut microbiota profiles of rats. J Appl Microbiol 2022; 133:3476-3489. [PMID: 35965438 DOI: 10.1111/jam.15780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study investigated the efficacy of Limosilactobacillus fermentum-fermented ginseng for improving colitis and the gut microbiota profiles in rats and explored the benefits of the L. fermentum fermentation process to ginseng. METHODS AND RESULTS Ginseng polysaccharide and ginsenoside from fermented ginseng were analysed by UV and HPLC. Antibiotic-fed rats were treated with fermented ginseng and a L. fermentum-ginseng mixture. Histopathology- and immune-related factors (TNF-α, IL-1β, IL-6 and IL-10) of the colon were assayed by using pathological sections and ELISA. After treatment, fermented ginseng relieved the symptoms of antibiotic-induced diarrhoea and colon inflammation, and the expression of colon immune factors returned to normal. The gut microbial communities were identified by 16S rRNA gene sequencing. The results showed that the alterations in the gut microbiota returned to normal. In addition, the gut microbiota changes were correlated with immune factor expression after treatment. The fermented ginseng had better biological functions than a L. fermentum-ginseng mixture. CONCLUSIONS Fermented ginseng can relieve diarrhoea and colon inflammation and restore the gut microbiota to its original state. The process of L. fermentum fermentation can expand the therapeutic use of ginseng. SIGNIFICANCE AND IMPACT OF THE STUDY This research suggested the potential function of fermented ginseng to relieve diarrhoea and recover the gut microbiota to a normal level and explored the benefits of the Limosilactobacillus fermentum fermentation process to ginseng.
Collapse
Affiliation(s)
- Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyan Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cuiting Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| |
Collapse
|
16
|
Bai X, Feng Z, Peng S, Zhu T, Jiao L, Mao N, Gu P, Liu Z, Yang Y, Wang D. Chitosan-modified Phellinus igniarius polysaccharide PLGA nanoparticles ameliorated inflammatory bowel disease. BIOMATERIALS ADVANCES 2022; 139:213002. [PMID: 35882149 DOI: 10.1016/j.bioadv.2022.213002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
In many clinical studies, prebiotics have been used as adjuvant therapy for inflammatory bowel disease (IBD). Phellinus igniarius polysaccharide (PIP) possesses great anti-inflammatory and prebiotic activities. Herein, we developed an orally deliverable PIP-loaded chitosan-modified PLGA nanomedicine (CS-PIPP) to investigate its anti-inflammatory effect in vitro and in vivo. Dextran sodium sulfate (DSS)-induced colitis model was established to evaluate the preventive effect of CS-PIPP on IBD. This study characterized that CS-PIPP had a size of 288.7 ± 5.49 nm, positive zeta potential, and showed good stability over four weeks. The in-vitro study suggested that CS-PIPP had enhanced phagocytosis by macrophages, which could further significantly inhibit M1-like macrophages phenotype and regulate lipopolysaccharide (LPS)-induced inflammatory cytokines. The in-vivo study revealed that CS-PIPP prominently prevented intestinal inflammatory damage and protected the integrity of the intestinal barrier. Moreover, CS-PIPP increased the contents of short-chain fatty acids (SCFAs) and positively regulated the gut microbiota. Specifically, CS-PIPP reduced enteropathogenic microorganisms while increasing the beneficial microbiota, including Lactobacillus and Akkermansia, which revealed the potential of CS-PIPP as prebiotics. Generally, CS-PIPP promoted the anti-inflammatory effect of PIP, so it could be regarded as a novel and potent nanoformulation to treat IBD.
Collapse
Affiliation(s)
- Xinxin Bai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
17
|
Sun Y, Wang F, Liu Y, Liu S, An Y, Xue H, Wang J, Xia F, Chen X, Cao Y. Microbiome-metabolome responses of Fuzhuan brick tea crude polysaccharides with immune-protective benefit in cyclophosphamide-induced immunosuppressive mice. Food Res Int 2022; 157:111370. [DOI: 10.1016/j.foodres.2022.111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
18
|
Sun M, Li D, Hua M, Miao X, Su Y, Chi Y, Li Y, Sun R, Niu H, Wang J. Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats. Food Funct 2022; 13:7377-7391. [PMID: 35730792 DOI: 10.1039/d2fo01165d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black rice and black bean have not yet been fully investigated as healthy foods for their therapeutic effects on type 2 diabetes mellitus (T2DM). In this study, we aimed to evaluate the antidiabetic effects of black rice, black bean husk anthocyanin extracts, and their combination on glycolipid metabolism, gut microbiota, and serum metabolites in T2DM rats. Black bean husk and black rice anthocyanin extracts were administered to T2DM rats by gavage for 4 weeks. The results showed that black rice and black bean husk anthocyanin extracts significantly improved blood glucose, insulin resistance, serum oxidative stress state, lipid metabolism and inflammatory cytokines levels in rats, and alleviated liver damage. Black rice and black bean husk anthocyanin extracts increased the abundance of short-chain fatty acid (SCFA) producing bacteria Akkermansia spp., Phascolarctobacterium spp., Bacteroides spp., and Coprococcus spp., changed the gut microbiota structure; activated AMPK, PI3K, and AKT; inhibited HMGCR, G6pase and PEPCK expression; and inhibited hepatic gluconeogenesis. Moreover, by adjusting the levels of urea, deoxycytidine, L-citrulline, pseudouridine, and other serum metabolites in T2DM rats, the arginine biosynthesis and pyrimidine metabolism pathways were downregulated. The above results indicated that black rice and black bean husk anthocyanin extracts had a significant impact on the development of T2DM.
Collapse
Affiliation(s)
- Mubai Sun
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Da Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Mei Hua
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Xinyu Miao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Ying Su
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Yanping Chi
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Yueqiao Li
- Department of International Cooperation, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China
| | - Ruiyue Sun
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji, 133000, Jilin, China
| | - Honghong Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Jinghui Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| |
Collapse
|
19
|
Zhou H, Guo Y, Liu Z, Wu H, Zhao J, Cao Z, Zhang H, Shang H. Comfrey polysaccharides modulate the gut microbiota and its metabolites SCFAs and affect the production performance of laying hens. Int J Biol Macromol 2022; 215:45-56. [PMID: 35718145 DOI: 10.1016/j.ijbiomac.2022.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 12/24/2022]
Abstract
Effects of dietary supplementation of comfrey polysaccharides (CPs) on production performance, egg quality, and microbial composition of cecum in laying hens were evaluated. A total of 240 laying hens were allocated into 4 groups with 6 replicates per group. The laying hens were fed diets containing CPs at levels of 0, 0.5, 1.0, and 1.5 %, respectively. The results showed that the egg production rate increased by 5.97 %, the egg mass improved by 6.71 %, and the feed conversion rate reduced by 5.43 % in the 1.0 % supplementation group of CPs compared with those in the control group. The digestibility of ash, crude fat, and phosphorus was notably improved by the addition of CPs at 1.0 % (P < 0.05). The relative abundances of Bacteroidetes at the phylum level, Bacteroidaceae, Rikenellaceae, and Prevotellaceae at the family level were increased by CPs (P < 0.05). The relative abundances of Bacteroides, Megamonas, Rikenellaceae_RC9_gut_group, [Ruminococcus]_torques_group, Methanobrevibacter, Desulfovibrio, Romboutsia, Alistipes, and Intestinimonas at the genus level were increased by CPs (P < 0.05). Dietary supplementation of CPs could enhance the production performance of laying hens, which might be related to the improvement of nutrient digestibility and microbial community modulations in the cecum. Therefore, CPs have potential application value as prebiotics in laying hens.
Collapse
Affiliation(s)
- Haizhu Zhou
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yang Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Zihang Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hexiang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongmei Shang
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
20
|
Lin Y, Wang K, Che L, Fang Z, Xu S, Feng B, Zhuo Y, Li J, Wu C, Zhang J, Xiong H, Yu C, Wu D. The Improvement of Semen Quality by Dietary Fiber Intake Is Positively Related With Gut Microbiota and SCFA in a Boar Model. Front Microbiol 2022; 13:863315. [PMID: 35633720 PMCID: PMC9130837 DOI: 10.3389/fmicb.2022.863315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although fiber-rich diets have been positively associated with sperm quality, there have not been any studies that have examined the effects of dietary fiber and its metabolites on sperm quality in young or pre-pubescent animals. In this study, we aimed to explore the effect of dietary fiber supplementation on semen quality and the underlying mechanisms in a boar model. Sixty purebred Yorkshire weaning boars were randomly divided into the four groups (T1–T4). Groups T1, T2, and T3 boars were fed diets with different levels of fiber until reaching 160 days of age and were then fed the same diet, while group T4 boars were fed a basal diet supplemented with butyrate and probiotics. Compared with T1 boars, sperm motility and effective sperm number were significantly higher among T3 boars. Meanwhile, at 240 days of age, the acetic acid and total short-chain fatty acid (SCFA) contents in the sera of T3 and T4 boars were significantly higher than those in T1 boars. The abundance of microbiota in T2 and T3 boars was significantly higher than that in T1 boars (P < 0.01). Moreover, dietary fiber supplementation increased “beneficial gut microbes” such as UCG-005, Rumenococcus, Rikenellaceae_RC9_gut_group and Lactobacillus and decreased the relative abundance of “harmful microbes” such as Clostridium_sensu_stricto_1, Romboutsia and Turicibacter. Collectively, the findings of this study indicate that dietary fiber supplementation improves gut microbiota and promotes SCFA production, thereby enhancing spermatogenesis and semen quality. Moreover, the effects of dietary fiber are superior to those of derived metabolites.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Ke Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Haoyu Xiong
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Chenglong Yu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| |
Collapse
|
21
|
Analysis of Key Chemical Components in Aqueous Extract Sediments of Panax Ginseng at Different Ages. Foods 2022; 11:foods11081161. [PMID: 35454749 PMCID: PMC9025099 DOI: 10.3390/foods11081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Panax ginseng beverages have been some of the most popular plant drinks among consumers in recent years, but they become turbid and sediment are easily formed during production and marketing, these are some of the key issues that affect the quality of the beverages. In this study, we analysed the physicochemical properties of sediments in aqueous extracts of 3- to 6-year-old ginseng, and by tracing the sediment formation process from 0-40 days, we observed that the sediment was gradually beginning on day 10. The solid content of ginseng aged 5 and 6 years was significantly higher than that of ginseng aged 3 and 4 years. There was no significant difference in the sediment amount sediment in the extracts of ginseng of different ages. The light transmittance of the extracts after centrifugation was significantly higher than before centrifugation. Colour-difference analysis found that there was a significant positive correlation between ginseng age and colour-difference value (ΔE). Chemical composition analysis showed that total sugar and proteins were the main components of the sediment. In addition, ginsenosides, amino acids and minerals were also involved in sediment formation to different degrees. A stepwise regression model was established through principal component analysis (PCA), and the regression equation for predicting the sediment amount was obtained as follows: sediment amount (mg/mL) = 2.906 - 0.126 × CTotal saponins - 0.131 × CFree amino acids.
Collapse
|
22
|
Tian B, Pan Y, Wang J, Cai M, Ye B, Yang K, Sun P. Insoluble Dietary Fibers From By-Products of Edible Fungi Industry: Basic Structure, Physicochemical Properties, and Their Effects on Energy Intake. Front Nutr 2022; 9:851228. [PMID: 35360689 PMCID: PMC8961438 DOI: 10.3389/fnut.2022.851228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of the edible fungi industry in the world, especially in China, the resource utilization of edible fungi by-products has become an urgent problem for the industry's sustainable development. The waste residue of edible fungi after polysaccharide extraction by water accounts for a large proportion, which contains a large amount of water-insoluble dietary fiber (IDF). At present, the extracted residue is generally treated as fertilizer or solid waste, which not only pollutes the environment, but wastes resources too. In order to develop these by-products, expand their potential utilization in the food industry, the structure characterization, physicochemical properties, and the influence of IDF on dietary energy intake were studied. The IDF from the residues of polysaccharides extracted from four edible fungi was extracted using the Association of Official Analytical Chemists (AOAC) method. The results showed that IDF in the four kinds of edible fungi residues was similar in composition but different in texture. Cellulose and hemicellulose are the main IDF extracted from four kinds of edible fungi. Among them, Hericium erinaceus is the softest without obvious granular texture, following Lentinus edodes, while Ganoderma lucidum and Grifola frondosa have a relatively hard texture. The yield of four kinds of IDF from high to low came from Ganoderma lucidum, Hericium erinaceus, Lentinus edodes, and Grifola frondosa. Fourier transform IR (FTIR) and X-ray diffraction (XRD) spectra showed that the four IDFs had similar functional groups and all of them contained a large amount of cellulose. Physical and chemical analysis showed that all the four IDFs had certain water holding capacity, water binding capacity, and oil holding capacity. In-vitro digestion experiments showed that the four IDFs could inhibit the digestion of starch and fat to a certain extent. By-products of edible fungi are an ideal material for the recovery of IDFs, which have the potential to be processed into functional food materials due to their physicochemical properties and physiological functions.
Collapse
Affiliation(s)
- Baoming Tian
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Yizhu Pan
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Jian Wang
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Ming Cai
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Bangwei Ye
- Zhejiang WisePlus Health Technology Co., Ltd, Lishui, China
| | - Kai Yang
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- *Correspondence: Kai Yang
| | - Peilong Sun
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
23
|
Han Z, Cen C, Ou Q, Pan Y, Zhang J, Huo D, Chen K. The Potential Prebiotic Berberine Combined With Methimazole Improved the Therapeutic Effect of Graves' Disease Patients Through Regulating the Intestinal Microbiome. Front Immunol 2022; 12:826067. [PMID: 35082799 PMCID: PMC8785824 DOI: 10.3389/fimmu.2021.826067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Graves’ disease, a typical metabolism disorder, causes diffuse goiter accompanied by ocular abnormalities and ocular dysfunction. Although methimazole (MI) is a commonly used drug for the treatment of GD, the efficacy of methimazole is only limited to the control of clinical indicators, and the side effects of MI should be seriously considered. Here, we designed a 6-month clinical trial that divided the patients into two groups: a methimazole group (n=8) and a methimazole combined with potential prebiotic berberine group (n=10). The effects of both treatments on thyroid function and treatment outcomes in patients with GD were assessed by thyroid index measurements and gut microbiota metagenomic sequencing. The results showed that the addition of berberine restored the patients’ TSH and FT3 indices to normal levels, whereas MI alone restored only FT3. In addition, TRAb was closer to the healthy threshold at the end of treatment with the drug combination. MI alone failed to modulate the gut microbiota of the patients. However, the combination of berberine with methimazole significantly altered the microbiota structure of the patients, increasing the abundance of the beneficial bacteria Lactococcus lactis while decreasing the abundance of the pathogenic bacteria Enterobacter hormaechei and Chryseobacterium indologenes. Furthermore, further mechanistic exploration showed that the addition of berberine resulted in a significant upregulation of the synthesis of enterobactin, which may have increased iron functioning and thus restored thyroid function. In conclusion, methimazole combined with berberine has better efficacy in patients with GD, suggesting the potential benefit of berberine combined with methimazole in modulating the composition of intestinal microbes in the treatment of GD, providing new strong evidence for the effectiveness of combining Chinese and Western drugs from the perspective of modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Zhe Han
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chaoping Cen
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qianying Ou
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yonggui Pan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Dongxue Huo
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Kaining Chen
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
24
|
Sun Y, Wang F, Liu Y, An Y, Chang D, Wang J, Xia F, Liu N, Chen X, Cao Y. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct 2022; 13:806-824. [PMID: 34985061 DOI: 10.1039/d1fo02944d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the purpose is to compare the effect of water extraction and alkali-assisted extraction on the structural characteristics and immunomodulatory activity of polysaccharides from Fuzhuan brick tea (FBTPs). The results indicated that water-extracted FBTPs (W-FBTPs) and alkali-extracted FBTPs (A-FBTPs) had similar molecular weights but different monosaccharide compositions, of which A-FBTPs had a higher yield and uronic acid groups corresponding to galacturonic acid (GalA). Moreover, A-FBTPs had stronger ability to promote phagocytic capacity, acid phosphatase activity and nitric oxide (NO) secretion in macrophages in vitro. In the in vivo study, A-FBTPs exhibited a promising effect to adjust the immune imbalance by enhancing the body features, antioxidant activities, immune response and intestinal mucosal barrier in cytoxan (CTX)-induced immunosuppressive mice. Besides, A-FBTP supplementation effectively improved CTX-induced gut microbiota dysbiosis, including promoting the abundance of beneficial bacteria (e.g., Lactobacillus) and short chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospiraceae, Prevotellaceae and Ruminococcaceae), along with reducing the growth of potentially pathogenic microbes (e.g., Desulfovibrionaceae and Helicobacter). These findings suggested that alkaline extraction might be a promising way to obtain high-quality acidic polysaccharides from Fuzhuan brick tea (FBT), and A-FBTPs could be developed as novel potential prebiotics and immunomodulators for further application in food formulations.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fan Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuye An
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Dawei Chang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Jiankang Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fei Xia
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ning Liu
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
25
|
Zou Y, Yu H, Zhang L, Ruan Z. Dietary Vegetable Powders Modulate Immune Homeostasis and Intestinal Microbiota in Mice. Foods 2021; 11:foods11010027. [PMID: 35010153 PMCID: PMC8750791 DOI: 10.3390/foods11010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
As the largest immune organ of the human body, the intestine also plays a vital role in nutrient digestion and absorption. Some vegetables are considered to have improvement effects on the intestine. This experiment explored the effects of freeze-dried asparagus, broccoli and cabbage powder on the intestinal immune homeostasis and microflora of mice. Thirty-two mice were divided into four groups (n = 8), including control group (fed normal diet), asparagus group (fed normal diet with 5% asparagus power), broccoli group (fed normal diet with 5% broccoli power) and cabbage group (fed normal diet with 5% cabbage power). The experiment lasted 21 days. The results showed that the serum immunoglobulin concentration (IgA and IgM) and intestinal cytokine content (like IFN-γ and TNF-α) were increased after vegetable powder supplement. The experiment also detected that vegetable powder supplementation changed intestinal flora and their metabolites (short-chain fatty acid), which showed that the abundance of Lachnospiraceae and Bacteroides were decreased, while the abundance of Firmicutes and Lactobacillus as well as propionic acid and butyric acid contents were increased. Together, these vegetable powders, especially cabbage, changed the intestinal immune response and microbial activity of mice.
Collapse
Affiliation(s)
- Yixin Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China;
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China; (H.Y.); (L.Z.)
| | - Haifei Yu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China; (H.Y.); (L.Z.)
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China; (H.Y.); (L.Z.)
| | - Zheng Ruan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China;
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China; (H.Y.); (L.Z.)
- Correspondence: ; Fax: +86-791-8827-2923
| |
Collapse
|