1
|
Sayah I, Njehi M, Cicero N, Nava V, M’hadheb MB, Majdoub H, Achour S, Gervasi T. Optimization of Sugar Extraction Process from Date Waste Using Full Factorial Design Toward Its Use for New Biotechnological Applications. BIOTECH 2024; 13:39. [PMID: 39449369 PMCID: PMC11503435 DOI: 10.3390/biotech13040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
In Tunisia, the date industry generates a large quantity of waste, raising environmental concerns. However, dates are rich in sugars, which offer a renewable source of nutrients for various applications. In this study, sugar extraction from two low-grade pitted date fruits (Alig and Kentichi) under ultrasound, was optimized using full factorial design. At 40 °C, for20 min, and with a liquid-to-solid ratio of 10 mL/g, the optimum sugar contents were 60.87% and 50.79% for the varieties Alig and Kentichi, respectively. The date extracts were chemically analyzed, revealing low fat and protein contents, but significant polyphenol and mineral contents in both varieties. HPLC-IR analysis revealed more inverted sugars (glucose and fructose) in the Alig variety and more sucrose in the Kentichi variety. FTIR and SEM analysis showed the efficiency of the ultrasonic treatment of the biomass in terms of improving mass transfer diffusion through ultrasonic cavitation. Thus, ultrasound-assisted extraction constitutes an effective method for the recovery of sugar from date waste.
Collapse
Affiliation(s)
- Islam Sayah
- Research Unit UR17ES30 “Genomics, Biotechnology and Antiviral Strategies”, Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB74, Monastir 5000, Tunisia; (I.S.); (M.N.); (M.B.M.)
| | - Mondher Njehi
- Research Unit UR17ES30 “Genomics, Biotechnology and Antiviral Strategies”, Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB74, Monastir 5000, Tunisia; (I.S.); (M.N.); (M.B.M.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy; (N.C.); (V.N.)
| | - Vincenzo Nava
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy; (N.C.); (V.N.)
| | - Manel Ben M’hadheb
- Research Unit UR17ES30 “Genomics, Biotechnology and Antiviral Strategies”, Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB74, Monastir 5000, Tunisia; (I.S.); (M.N.); (M.B.M.)
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | - Sami Achour
- Research Unit UR17ES30 “Genomics, Biotechnology and Antiviral Strategies”, Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB74, Monastir 5000, Tunisia; (I.S.); (M.N.); (M.B.M.)
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy; (N.C.); (V.N.)
| |
Collapse
|
2
|
Yang J, Li Y, Liu B, Wang K, Li H, Peng L. Carboxymethyl cellulose-based multifunctional film integrated with polyphenol-rich extract and carbon dots from coffee husk waste for active food packaging applications. Food Chem 2024; 448:139143. [PMID: 38554584 DOI: 10.1016/j.foodchem.2024.139143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Sustainable carboxymethyl cellulose (CMC)-based active composite films were developed through the addition of polyphenol-rich extract from coffee husk (CHE) and carbon dots (CDs) prepared using the biowaste residue of CHE extraction. The influences of various CDs contents on the physicochemical and functional characteristics of composite films have been researched. The 6% (w/w) CHE and 3% (w/w) CDs were uniformly dispersed within the CMC matrix to produce a homogenous film with enhanced mechanical properties. The CMC/CHE/CDs3% film exhibited outstanding UV-light blocking, improved water and gas barriers, potent antioxidant activity with above 95% DPPH and ABTS scavenging rates, and effective antibacterial capabilities against L. monocytogenes and E. coli. The food packaging experiment demonstrated that this active composite film slowed the rotting of fresh-cut apples and extended their shelf-life to 7 days at 4 °C storage. Therefore, the obtained multifunctional film showed promise as an environmentally friendly food packaging material.
Collapse
Affiliation(s)
- Junxian Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bingzhen Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
3
|
Zhu X, Das RS, Bhavya ML, Garcia-Vaquero M, Tiwari BK. Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. ULTRASONICS SONOCHEMISTRY 2024; 105:106850. [PMID: 38520893 PMCID: PMC10979275 DOI: 10.1016/j.ultsonch.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Acoustic cavitation, an intriguing phenomenon resulting from the interaction of sound waves with a liquid medium, has emerged as a promising avenue in agri-food processing, offering opportunities to enhance established processes improving primary production of ingredients and further food processing. This comprehensive review provides an in-depth analysis of the mechanisms, design considerations, challenges and scale-up strategies associated with acoustic cavitation for agri-food applications. The paper starts by elucidating the fundamental principles of acoustic cavitation and its measurement, delving then into the diverse effects of different parameters associated with, the acoustic wave, mechanical design and operation of the ultrasonic system, along with those related to the food matrix. The technological advancements achieved in the design and set-up of ultrasonic reactors addressing limitations during scale up are also discussed. The design, engineering and mathematical modelling of ultrasonic equipment tailored for agri-food applications are explored, along with strategies to maximize cavitation intensity and efficiency in the application of brining, freezing, drying, emulsification, filtration and extraction. Advanced US equipment, such as multi-transducers (tubular resonator, FLOW:WAVE®) and larger processing surface areas through innovative designing (Barbell horn, CascatrodesTM), are one of the most promising strategies to ensure consistency of US operations at industrial scale. This review paper aims to provide valuable insights into harnessing acoustic cavitation's potential for up-scaling applications in food processing via critical examination of current research and advancements, while identifying future directions and opportunities for further research and innovation.
Collapse
Affiliation(s)
- Xianglu Zhu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Rahel Suchintita Das
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland
| | - Mysore Lokesh Bhavya
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland.
| |
Collapse
|
4
|
Gapinski AD, Delchier N, Watrelot AA. Tannin and Iron-Reactive Phenolics Content in Red Cold-Hardy Hybrid Grape Tissues throughout Development and Ripening. Foods 2024; 13:986. [PMID: 38611290 PMCID: PMC11011489 DOI: 10.3390/foods13070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Phenolic compounds, especially tannins, are important for red wine quality. Wines made from cold-hardy hybrid grape cultivars have much lower tannin concentrations than wines from Vitis vinifera grape cultivars. This study assessed the phenolics content of berry tissues of three red cold-hardy hybrid cultivars in comparison to V. vinifera cv. 'Pinot noir' throughout development and ripening. Basic chemical properties, iron-reactive phenolics content, and tannin content were evaluated in the juice, skins, and seeds of Vitis spp. cvs. 'Crimson Pearl', 'Marquette', and 'Petite Pearl' and 'Pinot noir' at six time points from one week post-fruit set to harvest in 2021 and 2022. 'Crimson Pearl' displayed similar iron-reactive phenolics and tannin contents in juice, skins (22.6-25.4 mg/g dry skin and 8.0-12.2 mg/g dry skin, respectively), and seeds (12.8-29.8 mg/g dry seed and 4.2-22.0 mg/g dry seed, respectively) as 'Petite Pearl' and 'Marquette' at harvest in 2022. The hybrid cultivars showed a similar trend of phenolic accumulation as 'Pinot noir' but resulted in overall lower content in skins and seeds. Despite differences in developmental trends, the three hybrid grape cultivars displayed similar phenolic content at harvest ripeness. This is the first study examining the phenolic content of 'Crimson Pearl' and 'Petite Pearl' throughout berry development and ripening. This study provides important information for the wine industry to make informed decisions on making wine with these cultivars.
Collapse
Affiliation(s)
| | | | - Aude A. Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011-1054, USA; (A.D.G.); (N.D.)
| |
Collapse
|
5
|
Ștefănescu BE, Socaci SA, Fărcaș AC, Nemeș SA, Teleky BE, Martău GA, Călinoiu LF, Mitrea L, Ranga F, Grigoroaea D, Vodnar DC, Socaciu C. Characterization of the Chemical Composition and Biological Activities of Bog Bilberry ( Vaccinium uliginosum L.) Leaf Extracts Obtained via Various Extraction Techniques. Foods 2024; 13:258. [PMID: 38254559 PMCID: PMC10814626 DOI: 10.3390/foods13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Silvia Amalia Nemeș
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Bernadette Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Floricuța Ranga
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Dan Grigoroaea
- Călimani National Park Administration, Șaru Dornei, 727515 Suceava, Romania;
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Carmen Socaciu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| |
Collapse
|
6
|
Pusty K, Kumar Dash K, Giri S, Raj GVSB, Tiwari A, Shaikh AM, Béla K. Ultrasound assisted phytochemical extraction of red cabbage by using deep eutectic solvent: Modelling using ANFIS and optimization by genetic algorithms. ULTRASONICS SONOCHEMISTRY 2024; 102:106762. [PMID: 38211496 PMCID: PMC10825368 DOI: 10.1016/j.ultsonch.2024.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
The present investigation studied the effect of process parameters on the extraction of phytochemicals from red cabbage by the application of ultrasonication and temperature. The solvent selected for the study was deep eutectic solvent (DES) prepared by choline chloride and citric acid. The ultrasound assisted extraction process was modeled using adaptive neuro-fuzzy inference system (ANFIS) algorithm and integrated with the genetic algorithm for optimization purposes. The independent variables that influenced the responses (total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content) were ultrasonication power, temperature, molar ratio of DES, and water content of DES. Each ANFIS model was formed by the training of three Gaussian-type membership functions (MF) for each input, trained by a hybrid algorithm with 500 epochs and linear type MF for output MF. The ANFIS model predicted each response close to the experimental data which is evident by the statistical parameters (R2>0.953 and RMSE <1.165). The integrated hybrid ANFIS-GA algorithm predicted the optimized condition for the process parameters of ultrasound assisted extraction of phytochemicals from red cabbage was found to be 252.114 W for ultrasonication power, 52.715 °C of temperature, 2.0677:1 of molar ratio of DES and 25.947 % of water content in DES solvent with maximum extraction content of responses, with fitness value 3.352. The relative deviation between the experimental and ANFIS predicted values for total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content was found to be 1.849 %, 3.495 %, 2.801 %, and 4.661 % respectively.
Collapse
Affiliation(s)
- Kasturi Pusty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India; Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - G V S Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| | - Kovács Béla
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
7
|
Wu DT, Deng W, Li J, Geng JL, Hu YC, Zou L, Liu Y, Liu HY, Gan RY. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Thinned Young Kiwifruits and Their Beneficial Effects. Antioxidants (Basel) 2023; 12:1475. [PMID: 37508013 PMCID: PMC10376641 DOI: 10.3390/antiox12071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Fruit thinning is a common practice employed to enhance the quality and yield of kiwifruits during the growing period, and about 30-50% of unripe kiwifruits will be thinned and discarded. In fact, these unripe kiwifruits are rich in nutrients and bioactive compounds. Nevertheless, the applications of thinned young kiwifruits and related bioactive compounds in the food and functional food industry are still limited. Therefore, to promote the potential applications of thinned young kiwifruits as value-added health products, the extraction, characterization, and evaluation of beneficial effects of phenolic compounds from thinned young fruits of red-fleshed Actinidia chinensis cv 'HY' were examined in the present study. A green and efficient ultrasound-assisted deep eutectic solvent extraction (UADE) method for extracting phenolic compounds from thinned young kiwifruits was established. A maximum yield (105.37 ± 1.2 mg GAE/g DW) of total phenolics extracted from thinned young kiwifruits by UADE was obtained, which was significantly higher than those of conventional organic solvent extraction (CSE, about 14.51 ± 0.26 mg GAE/g DW) and ultrasound-assisted ethanol extraction (UAEE, about 43.85 ± 1.17 mg GAE/g DW). In addition, 29 compounds, e.g., gallic acid, chlorogenic acid, neochlorogenic acid, catechin, epicatechin, procyanidin B1, procyanidin B2, quercetin-3-rhamnoside, and quercetin-3-O-glucoside, were identified in the kiwifruit extract by UPLC-MS/MS. Furthermore, the contents of major phenolic compounds in different kiwifruit extracts prepared by conventional organic solvent extraction (EE), ultrasound-assisted ethanol extraction (UEE), and ultrasound-assisted deep eutectic solvent extraction (UDE) were compared by HPLC analysis. Results revealed that the content of major phenolics in UDE (about 15.067 mg/g DW) was significantly higher than that in EE (about 2.218 mg/g DW) and UEE (about 6.122 mg/g DW), suggesting that the UADE method was more efficient for extracting polyphenolics from thinned young kiwifruits. In addition, compared with EE and UEE, UDE exhibited much higher antioxidant and anti-inflammatory effects as well as inhibitory effects against α-glucosidase and pancreatic lipase, which were closely associated with its higher content of phenolic compounds. Collectively, the findings suggest that the UADE method can be applied as an efficient technique for the preparation of bioactive polyphenolics from thinned young kiwifruits, and the thinned young fruits of red-fleshed A. chinensis cv 'HY' have good potential to be developed and utilized as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wen Deng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jin-Lei Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| |
Collapse
|
8
|
Wang X, Zhang L, Chen L, Wang Y, Okonkwo CE, Yagoub AEGA, Wahia H, Zhou C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr Rev Food Sci Food Saf 2023; 22:2747-2772. [PMID: 37161497 DOI: 10.1111/1541-4337.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.
Collapse
Affiliation(s)
- Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Xue F, Li C. Effects of ultrasound assisted cell wall disruption on physicochemical properties of camellia bee pollen protein isolates. ULTRASONICS SONOCHEMISTRY 2023; 92:106249. [PMID: 36459901 PMCID: PMC9712773 DOI: 10.1016/j.ultsonch.2022.106249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 05/15/2023]
Abstract
Camellia bee pollen protein isolates were extracted by cell wall disruption using ultrasonication, freeze-thawing, enzymatic hydrolysis, and their combinations. The effects of these methods on microstructure of cell wall, protein release, protein yield, physiochemical properties and structure of proteins were investigated. As compared with physical treatments (ultrasonication, freeze-thawing and their combination), the enzymatic hydrolysis significantly improved the yield of proteins, because it not only promoted the release of proteins from the inside of pollen, but also released proteins in pollen wall. The proteins extracted by enzymatic hydrolysis method also exhibited better solubility, emulsifying and gelation properties due to the partial hydrolysis of proteins by protease. In addition, when ultrasound was combined with freeze-thawing or enzymatic hydrolysis, it could further improve the yield of proteins and the functional properties of proteins, which was mainly related to the changes of protein structure induced by cavitation effect of ultrasound.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
10
|
Watrelot AA, Vavra C, Gapinski A, Cheng Y. What are the challenges to producing high quality red wines from interspecific grapes? BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
In the U.S. Midwest region, interspecific cold hardy grape cultivars have been developed to be resistant to the harsh cold winter, late spring frosts, and hot and humid summer. However, interspecific grape red wines tend to have higher acidity and lower tannins content than Vitis vinifera wines. This leads to unbalanced wines and an increase of the risk of oxidation and therefore impact the overall quality over time. The content and type of phenolic compounds differ in interspecific grapes and wines, depending on the cultivars, the viticultural practices, the environmental conditions and the wine making process. Because the chemical properties of red wines produced from interspecific grapes compared to Vitis vinifera is not well known, it is a challenge to determine the best wine making practices to produce a high quality wine that remains stable over time. This study focuses on evaluating phenolic compounds, oxidation-related compounds, and sulfur dioxide content in Marquette and Frontenac wines aged in bottles for up to 9 years. The goal is to help improve quality of red wines made from interspecific cold-hardy grape cultivars to increase consumer acceptance and develop optimal wine making practices.
Collapse
|
11
|
Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Nikitin E, Zobov V. Antioxidative and Immunomodulating Properties of Aronia melanocarpa Extract Rich in Anthocyanins. PLANTS (BASEL, SWITZERLAND) 2022; 11:3333. [PMID: 36501372 PMCID: PMC9737032 DOI: 10.3390/plants11233333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The fruits of Aronia melanocarpa are well known due to their high anthocyanin content that may be effective in preventing certain health disorders arising from oxidative stress. Various polyphenolic compounds such as anthocyanins and flavonoids are responsible for the multiple effects of chokeberry. The aim of this study was to determine in vitro how active the black chokeberry anthocyanins are in scavenging radicals and to evaluate in vivo their immunomodulating capacity. Using the method of column chromatography, we extracted the anthocyanins of black chokeberries, i.e., cyanidin-3-O-galactoside with a purity of over 93.7%. Using HPLC and spectrophotometric analysis, the flavonoid content was determined. Following the analysis of the tests with AAPH and DPPH, the chokeberry cyanidin-3-O-galactoside was found much better than individual anthocyanins in regard to antioxidant capacity. The range of concentrations was revealed, showing the protective effect of anthocyanins on the RPMI-1788 cell culture against cyclophosphamide, as well as against osmotic and peroxide hemolysis. An immunomodulating effect on the functional activity of phagocytes was revealed in vivo as a result of oral administration of chokeberry cyanidin-3-O-galactoside and a mixture composed of cyanidin-3-O-glucoside and cyanidin-3-O-galactoside standards. Consequently, anthocyanins, in particular cyanidin-3-O-galactoside, play an important role, demonstrating immunomodulating effects when chokeberries are consumed.
Collapse
|
12
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
13
|
Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022; 11:foods11192973. [PMID: 36230050 PMCID: PMC9564298 DOI: 10.3390/foods11192973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Various potential sources of bioactive components exist in nature which are fairly underutilized due to the lack of a scientific approach that can be sustainable as well as practically feasible. The recovery of bioactive compounds is a big challenge and its use in food industry to develop functional foods is a promising area of research. Various techniques are available for the extraction of these bioactives but due to their thermolabile nature, there is demand for nonthermal or green technologies which can lower the cost of operation and decrease operational time and energy consumption as compared to conventional methods. Ultrasound-assisted extraction (UAE) is gaining popularity due to its relative advantages over solvent extraction. Thereafter, ultrasonication as an encapsulating tool helps in protecting the core components against adverse food environmental conditions during processing and storage. The review mainly aims to discuss ultrasound technology, its applications, the fundamental principles of ultrasonic-assisted extraction and encapsulation, the parameters affecting them, and applications of ultrasound-assisted extraction and encapsulation in food systems. Additionally, future research areas are highlighted with an emphasis on the energy sustainability of the whole process.
Collapse
|
14
|
AlYammahi J, Hai A, Krishnamoorthy R, Arumugham T, Hasan SW, Banat F. Ultrasound-assisted extraction of highly nutritious date sugar from date palm (Phoenix dactylifera) fruit powder: Parametric optimization and kinetic modeling. ULTRASONICS SONOCHEMISTRY 2022; 88:106107. [PMID: 35926278 PMCID: PMC9356216 DOI: 10.1016/j.ultsonch.2022.106107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Effects of Saignée and Bentonite Treatment on Phenolic Compounds of Marquette Red Wines. Molecules 2022; 27:molecules27113482. [PMID: 35684417 PMCID: PMC9182449 DOI: 10.3390/molecules27113482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
To improve the phenolic extraction and color stability of red wine made from cold-hardy grapes, two winemaking practices, saignée and bentonite, were applied separately and in combination on Marquette grapes at crushing. The effects of these winemaking strategies on Marquette wine’s basic chemical properties, monomeric and polymeric phenolic compounds were studied, as well as the development of color characteristics from crushing to 5 months of aging. The saignée (9% juice run-off) treatment showed little impact on the phenolic content of the finished wine, but showed an increase in color intensity. A hue shift towards an orange-yellow tone was observed in the bentonite-treated wines, which was associated with a loss of monomeric anthocyanins. The combination of saignée and bentonite showed less impact on removing anthocyanins and wine color, and increased phenolics content, therefore improving the extraction of non-anthocyanins monomeric phenolics. Although this combination treatment led to the highest concentration of tannin content after pressing, this difference between the control and other treatments disappeared over time. These results suggested that the interactions between tannins and other wine compounds still occur after removing proteins in Marquette wines.
Collapse
|