1
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Zhang A, Wang X, Zhong R, Li C, Chen F, Zhang D, Cao Y, Lan Y. Engineering crystal network of supramolecular Oleogel via kinetical regulation for improved lutein bioaccessibility. Food Chem 2024; 463:141444. [PMID: 39366096 DOI: 10.1016/j.foodchem.2024.141444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
This study presented an approach for controlling supramolecular oleogel crystal network by regulating kinetical factors - specifically, a combination of cooling temperature and aging period. Results indicated that only under long aging period, supramolecular oleogels prepared at different cooling temperature exhibited distinct crystal morphology compared to those under short aging period. The physicochemical properties of oleogels were affected by different crystal networks. Therefore, further research on oleogels under longed aging was explored. For lutein encapsulation, it was observed that supramolecular oleogels with denser crystal network exhibited higher lutein bioaccessibility. This was probably because the denser crystal network providing a solid physical barrier that effectively protected lutein unaffected by gastric acid degradation. Additionally, the micellar capacity was also enhanced to accommodate lutein due to release of long chain fatty acid from the gelator glycerol monostearate (GMS). Collectively, kinetical factors regulation facilitated rational design of oleogels for delivery of lipid-soluble bioactive compounds.
Collapse
Affiliation(s)
- Ao Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, Guangdong, PR China
| | - Cungang Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Dian Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Zhang J, Liu M, Han T, Luo L, Zhang Y, Yuan G, Fang X, Han F, Chen X, Wang Y. Advance toward function, production, and delivery of natural astaxanthin: A promising candidate for food ingredients with future perspectives. Food Chem 2024; 463:141428. [PMID: 39353306 DOI: 10.1016/j.foodchem.2024.141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Astaxanthin (AST) exhibits potent antioxidant activity, effectively preventing neurological diseases and cancer. Presently, producing AST from microorganisms like Haematococcus pluvialis and Phaffia rhodozyma is a growing trend. This review summarizes the main research topics on AST in the past five years. AST plays a crucial role in cancer and diabetes prevention, as well as neuroprotection, however, the presence of both free and esterified forms of AST results in differences in their functionality and applications. The primary challenges in industrial production of natural AST lie in breeding high-yield natural producers and developing methods to enhance yield. The use of high-quality food matrix materials and preparation methods is crucial for the delivery system of loaded AST. This study elucidates the bottlenecks and future development directions encountered by natural AST during industrialization, aiming to promote the healthy and rapid growth of the food industry.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Meizhen Liu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tiantian Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lu Luo
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
| | - Ying Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xubo Fang
- Zhejiang International Maritime College, Zhoushan, China
| | - Fangrui Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
4
|
Genuario Barroso N, Kiyomi Okuro P, Ângelo Parente Ribeiro Cerqueira M, Lopes Cunha R. Unveiling the formation capacity of multicomponent oleogels: Performance of lecithin interacting with monostearate derivatives. Food Res Int 2024; 187:114430. [PMID: 38763679 DOI: 10.1016/j.foodres.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.
Collapse
Affiliation(s)
- Noádia Genuario Barroso
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Paula Kiyomi Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | | | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Wang N, Wang C, Gao X, Zhao X, Wei H, Luo J, You X, Jiang H, Zhang X, Yuan C. Docosahexaenoic acid-mediated milk protein treated by ultrasound-assisted pH shifting for enhanced astaxanthin delivery and processed cheese application. J Dairy Sci 2024; 107:4161-4173. [PMID: 38246556 DOI: 10.3168/jds.2023-24342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Whey protein isolate (WPI)-based nanodelivery systems have recently attracted an increasing amount of attention. Despite this, research focusing on milk protein concentrate (MPC) and micellar casein (MCC) as carriers loaded in hydrophobic compounds is lacking. This study investigated the mediated effect of docosahexaenoic acid (DHA) in 3 different milk proteins for the embedding of astaxanthin (ASTA) after ultrasound-assisted pH-shifting treatment. We then evaluated the application of milk protein carriers in cheese processing by comparing MPC, MCC, and WPI. The particle size, polydispersity index, and zeta potential results of the milk protein-DHA complex suggested that the addition of 0.36 μmol/mL DHA optimized the delivery of milk protein to ASTA. All 3 DHA-mediated milk proteins induced an improvement in encapsulation efficiency and antioxidant properties of ASTA. Furthermore, the DHA-mediated MPC and MCC played a stronger role in improving the bioaccessibility and thermal and storage stability of ASTA than those without DHA. Tests conducted to examine the application in cheese production indicated that MCC carrier had a positive effect on the texture of cheeses. However, the delivery effect was dependent on the milk protein variety, and MCC exhibited the best protection ability of ASTA, followed by MPC and WPI. The simulated digestion and storage stability results of cheese further confirmed that the protein encapsulation mediated by DHA was more conducive to ASTA absorption. These findings suggested that the DHA-mediated milk protein complexes studied here may be suitable hydrophilic delivery carriers for the hydrophobic nutrient ASTA, potentially playing different roles in improving its storage stability and bioaccessibility.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Cunfang Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | | | - Xinqi Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Haitao Wei
- Shandong Panda Dairy Co., Jinan 251400, China
| | - Juanjuan Luo
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Xinyu You
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Hua Jiang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Xiaoning Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
6
|
Wang S, Qin Y, Liu Y, Liu G, Cheng G, Soteyome T. Controlling release of astaxanthin in β-sitosterol oleogel-based emulsions via different self-assembled mechanisms and composition of the oleogelators. Food Res Int 2024; 186:114350. [PMID: 38729698 DOI: 10.1016/j.foodres.2024.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, three types of β-sitosterol-based oleogels (β-sitosterol + γ-oryzanol oleogels, β-sitosterol + lecithin, oleogels and β-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the β-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, β-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.
Collapse
Affiliation(s)
- Shujie Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou 510640, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Thanapop Soteyome
- School of Food Science and Technology, Rajamangala University of Technology Phra Nakhon, 168 Thanon Si Ayutthaya, Khwaeng Wachira Phayaban, Khet Dusit, Krung Thep Maha Nakhon 10300, Thailand.
| |
Collapse
|
7
|
Qiu H, Zhang H, Eun JB. Oleogel classification, physicochemical characterization methods, and typical cases of application in food: a review. Food Sci Biotechnol 2024; 33:1273-1293. [PMID: 38585566 PMCID: PMC10992539 DOI: 10.1007/s10068-023-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
The harmful effects of trans and saturated fatty acids have attracted worldwide attention. Edible oleogels, which can structure liquid oils, are promising healthy alternatives to traditional fats. Active research on oleogels is focused on the interaction between unsaturated oils with different fatty acid compositions and low molecular weight or polymer oleogels. The unique network structure inside oleogels has facilitated their application in candies, spreads, meat, and other products. However, the micro- and macro-properties, as well as the functional properties of oleogels vary by preparation method and the system composition. This review discusses the characteristics of oleogels, serving as a reference for the application of oleogels in food products. Specifically, it (i) classifies oleogels and explains the influence of gelling factors on their gelation, (ii) describes the methods for measuring the physicochemical properties of oleogels, and (iii) discusses the current applications of oleogels in food products.
Collapse
Affiliation(s)
- Hongtu Qiu
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
- Department of School of Life Science and Bioengineering, Jining University, No.1 Xin tan Road, JiNing, 273155 China
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Hua Zhang
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
8
|
Wang XP, Wang CF, Zhao XQ, Ma MJ, Li ZH, Jiang H, Zhang XN, Yuan CZ. Comparison of milk protein concentrate, micellar casein, and whey protein isolate in loading astaxanthin after the treatment of ultrasound-assisted pH shifting. J Dairy Sci 2024; 107:141-154. [PMID: 37690728 DOI: 10.3168/jds.2023-23691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Milk proteins can be used as encapsulation walls to increase the bioavailability of active compounds because they can bind hydrophobic, hydrophilic, and charged compounds. The objective of this study was to investigate the effects of astaxanthin (ASTA) encapsulation and the functional properties of milk protein and ASTA nanocomposites by an ultrasound-assisted pH-shifting treatment of different milk proteins, including milk protein concentrate (MPC), micellar casein (MCC), and whey protein isolate (WPI). The ultrasound-assisted pH-shifting treatment of milk protein helped to improve the encapsulation rate of ASTA. Therein, MCC showed great improvement of encapsulating ASTA after co-treatment with the raised encapsulated rate of 5.11%, followed by WPI and MPC. Furthermore, the nanocomposites of ASTA with milk protein exhibit improved bioavailability, antioxidant capacity, and storage stability. By comparison, MCC-encapsulated ASTA has the best storage stability, followed by MPC, and WPI-encapsulated ASTA has the least stability over a 28-d storage period. The results of intrinsic fluorescence and surface hydrophobicity showed that milk protein underwent fluorescence quenching after binding to ASTA, which was due to the hydrophobic sites of the protein being occupied by ASTA. In general, the nanocomposites of milk protein and ASTA fabricated by using an ultrasound-assisted pH-shifting treatment have the potential to be better nano-delivery systems for ASTA in functional foods, especially MCC, which showed excellent performance in encapsulation after treatment technique.
Collapse
Affiliation(s)
- X P Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - C F Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - X Q Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - M J Ma
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Z H Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - H Jiang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - X N Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - C Z Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
9
|
Zhao W, Wei Z, Xue C. Foam-templated oleogels constructed by whey protein isolate and xanthan gum: Multiple-effect delivery vehicle for Antarctic krill oil. Int J Biol Macromol 2024; 256:128391. [PMID: 38029892 DOI: 10.1016/j.ijbiomac.2023.128391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
To address the limitations of Antarctic krill oil (AKO) such as easy oxidation, unacceptable fishy flavor and low bioaccessibility of astaxanthin in it, a multiple-effect delivery vehicle for AKO is needed. In this study, whey protein isolate (WPI) and xanthan gum (XG) were utilized to construct AKO into oleogels by generating foam-templates. The effects of the concentration of XG on the properties of foam, cryogel and the corresponding oleogels were investigated, and the formation mechanism of oleogel was discussed from the perspective of the correlation between foam-cryogel-oleogel. The results demonstrated that with the increase of the concentration of XG, the foam stability was improved, the cryogel after freeze drying had a more uniform network structure and superior oil absorption ability, and the corresponding oleogel had excellent oil holding ability after oil absorption. The AKO oleogels showed superior oxidative stability compared with AKO. The in vitro digestion experiments demonstrated that the bioaccessibility of the astaxanthin in this oleogel was also considerably higher than that in AKO. In addition, this oleogel had masking effect on the odor-presenting substances in AKO, while retaining other flavors of AKO. The foam-templated oleogel can be considered as a multiple-effect vehicle for AKO to facilitate its application in food products. This study provides theoretical basis and data support for the development and utilization of novel vehicle for AKO, broadening the application of AKO in the field of food science.
Collapse
Affiliation(s)
- Wanjun Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory of Marine Drugs and Biological Products, The Laoshan Laboratory, Qingdao 266235, China
| |
Collapse
|
10
|
Chen Z, Shi Z, Meng Z. Development and characterization of antioxidant-fortified oleogels by encapsulating hydrophilic tea polyphenols. Food Chem 2023; 414:135664. [PMID: 36821915 DOI: 10.1016/j.foodchem.2023.135664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The application of hydrophilic compounds in lipid systems was limited due to their poor solubility. In this study, antioxidant-fortified oleogels containing hydrophilic antioxidants tea polyphenols (TP) were developed. The hydrophilic TP was encapsulated in glyceryl monostearate (GMS) to form TP gelling agents, which successfully made TP uniformly dispersed in oleogels. The lipophilic curcumin was directly dissolved in soybean oil to distribute in oleogels. Oxidative stability experiments showed that the addition of TP greatly improve the oxidative stability of oleogels. Compared to curcumin, TP played a particularly stronger antioxidant effect, indicating that hydrophilic antioxidants had promising applications in oleogels. In addition, the synergistic value was calculated to confirm that there was a certain synergistic effect between these two antioxidants. This study initiated a method to uniformly disperse hydrophilic antioxidants in oleogels, providing an effective solution for the construction of lipid products loaded with hydrophilic bioactive ingredients.
Collapse
Affiliation(s)
- Zhujian Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zhangyu Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Li J, Han J, Xiao Y, Guo R, Liu X, Zhang H, Bi Y, Xu X. Fabrication and Characterization of Novel Food-Grade Bigels Based on Interfacial and Bulk Stabilization. Foods 2023; 12:2546. [PMID: 37444280 DOI: 10.3390/foods12132546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Novel food-grade bigels were fabricated using zein nanoparticles for interfacial stabilization and non-surfactant gelators (beeswax and tapioca) for bulk stabilization. The present study demonstrated the importance of interfacial stability for biphasic gels and sheds light on the roles of the gelation mechanism and the oil/water ratio of a bigel on its microstructure, physical properties, and digestion behaviors. The results indicated that it is not an easy task to realize homogenization and subsequent gelation in beeswax-tapioca biphasic systems, as no amphiphilic components existed. However, applying the binding of zein nanoparticles at the oil-water interface allowed us to produce a homogeneous and stable bigel (oil fraction reach 40%), which exhibited enhanced structural and functional properties. Oleogel structures play a crucial role in determining the deformation response of bigel systems. As the oil content increased, the mechanical strength and elastic properties of bigels were enhanced. In the meantime, clear bigel-type transitions were observed. In addition, the fabricated bigels were shown to be beneficial for delayed digestion, and the lowest degree of lipolysis could be found in bigel with 50% oleogel.
Collapse
Affiliation(s)
- Jiaxi Li
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou 450001, China
| | - Junze Han
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou 450001, China
| | - Yahao Xiao
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou 450001, China
| | - Ruihua Guo
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, China
| | - Xinke Liu
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, China
| | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou 450001, China
| | - Xuebing Xu
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou 450001, China
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, China
| |
Collapse
|
12
|
Tanislav AE, Pușcaș A, Mureșan V, Mudura E. The oxidative quality of bi-, oleo- and emulgels and their bioactives molecules delivery. Crit Rev Food Sci Nutr 2023; 64:8990-9016. [PMID: 37158188 DOI: 10.1080/10408398.2023.2207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
During recent years, the applicability of bi-, oleo- and emulgels has been widely studied, proving several advantages as compared to conventional fats, such as increasing the unsaturated fat content of products and being more sustainable for temperate regions as compared to tropical fats. Moreover, these alternative fat systems improve the nutritional profile, increase the bioavailability of bioactive compounds, and can be used as preservation films and markers for the inactivation of pathogens, while in 3D printing facilitate the obtaining of superior food products. Furthermore, bi-, oleo- and emulgels offer food industries efficient, innovative, and sustainable alternatives to animal fats, shortenings, margarine, palm and coconut oil due to the nutritional improvements. According to recent studies, gels can be used as ingredients for the total or partial replacement of saturated and trans fats in the meat, bakery and pastry industry. The evaluation of the oxidative quality of this gelled systems is significant because the production process involves the use of heat treatments and continuous stirring where large amounts of air can be incorporated. The aim of this literature review is to provide a synthesis of studies to better understand the interaction of components and to identify future improvements that can be applied in oil gelling technology. Generally, higher temperatures used in obtaining polymeric gels, lead to more oxidation compounds, while a higher concentration of structuring agents leads to a better protection against oxidation. Due to the gel network ability to function as a barrier against oxidation factors, gelled matrices are able to provide superior protection for the bioactive compounds. The release percentage of bioactive molecules can be regulated by formulating the gel matrix (type and concentration of structuring agents and type of oil). In terms of food products, future research may include the use of antioxidants to improve the oxidative stability of the reformulated products.
Collapse
Affiliation(s)
- Anda Elena Tanislav
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Elena Mudura
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Perța-Crișan S, Ursachi CȘ, Chereji BD, Tolan I, Munteanu FD. Food-Grade Oleogels: Trends in Analysis, Characterization, and Applicability. Gels 2023; 9:gels9050386. [PMID: 37232978 DOI: 10.3390/gels9050386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Currently, a large number of scientific articles can be found in the research literature in the field focusing on the use of oleogels for food formulation to improve their nutritional properties. The present review focuses on the most representative food-grade oleogels, highlighting current trends in terms of the most suitable methods of analysis and characterization, as well as trends in their application as substitutes for saturated and trans fats in foods. For this purpose, the physicochemical properties, structure, and composition of some oleogelators are primarily discussed, along with the adequacy of oleogel incorporation for use in edible products. Analysis and characterization of oleogels by different methods are important in the formulation of innovative foods, and therefore, this review discusses the most recent published results regarding their microstructure, rheological and textural properties, and oxidative stability. Last but not least, issues related to the sensory properties of oleogel-based foods are discussed, highlighting also the consumer acceptability of some of them.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Claudiu-Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Bianca-Denisa Chereji
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Iolanda Tolan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| |
Collapse
|
14
|
Novel high internal phase oleogels-in-water pickering emulsions stabilized solely by whey protein isolate for 3D printing and fucoxanthin delivery. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
15
|
Shi T, Jia C, Wang X, Xia S, Wang X, Fan C, Zhang X, Swing CJ. Formation mechanism and stability of low environment-sensitive ternary nanoparticles based on zein-pea protein-pectin for astaxanthin delivery. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Zhao W, Wei Z, Xue C, Meng Y. Development of food-grade oleogel via the aerogel-templated method: Oxidation stability, astaxanthin delivery and emulsifying application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Qiu H, Qu K, Eun JB, Zhang H. Analysis of thermal oxidation of different multi-element oleogels based on carnauba wax, β-sitosterol/lecithin, and ethyl cellulose by classical oxidation determination method combined with the electronic nose. Food Chem 2022; 405:134970. [DOI: 10.1016/j.foodchem.2022.134970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
18
|
Sun J, Yan J, Dong H, Gao K, Yu K, He C, Mao X. Astaxanthin with different configurations: sources, activity, post-modification and application in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Saffold AC, Acevedo NC. The effect of mono‐diglycerides on the mechanical properties, microstructure, and physical stability of an edible rice bran wax–gelatin biphasic gel system. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ariana C. Saffold
- Department of Food Science and Human Nutrition Iowa State University Ames Iowa USA
| | - Nuria C. Acevedo
- Department of Food Science and Human Nutrition Iowa State University Ames Iowa USA
| |
Collapse
|
20
|
Soy oil and SPI based-oleogels structuring with glycerol monolaurate by emulsion-templated approach: Preparation, characterization and potential application. Food Chem 2022; 397:133767. [PMID: 35905623 DOI: 10.1016/j.foodchem.2022.133767] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
In this study, soybean oil-based oleogels were prepared using soy-protein isolate (SPI) and glycerol monolaurate (GML) in an emulsion-template approach. The rheological, texture, microstructure, and oil-retention properties of the obtained oleogels were analyzed. Results showed that the soy oil-based oleogel prepared with 6 wt% GML exhibited high oil loss, low-hardness, and needle-like morphology compared to the soy-oil/SPI-based oleogel. On the other hand, soy oil-based /SPI-based oleogels structured by 3 or 6 wt% GML presented moderate thermal-stability and lowest oil loss than those prepared without GML. Furthermore, SPI-based oleogel containing 6 wt% GML showed highest free fatty acids release (62.07%) with significantly improved elastic modulus and apparent viscosity. Additionally, the obtained oleogels displayed the occurrence of van der Waals interactions and intermolecular hydrogen bonds, presenting enhanced thermal stability. These results contribute to a better understanding of oleogelation-based emulsions for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.
Collapse
|