1
|
Zhang Z, Yang X, Gao Z, Zhang M, Mu S, Cheng Y, Qu K. Effects of modification methods on the structural characteristics and functional properties of dietary fiber from cucumber. Food Chem X 2024; 24:101808. [PMID: 39310882 PMCID: PMC11415858 DOI: 10.1016/j.fochx.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Cucumbers produce by-products such as cucumber pomace during processing and most of them are discarded without being utilized. To effectively utilize the waste, cucumber pomace is used to extract both insoluble and soluble dietary fibers (DFs) using compound enzyme method (ME), High pressure processing assisted ME (HPP-ME), and dynamic high-pressure microfluidization-assisted ME (DHPM-ME). The results showed that DHPM-ME improved the extraction rate of soluble DFs most effectively, increasing it from 1.74 % to 4.08 %. The modified DFs exhibited enhanced hydration properties and functional properties after HPP-ME- and DHPM-ME-mediated auxiliary treatment. Additionally, the modified DFs exhibited improved thermal stability, increased absorption peaks in the infrared spectra, decreased crystallinity, improved glucose and cholesterol adsorption ability, and delayed glucose adsorption. The cucumber pomace-derived modified DFs can be used as a functional food additive in bakery, meat, dairy products, and beverages, and their effective use can further enhance the economic benefits.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Xinyi Yang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Zhenhong Gao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Meiyue Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Shuaixue Mu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Yuying Cheng
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Kunsheng Qu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| |
Collapse
|
2
|
Shi X, Zhang Q, Yang J, Huang R, Ge Y, Wang J, Chen G. Simultaneous extraction of oil, protein and polysaccharide from Idesia polycarpa Maxim cake meal using ultrasound combined with three phase partitioning. ULTRASONICS SONOCHEMISTRY 2024; 110:107043. [PMID: 39186918 PMCID: PMC11396072 DOI: 10.1016/j.ultsonch.2024.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
This study explored the potential of ultrasonic-assisted three-phase partitioning (UTPP) to simultaneously extract lipids, proteins, and polysaccharides from Idesia polycarpa Maxim (IPM) cake meal, a significant byproduct of oil extraction. The impact of variables such as inorganic salt type, solid-liquid ratio, salt concentration, pH, ultrasonic time, temperature, and volume of dimethyl carbonate was examined. Based on the single-factor tests and response surface methodology (RSM), optimal conditions were identified as 30 % ammonium citrate, a 1:26 solid-liquid ratio, pH 3, 31 min of ultrasonic time, 30 °C temperature, and 15 mL of dimethyl carbonate. These conditions achieved extraction rates of 8.10 % for lipids, 5.03 % for proteins, and 10.03 % for polysaccharides, with recovery rates of 91.62 %, 83.08 %, and 93.95 % respectively. Chemical analysis showed the lipid fraction rich in linoleic acid, and the protein fraction high in glutamic acid, aspartate, and serine. The polysaccharide fraction, mainly RG-I pectin with a molecular weight of 226.58 kDa, exhibited strong thermal stability and inhibitory effects on α-glucosidase and glycation, suggesting potential for functional food and dietary supplement applications. This highlights UTPP as a sustainable method for effectively utilizing valuable compounds from IPM cake meal, outperforming traditional extraction techniques.
Collapse
Affiliation(s)
- Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Jintao Yang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Renshuai Huang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Jinhua Wang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
3
|
Meng K, Wang Y, Liu F, Zhan Q, Zhao L. Effect of modifications on structure, physicochemical properties and lead ions adsorption behavior of dietary fiber of Flammulina velutipes. Food Chem 2024; 464:141597. [PMID: 39396472 DOI: 10.1016/j.foodchem.2024.141597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
The health effects of dietary fiber have been widely concerned, which are closely related to physicochemical properties. This study focused on soluble dietary fiber of Flammulina velutipes (FDF), evaluated the effects of modifications on structural characterization, the physicochemical properties and the heavy metal adsorption characteristics, and further clarified underlying mechanisms on Pb2+ adsorption behavior of FDFs. The results showed the modifications of extrusion and cellulase improved the yield of FDFs, increased the release of active groups and enhanced the adsorption ability in vitro. Besides, Pb2+ adsorption altered porous structure and led to the presence of carboxylate. It was a spontaneous endothermic reaction and can be fitted by the pseudo-second-order kinetic equation. The Freundlich equation was suitable to describe the adsorption isotherm. These results highlighted potential applications of the dietary fiber modification and laid the theoretical foundation for the modification processing of F. velutipes and protection from food-derived heavy metal toxicity.
Collapse
Affiliation(s)
- Keke Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Guo W, Yun J, Wang B, Xu S, Ye C, Wang X, Qu Y, Zhao F, Yao L. Comparative study on physicochemical properties and hypoglycemic activities of intracellular and extracellular polysaccharides from submerged fermentation of Morchella esculenta. Int J Biol Macromol 2024; 278:134759. [PMID: 39151842 DOI: 10.1016/j.ijbiomac.2024.134759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The structural characteristic, physicochemical properties and structure-hypoglycemic activity relationship of intracellular (IPS) and extracellular (EPS) from submerged fermentation of Morchella esculenta were systematically compared and assessed. Both IPS and EPS were neutral, with a triple-helical conformation, and composed of galactose, glucose and mannose monosaccharides in different molar ratios. The molecular weight and particle size of IPS were higher than those of EPS. FTIR and SEM showed that the main functional group absorption peak intensity, glycosidic bond type and surface morphology of the two polysaccharides differed. Analysis of rheological and thermal properties revealed that the viscosity of IPS was higher than that of EPS, while thermal stability of EPS was greater than that of IPS. Hypoglycemic activity analysis in vitro showed that both IPS and EPS were non-competitive inhibitors of α-amylase and α-glucosidase. EPS showed strong digestive enzyme inhibitory activity due to its higher sulphate content and molar ratio of galactose, lower Mw and particle size. Meanwhile, with its higher Mw and apparent viscosity, IPS showed stronger glucose adsorption capacity and glucose diffusion retardation. These results indicate that IPS and EPS differed considerably in structure and physicochemical properties, which ultimately led to differences in hypoglycemic activity. These results not only suggested that IPS and EPS has the potential to be functional foods or hypoglycemic drugs, but also provided a new target for the prevention and treatment of diabetes with natural polysaccharides.
Collapse
Affiliation(s)
- Weihong Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China.
| | - Biao Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Siya Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Chenguang Ye
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Xuerui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yuling Qu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Liang Yao
- Gannong Moli (Qingyang) Agricultural Development Co., Ltd, Qingyang 745000, Gansu, People's Republic of China
| |
Collapse
|
5
|
Fang L, Li J, Chen X, Xu X. How lignocellulose degradation can promote the quality and function of dietary fiber from bamboo shoot residue by Inonotus obliquus fermentation. Food Chem 2024; 451:139479. [PMID: 38696939 DOI: 10.1016/j.foodchem.2024.139479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Lignocellulose constitutes the primary component of dietary fiber. We assessed how fermenting bamboo shoot residue with the medicinal white-rot fungus Inonotus obliquus affected the yield, composition, and functional attributes of dietary fiber by altering bamboo shoot residue lignocellulose's spatial structure and composition. I. obliquus secretes lignocellulolytic enzymes, which effectively enhance the degradation of holocellulose and lignin by 87.8% and 25.5%, respectively. Fermentation led to a more porous structure and reduced crystallinity. The yield of soluble dietary fiber increased from 5.1 g/100 g raw BSR to 7.1 g/100 g 9-day-fermented bamboo shoot residue. The total soluble sugar content of dietary fiber significantly increased from 9.2% to 13.8%, which improved the hydration, oil holding capacity, in vitro cholesterol, sodium cholate, and nitrite adsorption properties of dietary fiber from bamboo shoot residue. These findings confirm that I. obliquus biotransformation is promising for enhancing dietary fiber yield and quality.
Collapse
Affiliation(s)
- Lixiang Fang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junchen Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoxiao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangqun Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China.
| |
Collapse
|
6
|
Xu B, Zhang A, Zheng Y, Wang H, Zheng X, Jin Z, Liu D, Wang N, Kan Y. Influences of superfine-grinding and enzymolysis separately assisted with carboxymethylation and acetylation on the in vitro hypoglycemic and antioxidant activities of oil palm kernel expeller fibre. Food Chem 2024; 449:139192. [PMID: 38583404 DOI: 10.1016/j.foodchem.2024.139192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 μmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).
Collapse
Affiliation(s)
- Bufan Xu
- Food Science College of Shanxi Normal University, Taiyuan 030092, China; School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Anyu Zhang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Yajun Zheng
- Food Science College of Shanxi Normal University, Taiyuan 030092, China.
| | - Hui Wang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Xinyu Zheng
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Ziqing Jin
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Danhong Liu
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Nan Wang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Yu Kan
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| |
Collapse
|
7
|
Jin Q, Feng Y, Cabana-Puig X, Chau TN, Difulvio R, Yu D, Hu A, Li S, Luo XM, Ogejo J, Lin F, Huang H. Combined dilute alkali and milling process enhances the functionality and gut microbiota fermentability of insoluble corn fiber. Food Chem 2024; 446:138815. [PMID: 38428087 DOI: 10.1016/j.foodchem.2024.138815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
In this study, we developed a process combining dilute alkali (NaOH or NaHCO3) and physical (disk milling and/or ball milling) treatments to improve the functionality and fermentability of corn fiber. The results showed that combining chemical with physical processes greatly improved the functionality and fermentability of corn fiber. Corn fiber treated with NaOH followed by disk milling (NaOH-DM-CF) had the highest water retention (19.5 g/g), water swelling (38.8 mL/g), and oil holding (15.5 g/g) capacities. Moreover, NaOH-DM-CF produced the largest amount (42.9 mM) of short-chain fatty acid (SCFA) during the 24-hr in vitro fermentation using porcine fecal inoculum. In addition, in vitro fermentation of NaOH-DM-CF led to a targeted microbial shifting to Prevotella (genus level), aligning with a higher fraction of propionic acid. The outstanding functionality and fermentability of NaOH-DM-CF were attributed to its thin and loose structure, decreased ester linkages and acetyl groups, and enriched structural carbohydrate exposure.
Collapse
Affiliation(s)
- Qing Jin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States; School of Food and Agriculture, University of Maine, Orono, ME 04469, United States
| | - Yiming Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Tran N Chau
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Ronnie Difulvio
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Dajun Yu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Anyang Hu
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Jactone Ogejo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Feng Lin
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| |
Collapse
|
8
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Bai C, Chen R, Chen Y, Bai H, Sun H, Li D, Wu W, Wang Y, Gong M. Plant polysaccharides extracted by high pressure: A review on yields, physicochemical, structure properties, and bioactivities. Int J Biol Macromol 2024; 263:129939. [PMID: 38423909 DOI: 10.1016/j.ijbiomac.2024.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Polysaccharides are biologically essential macromolecules, widely exist in plants, which are used in food, medicine, bioactives' encapsulation, targeted delivery and other fields. Suitable extraction technology can not only improve the yield, but also regulate the physicochemical, improve the functional property, and is the basis for the research and application of polysaccharide. High pressure (HP) extraction (HPE) induces the breakage of raw material cells and tissues through rapid changes in pressure, increases extraction yield, reduces extraction time, and modifies structure of polysaccharides. However, thus far, literature review on the mechanism of extraction, improved yield and modified structure of HPE polysaccharide is lacking. Therefore, the present work reviews the mechanism of HPE polysaccharide, increasing extraction yield, regulating physicochemical and functional properties, modifying structure and improving activity. This review contributes to a full understanding of the HPE or development of polysaccharide production and modification methods and promotes the application of HP technology in polysaccharide production.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yubo Chen
- FAW-Volkswagen Automotive Co., Ltd., Powertrain Division T-D Planning Powertrain T-D-1, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yongtang Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Mingze Gong
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
10
|
Su X, Jin Q, Xu Y, Wang H, Huang H. Subcritical water treatment to modify insoluble dietary fibers from brewer's spent grain for improved functionality and gut fermentability. Food Chem 2024; 435:137654. [PMID: 37820401 DOI: 10.1016/j.foodchem.2023.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Lactic acid (LA)-assisted subcritical water treatment (SWT) was applied to modify the insoluble dietary fiber (IDF) from brewer's spent grain (BSG) for enhancing its functionality and gut fermentability. Modified IDFs were thoroughly characterized for their chemical and structural properties. The results revealed that increasing the treatment temperature and LA concentration reduced hemicellulose content in IDFs from 38.4 % to 0.7 %, alongside a decreased yield (84.8 %-51.4 %), reduced particle size (519.8-288.6 μm), and more porous structure of IDFs. These modifications were linked to improved functionalities, evidenced by the highest water and oil holding capacity increasing by 36 % and 67 %, respectively. Remarkably, the highest glucose adsorption capacity increased by 6.5 folds. Notably, modified IDFs exhibited slower in-vitro fermentation, elevated short-chain fatty acids (SCFAs) production, and a higher proportion of butyrate in SCFAs. These findings highlight the potential of LA-assisted SWT in transforming BSG-derived IDF into a valuable functional food ingredient.
Collapse
Affiliation(s)
- Xueqian Su
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Qing Jin
- School of Food and Agriculture, The University of Maine, 5763 Rogers Hall, Orono, ME 04469, USA.
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, United States Department of Agriculture, Agricultural Research Station, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Hengjian Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| |
Collapse
|
11
|
Wang J, Yu Z, Zhang X, Yang J, Luo Y, Wu M, Wu Q, Wang C. Effect of feruloylated arabinoxylan on the retrogradation and digestibility properties of pea starch during short-term refrigeration: Dependence of polysaccharide structure and bound ferulic acid content. Int J Biol Macromol 2024; 257:128524. [PMID: 38040158 DOI: 10.1016/j.ijbiomac.2023.128524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In this study, arabinoxylans (AX) with various molecular weights (Mw) and bound ferulic acid (FA) contents were prepared to compare their effects on the gelatinization, short-term retrogradation and digestive properties of pea starch (PeS). The results indicated that all AX samples could obviously impede the pasting process of PeS and inhibit the short-term retrogradation of PeS-based gels during refrigeration by hindering the rearrangement and double helical associations of amylose. More precisely, AXs with low Mw and the highest FA content (H-FAX) exhibited the strongest intervention ability on PeS compared with the other samples. According to the Fourier transform infrared spectroscopy and X-ray diffraction results, it might be due to the unique role of bound FA as a noncovalent cross-linking agent, which enhanced the association between AX and starch molecules through extra hydrogen bonding interactions and entanglement behaviour. On these bases, H-FAX clearly improved the hardness, chewiness, moisture content, and sensory acceptance of PeS-base gels (pea jelly), and could also regulate its starch composition during short-term refrigeration to delay starch digestion. Overall, AXs with appropriate structural features might obviously improve the quality and storage stability of PeS-based foods.
Collapse
Affiliation(s)
- Jingyi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Zuwei Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Xue Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jun Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Yufan Luo
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
12
|
Ji R, Zhang X, Liu C, Zhang W, Han X, Zhao H. Effects of extraction methods on the structure and functional properties of soluble dietary fiber from blue honeysuckle (Lonicera caerulea L.) berry. Food Chem 2024; 431:137135. [PMID: 37591145 DOI: 10.1016/j.foodchem.2023.137135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The work within this study aimed to investigate and compare the effects of compound enzyme extraction (CE), ultrasonic chemical extraction (UC) and combined fermentation extraction (CF) on the physicochemical properties, microstructure, and functional properties of soluble dietary fiber (SDF) extracted from blue honeysuckle berries. The results showed that CE-SDF had higher crystallinity (32.41%). UC-SDF had the highest yield (13.32 ± 0.80 g/100 g). CF-SDF had the maximum inhibition of α-amylase (50.82 ± 0.76%) and α-glucosidase (54.87 ± 1.25%). The in vitro hypoglycemic activity of the three SDFs was observed in the order of CF > CE > UC. Meanwhile, the purity of SDF had a strong positive correlation with its antioxidant and in vitro hypoglycemic capacities. The crystallinity of SDF was found to be positively correlated with its molecular weight and thermal properties. Additionally, the sugar composition of SDF was found to be an important factor affecting its biological activity.
Collapse
Affiliation(s)
- Run Ji
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China.
| | - Chenghai Liu
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Xiaofeng Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Hengtian Zhao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang Province 150080, China.
| |
Collapse
|
13
|
Wu M, Zhou Q, Zhou L, Wang J, Ren T, Zheng Y, Lv W, Zhao W. Enhancement of γ-Aminobutyric Acid and the Characteristics of Nutrition and Function in White Quinoa through Ultrasound Stress at the Pre-Germination Stage. Foods 2023; 13:57. [PMID: 38201084 PMCID: PMC10778457 DOI: 10.3390/foods13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The global production of quinoa has been increasing in recent years. In plant-based foods, ultrasound stress has received increasing attention, owing to its ability to enhance the production of primary and secondary metabolites. We studied the effects of ultrasonic stress at the pre-germination stage on the γ-aminobutyric acid (GABA) accumulation and characteristics of nutrition and function in quinoa. The results showed that ultrasonic conditions of 100 W for 4 min promoted an increase in GABA content by 9.15-fold, to 162.47 ± 6.69 mg/100 g·DW, compared to that of untreated quinoa, through promoting a 10.2% and 71.9% increase in the water absorption and glutamate decarboxylase activity of quinoa, respectively. Meanwhile, compared to untreated quinoa, ultrasonic stress at the pre-germination stage enhanced the total phenolic, total flavonoid, and total saponin contents of quinoa by 10.2%, 33.6%, and 90.7%, to 3.29 mg GA/g·DW, 104.0 mg RE/100 g·DW, and 7.13 mg/g, respectively, without decreasing its basic nutritional quality. Ultrasonic stress caused fissures on the surface of quinoa starch particles. Additionally, germination under ultrasonic stress increased the n3 polyunsaturated fatty acids by 14.4%. Furthermore, ultrasonic stress at the pre-germination stage promoted the scavenging of 2,2-diphenyl1-picrylhydrazyl radicals and inhibitions of α-amylase, α-glucosidase, and pancreatic lipase by 14.4%, 14.9%, 24.6%, and 20.0% in vitro, compared to untreated quinoa. The results indicated that the quinoa sprouted via ultrasonic stress could represent a promising method through which to develop nutritionally balanced whole grains rich in GABA, with hypoglycemic and hypolipidemic activities, which could provide theoretical support for the development of functional whole-grain foods based on quinoa.
Collapse
Affiliation(s)
- Mengying Wu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Qian Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Liangfu Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Jie Wang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Ting Ren
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Yu Zheng
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Wei Lv
- National Engineering Research Center for Semi-Arid Agriculture, Shijiazhuang 050000, China;
| | - Wen Zhao
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| |
Collapse
|
14
|
Yan K, Liu J, Yan W, Wang Q, Huo Y, Feng S, Zhang L, Hu Q, Xu J. Effects of Alkaline Hydrogen Peroxide and Cellulase Modifications on the Physicochemical and Functional Properties of Forsythia suspensa Dietary Fiber. Molecules 2023; 28:7164. [PMID: 37894643 PMCID: PMC10608965 DOI: 10.3390/molecules28207164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Besides active substances, Forsythia suspensa is rich in dietary fiber (DF), but it is often wasted or discarded and not put to good use. In order to improve the function of Forsythia DF, it was modified using alkaline hydrogen peroxide (AHP) and cellulase (EM). Compared to the control DF (ODF), the DF modified using AHP (AHDF) and EM (EMDF) had a looser microstructure, lower crystallinity, and higher oil holding capacity (OHC) and cation exchange capacity (CEC). The AHP treatment significantly increased the water holding capacity (WHC) and water swelling ability (WSA) of the DF, while the EM treatment achieved just the opposite. Moreover, the functional properties of AHDF and EMDF, including their cholesterol adsorption capacity (CAC), nitrite ion adsorption capacity (NAC), glucose adsorption capacity (GAC), glucose dialysis retardation index (GDRI), α-amylase inhibitory activity, and DPPH radical scavenging activity, were far better than those of ODF. Together, the results revealed that AHP and EM modifications could effectively improve or enhance the physicochemical and functional properties of Forsythia suspensa DF.
Collapse
Affiliation(s)
- Kejing Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Jiale Liu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Wensheng Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Qing Wang
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Yanxiong Huo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Saisai Feng
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Liangliang Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Qingping Hu
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| |
Collapse
|
15
|
Xu L, Yu Q, Ma L, Su T, Zhang D, Yao D, Li Z. In vitro simulated fecal fermentation of mixed grains on short-chain fatty acid generation and its metabolized mechanism. Food Res Int 2023; 170:112949. [PMID: 37316043 DOI: 10.1016/j.foodres.2023.112949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023]
Abstract
In vitro simulated digestion and fecal fermentation were performed to investigate the influence of mixed grains on gut microbes. In addition, the key metabolic pathways and enzymes associated with short-chain fatty acids (SCFAs) were explored. The mixed grains exhibited an observable regulatory effect on the composition and metabolism of intestinal microorganisms, especially in probiotics, such as Bifidobacterium spp., Lactobacillus spp., and Faecalibacterium spp. WR (wheat + rye), WB (wheat + highland barley) and WO (wheat + oats) tended to generate lactate and acetate, which are related to Sutterella, Staphylococcus, etc. WQ (wheat + quinoa) induced high propionate and butyrate accumulation by consuming lactate and acetate, mainly through Roseburia inulinivorans, Coprococcus catus and Anaerostipes sp., etc. Moreover, bacteria enriched in different mixed grain groups regulated the expression of pivotal enzymes in metabolic pathways and then affected the generation of SCFAs. These results provide new knowledge on the characteristics of intestinal microbial metabolism in different mixed grain substrates.
Collapse
Affiliation(s)
- Lei Xu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Qiaoru Yu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lixue Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tingting Su
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, Heilongjiang, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Di Yao
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
16
|
Zhang Y, Wu L, Zhang F, Zheng J. Sucrose ester alleviates the agglomeration behavior of bamboo shoot dietary fiber treated via high pressure homogenization: Influence on physicochemical, rheological, and structural properties. Food Chem 2023; 413:135609. [PMID: 36745942 DOI: 10.1016/j.foodchem.2023.135609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
High-pressure homogenization (HPH) is a physical modification method that can rapidly reduce the particle size of bamboo shoot dietary fiber (BSDF), but it can lead to agglomeration. Therefore, the effects of the addition of sucrose ester (SE) to alleviate the agglomeration of BSDF during HPH were investigated. Compared with BSDF without added SE, BSDF obtained the smallest particle size (276.5 nm) and highest ζ-Potential (53.6 mV) when SE was 5 g/L. Water-holding capacity, oil-holding capacity, swelling capacity, and b* increased, whereas L* and a* decreased significantly with the addition of SE. The shear stress and viscoelasticity of BSDF solution were minimized when 5 g/L SE was added. SE reduced relative crystallinity and thermal stability of BSDF. SE could effectively alleviate the aggregation of BSDF through the mechanism of electrostatic repulsion. This study highlights an innovative and promising strategy for alleviating the agglomeration behavior of BSDF during HPH treatment.
Collapse
Affiliation(s)
- Yijia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing 400715, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou 310012, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
17
|
Liu Y, Li X, Qin H, Huang M, Liu S, Chang R, Xi B, Mao J, Zhang S. Obtaining non-digestible polysaccharides from distillers' grains of Chinese baijiu after extrusion with enhanced antioxidation capability. Int J Biol Macromol 2023:124799. [PMID: 37182635 DOI: 10.1016/j.ijbiomac.2023.124799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Distillers' grains of Chinese Baijiu (DGS) presents a significant challenge to the environmentally-friendly production of the brewing industry. This study utilized screw extrusion to modify the morphological and crystalline characteristics of DGS, resulting in a 316 % increase in the yield of non-digestible polysaccharides extraction. Physiochemical characteristics of extracted polysaccharides were variated, including infrared spectrum, monosaccharide composition, and molecular weight. Polysaccharides extracted from extruded DGS exhibited enhanced inhibitory capacity on α-amylase activity and starch hydrolyzation, as compared to those extracted from unextruded DGS. Additionally, the ABTS, DPPH, and OH radical scavenging efficiencies took a maximum increase of 1.20, 1.38, and 1.02-fold, correspondingly. Extrusion is a novel approach for the recycling non-digestible polysaccharides from DGS, augmenting the bioactivity of extracts and their potential application in functional food.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China.
| |
Collapse
|
18
|
Tian Y, Wu T, Sheng Y, Li L, Wang C. Effects of cavitation-jet technology combined with enzyme treatment on the structure properties and functional properties of OKARA insoluble dietary fiber. Food Chem 2023; 423:136286. [PMID: 37178598 DOI: 10.1016/j.foodchem.2023.136286] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
In this study, a new composite modification method utilizing a cavitation jet combined with a composite enzyme (cellulase and xylanase) was developed to modify the insoluble dietary fibre (IDF) of okara (IDF was first treated with the cavitation jet at 0.3 MPa for 10 min, and then 6% of the enzyme was added, the composite enzyme with a 1:1 enzyme activity was hydrolysed for 1.5 h to obtain the modified IDF), and explored the structure-activity relationship between the structural properties, physicochemical properties and biological activities of IDF before and after modification. Under the action of cavitation jet and double enzyme hydrolysis, the modified IDF had a wrinkled and loose porous structure, which improved the thermal stability. Its water holding capacity (10.81 ± 0.17 g/g), oil holding capacity (4.83 ± 0.03 g/g) and swelling capacity (18.60 ± 0.60 mL/g) were significantly higher than those of unmodified IDF. In addition, compared with other IDFs, the combined modified IDF had greater advantages in nitrite adsorption (13.75 ± 0.14 μg/g), glucose adsorption (6.46 ± 0.28 mmol/g) and cholesterol adsorption (16.86 ± 0.83 mg/g), and improved in vitro probiotic activity and in vitro anti-digestion rate. The results show that the cavitation jet combined with compound enzyme modification method can effectively improve the economic value of okara.
Collapse
Affiliation(s)
- Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Lina Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| |
Collapse
|
19
|
Si J, Yang C, Chen Y, Xie J, Tian S, Cheng Y, Hu X, Yu Q. Structural properties and adsorption capacities of Mesona chinensis Benth residues dietary fiber prepared by cellulase treatment assisted by Aspergillus niger or Trichoderma reesei. Food Chem 2023; 407:135149. [PMID: 36493475 DOI: 10.1016/j.foodchem.2022.135149] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The effects of enzyme hydrolysis treatment, Aspergillus niger fermentation treatment, Trichoderma reesei fermentation treatment, Aspergillus niger-enzyme hydrolysis treatment and Trichoderma reesei-enzyme hydrolysis treatment on structural properties and adsorption capacities of soluble dietary fiber from Mesona chinensis Benth residues were evaluated and compared. The Aspergillus niger-enzyme hydrolysis treatment sample possessed more diverse structure, lower crystallinity and thermal stability than other modified samples. Meanwhile, it also observed the highest soluble dietary fiber yield (20.76 ± 0.31 %), water-holding capacity and glucose adsorption capacity (38.03 ± 0.28 mg/g). The Aspergillus niger fermentation treatment sample generated a high oil-holding capacity, nitrite ion adsorption capacity (181.84 ± 6.67 ug/g), cholesterol adsorption capacity (16.40 ± 0.37 mg/g) and sodium cholate adsorption capacity (94.80 ± 1.41 mg/g). Additionally, different monosaccharide composition was exhibited due to diverse extraction methods. Our finding revealed that these two modification methods could effectively enhance the economic value of Mesona chinensis Benth residues.
Collapse
Affiliation(s)
- Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yanan Cheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China.
| |
Collapse
|
20
|
Ma W, Liang Y, Lin H, Chen Y, Xie J, Ai F, Yan Z, Hu X, Yu Q. Fermentation of grapefruit peel by an efficient cellulose-degrading strain, (Penicillium YZ-1): Modification, structure and functional properties of soluble dietary fiber. Food Chem 2023; 420:136123. [PMID: 37094537 DOI: 10.1016/j.foodchem.2023.136123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
In the study, a highly efficient cellulose-degrading strain was screened, which was identified as a fungus in the genus Penicillium sp., named YZ-1. The content of soluble dietary fiber was greatly increased by the treatment of this strain. In addition, the effects of soluble dietary fiber from high-pressure cooking group (HG-SDF), strain fermentation group (FG-SDF) and control group (CK-SDF) on the physicochemical structure, and in vitro hypolipidemic activity were investigated. The results showed that the physicochemical structure of the raw materials was improved after fermentation, and FG-SDF exhibited the loosest structure, the highest viscosity and thermal stability. Furthermore, compared to CK-SDF and HG-SDF, FG-SDF showed the most significant improvement in functional properties, including cholesterol adsorption capacity (CAC), inhibition of pancreatic lipase activity (LI) and mixed bile acid adsorption capacity (BBC). Overall, these findings will provide new insights into dietary fiber modification and improve the comprehensive use value of grapefruit by-products.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Liang
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Huasi Lin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Fengling Ai
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Ziwen Yan
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
21
|
Binte Abdul Halim FN, Taheri A, Abdol Rahim Yassin Z, Chia KF, Goh KKT, Goh SM, Du J. Effects of Incorporating Alkaline Hydrogen Peroxide Treated Sugarcane Fibre on The Physical Properties and Glycemic Potency of White Bread. Foods 2023; 12:foods12071460. [PMID: 37048281 PMCID: PMC10094325 DOI: 10.3390/foods12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
The consumption of dietary fibres can affect glycemic power and control diabetes. Sugarcane fibre (SCF) is known as insoluble dietary fibre, the properties of which can be affected by physical, chemical, and enzymatic treatments. In this study, alkaline hydrogen peroxide (AHP) treatments were conducted over time (0.5, 1, 3, and 5 h) at 12.6% (w/v) SCF and the effects on the physicochemical and structural properties of the SCF were evaluated. After making dough and bread with the SCF, with and without AHP treatments, the glycemic responses of the bread samples were evaluated. Shorter durations of AHP treatment (0.5 and 1 h) reduced lignin effectively (37.3 and 40.4%, respectively), whereas AHP treatment at 1 and 3 h duration was more effective in increasing particle sizes (50.9 and 50.1 μm, respectively). The sugar binding capacity, water holding capacity (from 2.98 to 3.86 g water/g SCF), and oil holding capacity (from 2.47 to 3.66 g oil/g SCF) increased in all AHP samples. Results from Fourier-transform infrared spectroscopy (FTIR) confirmed the polymorphism transition of cellulose (cellulose I to cellulose II). The morphology of SCF detected under scanning electron microscopy (SEM) indicated the conversion of the surface to a more porous, rough structure due to the AHP treatment. Adding SCF decreased dough extensibility but increased bread hardness and chewiness. All SCF-incorporated bread samples have reduced glycemic response. Incorporation of 1, 3, and 5 h AHP-treated SCF was effective in reducing the glycemic potency than 0.5 h AHP-treated SCF, but not significantly different from the untreated SCF. Overall, this study aims to valorize biomass as AHP is commonly applied to bagasse to produce value-added chemicals and fuels.
Collapse
Affiliation(s)
| | - Afsaneh Taheri
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Zawanah Abdol Rahim Yassin
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Kai Feng Chia
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Kelvin Kim Tha Goh
- School of Food & Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand
| | - Suk Meng Goh
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
22
|
Tang X, Wang Z, Zheng J, Kan J, Chen G, Du M. Physicochemical, structure properties and in vitro hypoglycemic activity of soluble dietary fiber from adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) bran treated by steam explosion. Front Nutr 2023; 10:1124012. [PMID: 36819706 PMCID: PMC9937059 DOI: 10.3389/fnut.2023.1124012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
To enhance the content of adlay bran soluble dietary fiber (SDF) and improve its functionality, we investigated the influences of steam explosion (SE) on the physicochemical, structural properties, and in vitro hypoglycemic activities of adlay bran SDF. The cellulose, hemicellulose, and lignin contents of adlay bran decreased significantly after SE treatment. When the SE strength was 0.8 MPa for 3 min, the SDF content was 9.37%, which was a significant increase of 27.48% compared to the control. Under these conditions, SDF showed the highest oil-holding capacity (OHC) (2.18 g/g), cholesterol adsorption capacity (CAC) (27.29 mg/g), glucose adsorption capacity (GAC) (15.54 mg/g), glucose dialysis retardation index (GDRI) (36.57%), and α-Amylase activity inhibition ratio (α-AAIR) (74.14%). Compared with SDF from untreated adlay bran, SDF from SE-treated adlay bran showed lower weight molecular. In addition, differential scanning calorimetry (DSC) measurement showed that the peak temperature of SDF from adlay bran treated by SE increased by 4.19°C compared to the untreated SDF sample. The structure of SDF from adlay bran treated by SE showed that the SDF surface was rough and poriferous and the specific surface areas increased. In conclusion, SE pretreatment increases the content of SDF in adlay bran and improves its physicochemical, structural properties, and biological activities, which will be beneficial for the further exploitation of adlay bran.
Collapse
Affiliation(s)
- Xinjing Tang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Zhirong Wang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Guangjing Chen
- College of Food Science, Southwest University, Chongqing, China,College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China,*Correspondence: Muying Du,
| |
Collapse
|
23
|
Li P, Li C, Fu X, Huang Q, Chen Q. Physicochemical, functional and biological properties of soluble dietary fibers obtained from Rosa roxburghii Tratt pomace using different extraction methods. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
24
|
Effects of different extraction techniques on the structural, physicochemical, and bioactivity properties of heteropolysaccharides from Platycodon grandiflorum roots. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Quality analysis of ultra-fine whole pulp of bamboo shoots (Chimonobambusa quadrangularis) fermented by Lactobacillus plantarum and Limosilactobacillus reuteri. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
ZHANG W, WANG S, LAN M. Comparison of physicochemical properties of three types of bamboo shoot powders. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Wanjia ZHANG
- Nanjing University of Finance and Economics, China
| | - Suya WANG
- Nanjing University of Finance and Economics, China
| | - Man LAN
- Nanjing University of Finance and Economics, China
| |
Collapse
|
27
|
Ouyang H, Guo B, Hu Y, Li L, Jiang Z, Li Q, Ni H, Li Z, Zheng M. Effect of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Dietary carbohydrates: a trade-off between appealing organoleptic and physicochemical properties and ability to control glucose release and weight management. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Yin W, Liu M, Xie J, Jin Z, Ge S, Guan F, Liu H, Zheng M, Cai D, Liu J. Removal of bound polyphenols and its effect on structure, physicochemical and functional properties of insoluble dietary fiber from adzuki bean seed coat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Si J, Yang C, Ma W, Chen Y, Xie J, Qin X, Hu X, Yu Q. Screen of high efficiency cellulose degrading strains and effects on tea residues dietary fiber modification: Structural properties and adsorption capacities. Int J Biol Macromol 2022; 220:337-347. [PMID: 35985395 DOI: 10.1016/j.ijbiomac.2022.08.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
In our study, two high efficiency cellulose degrading strains were screened, isolated and identified as Cochliobolus kusanoi and Aspergillus puulaauensis by 18S rDNA gene sequencing. In addition, the composite microbial system was constructed to develop the synergistic effect among different strains. Under the optimum conditions, the yield of soluble dietary fiber from tea residues by mixed fermentation method (MF-SDF) dramatically increased compared to single strain fermentation. The structural analysis demonstrated that all samples possessed the representative infrared absorption peaks of polysaccharides, whereas MF-SDF revealed more loose structure, lower crystallinity and smaller molecular size. For the adsorption capacities indexes, MF-SDF also owned the highest adsorbing capacity for the water molecule, oil molecule, cholesterol molecule and nitrite ion. Overall, our data showed that mixed fermentation method could be better choices to improve the functional properties of dietary fiber, and screening of cellulose degrading strains could provide new thinkings for the study of dietary fiber modification and realize high-quality utilization of crop residues.
Collapse
Affiliation(s)
- Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Wenjie Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaoting Qin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China.
| |
Collapse
|