1
|
Tomac I, Adam V, Labuda J. Advanced chemically modified electrodes and platforms in food analysis and monitoring. Food Chem 2024; 460:140548. [PMID: 39096799 DOI: 10.1016/j.foodchem.2024.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, J. J. Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Generála Píky 1999/5, 613 00 Brno, Czech Republic.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
2
|
Li W, Dai S, Li X, Li Q, Li J. Highly sensitive SERS detection of melamine based on 3D Ag@porous silicon photonic crystal. Talanta 2024; 280:126789. [PMID: 39217706 DOI: 10.1016/j.talanta.2024.126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The stability, reproducibility and engineering of SERS substrate faces a great challenge in melamine SERS assay. In this work, a simple, highly sensitive, stable and cost-efficient SERS detection platform for melamine was established based on its Raman fingerprints spectrum. The Ag@ porous silicon photonic crystal (Ag@PPC) was prepared as the 3D SERS substrate by electrochemical etching and magnetron sputter technology. The main influence factors for the preparation of SERS substrate were investigated in detail. The analytical enhancement factor of the 3D SERS substrate can reach to 2.6 × 108. The 3D SERS detection platform showed a wide linear detection range of 10-4∼10 mg L-1 and a low limit of detection of 0.1 μg L-1 for melamine. Moreover, such detection platform showed good stability, high reproducibility and high recovery rates for melamine. The 3D Ag@PPC SERS substrate can be easily prepared and engineered, displaying a great potential application in food safety field.
Collapse
Affiliation(s)
- Wei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangdong, 510630, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Shaanxi, 710016, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Xiong J, Sun B, Wang S, Zhang S, Qin L, Jiang H. Label-free direct detection of melamine using functionalized gold nanoparticles-based dual-fluorescence colorimetric nanoswitch sensing platform. Talanta 2024; 277:126335. [PMID: 38823323 DOI: 10.1016/j.talanta.2024.126335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Developing a simple, economical, sensitive, and selective method for label-free direct detection analytes is attractive, especially the strategies that could achieve signal amplification without complicated operations. Herein, a dual-fluorescence colorimetric nanoswitch sensing platform for label-free direct melamine (MEL) detection was established. We first explored the relationship between MEL-induced aggregation of gold nanoparticles (AuNPs) and size and determined the optimal size to be 37 nm. Using surfactant Triton X-100 to modify AuNPs and clarify possible interaction mechanisms to improve detection performance. The dynamic changes of surface plasmon resonance absorption peaks in the dispersed and aggregated states of AuNPs were skillfully utilized to match the emission of multicolor gold nanoclusters to trigger the multi-inner filter effect. Accompanied by the addition of MEL-induced AuNPs to change from dispersed to aggregated state, the fluorescence of green-emitting and red-emitting gradually turned on and turned off, respectively. The fluorescence turn-on mode detection limit was 10 times higher than the colorimetric method and as low as 5.5 ng/mL; the detection took only 10 min. The sensor detected MEL in spiked milk samples with a good recovery in the range of 81.2-111.0 % with a coefficient of variation less than 11.4 % and achieved a good correlation with commercial kits. The proposed sensor integrates numerous merits of label-free, multi-signal readout, self-calibration, simple operations, and economical, which provides a promising tool for convenient on-site detection of MEL.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Algethami FK, Marwani HM, Raza N, Asiri AM, Rahman MM. Non-enzymatic electrochemical detection of melamine in dairy products by using CuO decorated carbon nanotubes nanocomposites. Food Chem 2024; 445:138792. [PMID: 38387321 DOI: 10.1016/j.foodchem.2024.138792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Melamine, a typical nitrogen enriched organic compound exhibiting great potential in the industrial sector, is exploited as an adulterant to inflate protein levels in dairy products, can pose serious threats to humans and therefore necessitates its swift detection and precise quantification at its first exposure. In this investigation, sensitive and reliable sensor probes were fabricated using CuO nanoparticles and its nanocomposites (NCs) with carbon nanotubes (CNTs), carbon black (CB), and graphene oxide (GO) to promptly quantify melamine in dairy products. The optical, morphological, and structural characteristics of the CuO-CNT NCs were achieved using diverse instrumental techniques including UV-visible spectroscopy, transmission electron microscopy, X- ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy and etc. The fabrication of glassy carbon electrodes (GCE) was accomplished by coating CuO-CNT NCs through a binder (5 % nafion). These sensor probes demonstrated outstanding electrochemical sensor performance with CuO-CNT NCs/Nafion/GCE sensor probe in terms of very low limit of detection (0.27 nM), good linearity range (0.05-0.5 nM), and relatively high sensitivity (93.924 µA µM-1 m-2) for melamine under optimized experimental conditions. Furthermore, the performance of CuO-CNT NCs/Nafion/GCE coated sensor probes was practically validated for the selective melamine detection in the real sample analysis of commercially available milk brands, which revealed significant figures of merit in a very short response time of 10 s. From the results, it was concluded that the current study might be helpful in the development of an efficient commercial sensor based on ultra-sensitive transition metal oxides in the field of health care monitoring, food stuffs in a broader scale as well as food applications.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Government Alamdar Hussain Islamia Degree College Multan, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Zhao Q, Chen Z, Shan CW, Zhan T, Han CY, Han GC, Feng XZ, Kraatz HB. Construction and evaluation of AuNPs enhanced electrochemical immunosensors with [Fe(CN) 6] 3-/4- and PPy probe for highly sensitive detection of human chorionic gonadotropin. Int J Biol Macromol 2024; 273:132963. [PMID: 38852725 DOI: 10.1016/j.ijbiomac.2024.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human chorionic gonadotropin (HCG), a vital protein for pregnancy determination and a marker for trophoblastic diseases, finds application in monitoring early pregnancy and ectopic pregnancy. This study presents an innovative approach employing electrochemical immunosensors for enhanced HCG detection, utilizing Anti-HCG antibodies and gold nanoparticles (AuNPs) in the sensor platform. Two sensor configurations were optimized: BSA/Anti-HCG/c-AuNPs/MEL/e-AuNPs/SPCE with [Fe(CN)6]3-/4- as a redox probe (1) and BSA/Anti-HCG/PPy/e-AuNPs/SPCE using polypyrrole (PPy) as a redox probe (2). The first sensor offers linear correlation in the 0.10-500.00 pg∙mL-1 HCG range, with a limit of detection (LOD) of 0.06 pg∙mL-1, sensitivity of 32.25 μA∙pg-1∙mL∙cm-2, RSD <2.47 %, and a recovery rate of 101.03-104.81 %. The second sensor widens the HCG detection range (40.00 fg∙mL-1-5.00 pg∙mL-1) with a LOD of 16.53 fg∙mL-1, ensuring precision (RSD <1.04 %) and a recovery range of 94.61-106.07 % in serum samples. These electrochemical immunosensors have transformative potential in biomarker detection, offering enhanced sensitivity, selectivity, and stability for advanced healthcare diagnostics.
Collapse
Affiliation(s)
- Qi Zhao
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Yang Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
6
|
Ravipati M, Singh P, Badhulika S. Bismuth sulfide micro flowers decorated nickel foam as a promising electrochemical sensor for quantitative analysis of melamine in bottled milk samples. NANOTECHNOLOGY 2024; 35:175501. [PMID: 38334120 DOI: 10.1088/1361-6528/ad2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Here, we demonstrate hydrothermally grown bismuth sulfide (Bi2S3) micro flowers decorated nickel foam (NF) for electrochemical detection of melamine in bottled milk samples. The orthorhombic phase of hydrothermally grown Bi2S3is confirmed by the detailed characterization of x-ray diffraction and its high surface area micro flowers-like morphology is investigated via field emission scanning electron microscope. Furthermore, the surface chemical oxidation state and binding energy of Bi2S3/NF micro flowers is analyzed by x-ray photoelectron spectroscopy studies. The sensor exhibits a wide linear range of detection from 10 ng l-1to 1 mg l-1and a superior sensitivity of 3.4 mA cm-2to melamine using differential pulse voltammetry technique, with a lower limit of detection (7.1 ng l-1). The as-fabricated sensor is highly selective against interfering species of p-phenylenediamine (PPDA), cyanuric acid (CA), aniline, ascorbic acid, glucose (Glu), and calcium ion (Ca2+). Real-time analysis done in milk by the standard addition method shows an excellent recovery percentage of ̴ 98%. The sensor's electrochemical mechanism studies reveal that the high surface area bismuth sulfide micro flowers surface interacts strongly with melamine molecules through hydrogen bonding and van der Waals forces, resulting in a significant change in the sensor's electrical properties while 3D skeletal Nickel foam as a substrate provides stability, enhances its catalytic activity by providing a more number /of active sites and facilitates rapid electron transfer. The work presented here confirms Bi2S3/NF as a high-performance electrode that can be used for the detection of other biomolecules used in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Manaswini Ravipati
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502284, India
| | - Pratiksha Singh
- School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV), Bhopal, Madhya Pradesh, 462033, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502284, India
| |
Collapse
|
7
|
He Y, Liao Y, Zhang B, Xu R, Ma Y, Zhao M, Cui H. Using the photo-enhanced barrier effect on electrochemical response for highly sensitive detection of melamine. Food Chem 2024; 432:137246. [PMID: 37643517 DOI: 10.1016/j.foodchem.2023.137246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Melamine added to milk powder can lead to kidney injury and even death, but rapid detection is still hard due to the strong interference of milk powder solution. Herein, the CC/CeO2/CNPs mesh was constructed to detect melamine by using the photo-enhanced barrier effects on electrochemical response. Schottky barrier was regulated effectively to produce electrochemical response to melamine by photo-induced electrostatic interaction, which exhibited strong resistance to interference in milk powder solution. Sensitivity was enhanced by nearly 5 times and the lowest detection limit was reduced as low as 0.274 nM. The obtained high recovery (100%-104%) and good stability in milk powder solution indicated the good potential for practical applications. It provides a new opportunity for achieving strong resistance to interference by using the photo-enhanced barrier driving effect on electrochemical response.
Collapse
Affiliation(s)
- Yichang He
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Yiquan Liao
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Bin Zhang
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Ruiqi Xu
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| |
Collapse
|
8
|
An QQ, Feng XZ, Zhan T, Cheng YY, Han GC, Chen Z, Kraatz HB. A simple synthesis of a core-shell structure PPy-Au nanocomposite for immunosensing of C-reactive protein. Talanta 2024; 267:125158. [PMID: 37683320 DOI: 10.1016/j.talanta.2023.125158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/21/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
High-sensitivity C-reactive protein (hs-CRP) is an inflammatory biomarker and can accurately predict the development of cardiovascular disease (CVD). We synthesized a core-shell structure PPy-Au nanocomposite in situ by chemically oxidizing pyrrole (Py) with HAuCl4 and the produced Au nanoparticles realized the doping in the polymerization. Analysis of morphology and energy spectrum as well as electrochemical characterization confirmed the successful one-pot synthesis. The conductive polymers with porous structure provide abundant sites for anti-CRP binding and effectively enhanced the sensitivity of the label-free BSA/anti-CRP/PPy-Au/GCE immunosensor. Its analytical performance was observed using differential pulse voltammetry (DPV), with a linear range from 0.0005 to 60 μg mL-1 and a detection limit of 0.17 ng mL-1. The platform demonstrated satisfactory selectivity, stability, and reproducibility. To validate its clinical application, we detected CRP in human serum samples with a recovery rate of 101.00-105.95% and investigated the consistency of the developed method and immunoturbidimetry with a deviation between -1.2% and +3.2%, suggesting great potential for use in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Qi-Qi An
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yun-Yun Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
9
|
Zhan T, Feng XZ, Cheng YY, Han GC, Chen Z, Kraatz HB. Electrochemical sensor for ultrasensitive sensing of biotin based on heme conjugated with gold nanoparticles and its electrooxidation mechanism. Food Chem 2023; 429:136997. [PMID: 37516051 DOI: 10.1016/j.foodchem.2023.136997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
We report the fabrication of a facile sensor using heme conjugated with gold nanoparticles (AuNPs) in situ on a glass carbon electrode (GCE) for the ultrasensitive determination of biotin without antibody or streptavidin. The use of heme and AuNPs as dual amplifiers allows a very broad detection range from 0.0050 to 50.0000 μmol·L-1 and a very low detection limit of 0.0016 μmol·L-1. The mechanistic aspects were elucidated using electrochemical analyses and frontier orbital calculations showing that the electrooxidation of biotin involves a one-electron and a one-proton transfer, generating biotin sulfoxide. The heme/AuNPs/GCE sensor exhibited excellent selectivity, reproducibility and stability, indicating high robustness. The recovery was between 97.20 and 105.70% with RSD less than 8.71%, suggesting good practicability. Our studies demonstrate that this approach can be used to detect and quantify biotin in a range of foods, including milk, infant formula, flour, orange juice, mango juice, egg white and egg yolk. Furthermore, all measurements do not require any intricate preparation or pre-treatment of the foods, thus representing a great potential for point-of-care testing.
Collapse
Affiliation(s)
- Tao Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Yun-Yun Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
10
|
Elik A, Fesliyan S, Gürsoy N, Haq HU, Castro-Muñoz R, Altunay N. An air-assisted dispersive liquid phase microextraction method based on a hydrophobic magnetic deep eutectic solvent for the extraction and preconcentration of melamine from milk and milk-based products. Food Chem 2023; 426:136573. [PMID: 37329792 DOI: 10.1016/j.foodchem.2023.136573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
In the current research, a fast and sustainable air-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction followed by UV-Vis spectrophotometry measurements was optimized for the extraction and determination of melamine in milk and milk-based products. The central composite design was applied for the optimization of factors affecting the recovery of melamine. Quantitative extraction of melamine was achieved using hydrophobic magnetic deep eutectic solvents prepared from a mixture of octanoic acid, aliquat-336, and cobalt(II) chloride. The optimum conditions for extraction were found as follows: 6 extraction cycles, pH 8.2, extraction solvent volume 260 µL, and acetone volume 125 µL.Interestingly, a centrifugation step was not required to achieve phase separation. Under the optimum conditions, melamine was determined in the linear range of 3-600 ng mL-1, the limit of detection (3Sblank/m) of 0.9 ng mL-1, and the enrichment factor of 144. The validation of the method was investigated by the analysis of reference materials. Consequently, the method was successfully applied for the analysis of melamine residues in milk and milk-based products.
Collapse
Affiliation(s)
- Adil Elik
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Seçkin Fesliyan
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Nevcihan Gürsoy
- Nanotechnology Engineering, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye.
| |
Collapse
|
11
|
Cheng YY, Feng XZ, Zhan T, An QQ, Han GC, Chen Z, Kraatz HB. A facile indole probe for ultrasensitive immunosensor fabrication toward C-reactive protein sensing. Talanta 2023; 262:124696. [PMID: 37244246 DOI: 10.1016/j.talanta.2023.124696] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
C-reactive protein (CRP) is a protein biomarker for acute phase response. Herein, we fabricate a highly sensitive electrochemical immunosensor for CRP on a screen-printed carbon electrode (SPCE) with indole as a novel electrochemical probe and Au nanoparticles for signal amplification. Amongst, indole appeared as transparent nanofilms on the electrode surface, and underwent a one-electron and one-proton transfer to form oxindole during the oxidation process. Upon optimization of experimental conditions, a logarithmic correlation between CRP concentration (0.0001-100 μg∙mL-1) and response current was revealed with a detection limit of 0.03 ng∙mL-1 and a sensitivity of 5.7055 μA∙μg-1∙mL∙cm-2. The sensor exhibited exceptionally distinction selectivity, reproducibility and stability of the electrochemical immunosensor studied. The recovery rate of CRP in human serum samples determined by the standard addition method, ranged between 98.2-102.2%. Overall, the developed immunosensor is promising, and has the potential for CRP detection in real human serum samples.
Collapse
Affiliation(s)
- Yun-Yun Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Qi-Qi An
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
12
|
Kharajinezhadian R, Javad Chaichi M, Nazari O, Mansour Lakouraj M, Hasantabar V. Fraud monitoring using a new disposable photoluminescence sensor in milk. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
A flexible and self-supported nanoporous gold wire electrode with a seamless structure for electrochemical ascorbic acid sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Wang K, Lin X, Zhang M, Li Y, Luo C, Wu J. Review of Electrochemical Biosensors for Food Safety Detection. BIOSENSORS 2022; 12:bios12110959. [PMID: 36354467 PMCID: PMC9688552 DOI: 10.3390/bios12110959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/30/2023]
Abstract
Food safety issues are directly related to people's quality of life, so there is a need to develop efficient and reliable food contaminants' detection devices to ensure the safety and quality of food. Electrochemical biosensors have the significant advantages of miniaturization, low cost, high sensitivity, high selectivity, rapid detection, and low detection limits using small amounts of samples, which are expected to enable on-site analysis of food products. In this paper, the latest electrochemical biosensors for the detection of biological contaminants, chemical contaminants, and genetically modified crops are reviewed based on the analytes of interest, electrode materials and modification methods, electrochemical methods, and detection limits. This review shows that electrochemical biosensors are poised to provide miniaturized, specific, selective, fast detection, and high-sensitivity sensor platforms for food safety.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Maoxiao Zhang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Yu Li
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Chunfeng Luo
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
15
|
Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs. Anal Bioanal Chem 2022; 414:6791-6800. [PMID: 35931786 DOI: 10.1007/s00216-022-04242-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/29/2022]
Abstract
Folic acid (FA) is essential for human health, particularly for pregnant women and infants. In this work, a glassy carbon electrode (GCE) was modified by a bimetallic layer of Cu/Co nanoparticles (CuNPs/CoNPs) as a synergistic amplification element by simple step-by-step electrodeposition, and was used for sensitive detection of FA. The proposed CuNPs/CoNPs/GCE sensor was characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). Then, under optimal conditions, a linear relationship was obtained in the wide range of 110.00-1750.00 μM for the detection of FA with a limit of detection (LOD) of 34.79 μM (S/N = 3). The sensitivity was calculated as 0.096 μA μM-1 cm-2. Some interfering compounds including glucose (Glc), biotin, dopamine (DA), and glutamic acid (Glu) showed little effect on the detection of FA by amperometry (i-t). Finally, the average recovery obtained was in a range of 91.77-110.06%, with a relative standard deviation (RSD) less than 8.00% in FA tablets, indicating that the proposed sensor can accurately and effectively detect the FA content in FA tablets.
Collapse
|