1
|
Shahidi F, Danielski R. Review on the Role of Polyphenols in Preventing and Treating Type 2 Diabetes: Evidence from In Vitro and In Vivo Studies. Nutrients 2024; 16:3159. [PMID: 39339759 PMCID: PMC11435057 DOI: 10.3390/nu16183159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes (T2D) is one of the leading causes of death globally. There was a 70% increase in diabetes-related deaths between 2000 and 2020, particularly among males. This non-communicable disease is characterized by increased insulin resistance, leading to elevated blood sugar levels and, if untreated, resulting in complications such as nerve damage, kidney disease, blindness, and poor wound healing. T2D management includes dietary intervention, physical exercise, and the administration of blood sugar-lowering medication. However, these medications often have side effects related to intestinal discomfort. Therefore, natural alternatives to standard diabetes medications are being sought to improve the quality of life for individuals with this condition. Polyphenols, which are naturally occurring plant metabolites, have emerged as strong candidates for T2D control. Various phenolic acids (e.g., chlorogenic acid), flavonoids (e.g., quercetin), proanthocyanidins (e.g., procyanidin B2), gallotannins (e.g., monogalloyl hexoside), and ellagitannins (e.g., ellagic acid hexoside) can enhance insulin sensitivity in tissues, reduce chronic inflammation, scavenge free radicals, improve insulin secretion, inhibit enzymes involved in carbohydrate digestion, regulate glucose transport across cell membranes, and modulate gut microbiota. This contribution compiles up-to-date evidence from in vitro and in vivo studies on the role of polyphenols in the prevention and management of T2D, emphasizing the mechanisms of action underlying these effects.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
2
|
Pan Z, Luo H, He F, Du Y, Wang J, Zeng H, Xu Z, Sun Y, Li M. Guava polysaccharides attenuate high fat and STZ-induced hyperglycemia by regulating gut microbiota and arachidonic acid metabolism. Int J Biol Macromol 2024; 276:133725. [PMID: 38986994 DOI: 10.1016/j.ijbiomac.2024.133725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This study investigated the hypoglycemic mechanism of guava polysaccharides (GP) through the gut microbiota (GM) and related metabolites. Our findings demonstrated that GP significantly mitigated high-fat diet- and streptozotocin-induced hyperglycemia, insulin resistance, hyperlipidemia, elevated alanine aminotransferase, high hepatic inflammation levels, and prevented pancreatic atrophy and hepatomegaly. Interestingly, the benefits of GP were attributed to alterations in the GM. GP decreased the ratio of Firmicutes to Bacteroidetes, significantly inhibiting deleterious bacteria, including Uncultured_f_Desulfovibrionaceae, Bilophila, and Desulfovibrio, while promoting the proliferation of probiotic Bifidobacterium and Bacteroides. In addition, GP promoted the generation of short-chain fatty acids. Notably, the arachidonic acid (AA) metabolism pathway was enriched in liver metabolites. GP significantly elevated hepatic AA and 15-hydroxyeicosatetraenoic acid, while reducing prostaglandin E2 and 5- and 12-hydroxyeicosatetraenoic acid. This modulation is accompanied by the downregulation of hepatic cyclooxygenase-1, 12-lipoxygenase, P38, and c-Jun N-terminal kinase mRNA expression, and the upregulation of cytochrome P4502J5 and insulin receptor substrate 1/2 mRNA expression. However, GP antibiotic treatment did not induce significant alterations in FBG and AA levels or gene expression. Overall, our findings suggest that the hypoglycemic effect of GP may be intricately linked to alterations in AA metabolism, which depends on the GM.
Collapse
Affiliation(s)
- Zhuangguang Pan
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Haolin Luo
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fangqing He
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yixuan Du
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Junyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Huize Zeng
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhenlin Xu
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
3
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Wang X, Sun Z, Wang X, Li M, Zhou B, Zhang X. Solanum nigrum L. berries extract ameliorated the alcoholic liver injury by regulating gut microbiota, lipid metabolism, inflammation, and oxidative stress. Food Res Int 2024; 188:114489. [PMID: 38823872 DOI: 10.1016/j.foodres.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.
Collapse
Affiliation(s)
- Xueying Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ziqi Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoli Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Minjie Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Boru Zhou
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
5
|
Liang J, Li H, Han M, Gao Z. Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38965668 DOI: 10.1080/10408398.2024.2368055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Seyidoglu N, Karakçı D, Bakır B, Yıkmış S. Hawthorn Vinegar in Health with a Focus on Immune Responses. Nutrients 2024; 16:1868. [PMID: 38931223 PMCID: PMC11206889 DOI: 10.3390/nu16121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The hawthorn fruit is an interesting medicinal plant that has several biological features, especially related to anti-inflammatory, antioxidant and immune-modulating actions, and boosting general health. In this study, we aimed to clarify the immunological effects of hawthorn vinegar on immunity and general health. We also focused on three different production processes to improve the antioxidant activity of hawthorn vinegar (2) Methods: In the study, besides the traditional production of hawthorn vinegar (N), thermal pasteurization (P) and ultrasound (U) techniques were applied to vinegars. A total of 56 female adult Wistar albino rats were randomly allocated into seven groups; Control, N0.5 (regular vinegar; 0.5 mL/kgbw), N1 (regular vinegar; 1 mL/kgbw), P0.5 (pasteurized vinegar; 0.5 mL/kgbw), P1 (pasteurized vinegar; 1 mL/kgbw), U0.5 (ultrasound treated vinegar; 0.5 mL/kgbw), and U1 (ultrasound treated vinegar; 1 mL/kgbw). Vinegars were administered by oral gavage daily. The average weight gains, body mass index, and blood hematological parameters were measured, and the Neutrophil Lymphocyte ratio was calculated. The plasma IL-1β and TNF-α values, and MDA, IL-1β and TNF-α values of intestinal tissue, were determined. Also, the streptavidin-biotin-peroxidase complex method was applied to determine the expressions of TNF-α and IL-1β in duodenum. (3) Results: There was a decreasing tendency in the average weight gains in all vinegar groups compared to the control group. In addition, there was an increase in NL ratio in all vinegar groups, although not significant. There were no statistical differences among all vinegar groups, although decreases were observed in plasma IL-1β. Also, the plasma TNF-α values showed slight increases in high-dose-of-vinegar groups (N1, P1 and U1), although not significant. In addition, the intestinal tissue IL-1β value tended to increase in groups N0.5, N1 and P0.5, while it tended to decrease in P1, U0.5 and U1. On the other hand, there were slight increases in the TNF-α values of intestinal tissue in all groups compared to control, although these were not significant. Furthermore, the intensive expressions of TNF-α and IL-1β were determined in groups U0.5 and U1. (4) Conclusions: The results suggest that either high doses or ultrasound applications of hawthorn vinegar have positive effects on intestinal health, boosting immunity and general health.
Collapse
Affiliation(s)
- Nilay Seyidoglu
- Department of Physiology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Deniz Karakçı
- Department of Biochemistry, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye;
| | - Buket Bakır
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye;
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| |
Collapse
|
7
|
Ousaaid D, Bakour M, Laaroussi H, El Ghouizi A, Lyoussi B, El Arabi I. Fruit vinegar as a promising source of natural anti-inflammatory agents: an up-to-date review. Daru 2024; 32:307-317. [PMID: 38040916 PMCID: PMC11087403 DOI: 10.1007/s40199-023-00493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES Fruit vinegar is one of the most famous fruit byproducts worldwide with several unique properties. There are two types of fruit vinegar, artisanal and industrial, for consumers to choose from. This review aims to assess for the first time the phytochemistry of fruit vinegar and its anti-inflammatory effects. METHOD The present work was conducted based on a literature search that selected the relevant papers from indexed databases such as Scopus, Science Direct, MDPI, PubMed, Hindawi, and Web of Science. We used numerous terms to assure a good search in different databases, including fruit vinegar, phytochemistry, bioavailability and bioaccessibility, and anti-inflammatory effect. All articles were selected based on their relevance, quality, and problematic treatment. RESULTS Literature data have shown that vinegar has a long medicinal history and has been widely used by different civilizations, due to its richness in bioactive molecules, vinegar plays an important role in the prevention and treatment of various inflammatory diseases, including atopic dermatitis, mastitis, asthma, arthritis, acute pancreatitis, and colitis. Fruit vinegar consumption benefit is highly dependent on its chemical composition, especially organic acids and antioxidants, which can act as nutraceuticals. CONCLUSION Fruit vinegar has a rich chemical composition, including organic acids that can be transformed in the digestive system into compounds that play an important role in health-promoting features such as anti-inflammatory effects throughout the control of intestinal microbiota and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Ilham El Arabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
8
|
Mei X, Li Y, Zhang X, Zhai X, Yang Y, Li Z, Li L. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4703-4725. [PMID: 38349207 DOI: 10.1021/acs.jafc.3c06370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal obesity increases the risk of obesity and metabolic disorders (MDs) in offspring, which can be mediated by the gut microbiota. Phlorizin (PHZ) can improve gut dysbiosis and positively affect host health; however, its transgenerational metabolic benefits remain largely unclear. This study aimed to investigate the potential of maternal PHZ intake in attenuating the adverse impacts of a maternal high-fat diet on obesity-related MDs in dams and offspring. The results showed that maternal PHZ reduced HFD-induced body weight gain and fat accumulation and improved glucose intolerance and abnormal lipid profiles in both dams and offspring. PHZ improved gut dysbiosis by promoting expansion of SCFA-producing bacteria, Akkermansia and Blautia, while inhibiting LPS-producing and pro-inflammatory bacteria, resulting in significantly increased fecal SCFAs, especially butyric acid, and reduced serum lipopolysaccharide levels and intestinal inflammation. PHZ also promoted intestinal GLP-1/2 secretion and intestinal development and enhanced gut barrier function by activating G protein-coupled receptor 43 (GPR43) in the offspring. Antibiotic-treated mice receiving FMT from PHZ-regulated offspring could attenuate MDs induced by receiving FMT from HFD offspring through the gut microbiota to activate the GPR43 pathway. It can be regarded as a promising functional food ingredient for preventing intergenerational transmission of MDs and breaking the obesity cycle.
Collapse
Affiliation(s)
- Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Xiwen Zhai
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Yi Yang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
| | - Zhengjuan Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
9
|
Sanni O, Nkomozepi P, Islam MS. Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose-Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 25:28. [PMID: 38203195 PMCID: PMC10778942 DOI: 10.3390/ijms25010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a global health challenge with increased morbidity and mortality rates yearly. Herbal medicine has provided an alternative approach to treating T2D with limited access to formal healthcare. Tectona grandis is being used traditionally in the treatment of diabetes. The present study investigated the antidiabetic potential of T. grandis leaves in different solvent extractions, and the crude extract that demonstrated the best activity was further fractionated through solvent-solvent partitioning. The ethyl acetate fraction of the ethanol crude extract showed the best antidiabetic activity in inhibiting α-glucosidase, delaying glucose absorption at the small intestine's lumen, and enhancing the muscle's postprandial glucose uptake. The ethyl acetate fraction was further elucidated for its ability to reduce hyperglycemia in diabetic rats. The ethyl acetate fraction significantly reduced high blood glucose levels in diabetic rats with concomitant modulation in stimulated insulin secretions through improved pancreatic β-cell function, insulin sensitivity by increasing liver glycogen content, and reduced elevated levels of liver glucose-6-phosphatase activity. These activities could be attributed to the phytochemical constituents of the plant.
Collapse
Affiliation(s)
- Olakunle Sanni
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
10
|
Xie X, Chen C, Fu X. Modulation Effects of Sargassum pallidum Extract on Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice. Foods 2023; 12:4409. [PMID: 38137213 PMCID: PMC10742466 DOI: 10.3390/foods12244409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to investigate the antidiabetic effect of the extract from Sargassum pallidum (SPPE) on type 2 diabetes mellitus (T2DM) mice. SPPE treatment alleviated hyperglycemia, insulin resistance (IR), liver and pancreatic tissue damage, hyperlipidemia and hepatic oxidative stress resulting from T2DM. SPPE reversed phosphoenolpyruvate carboxylase (PEPCK) and hexokinase (HK) activities to improve gluconeogenesis and glycogen storage in the liver. Furthermore, SPPE modulated glucose metabolism by regulating the levels of mRNA expression involving the PI3K/Akt/FOXO1/G6pase/GLUT2 pathway and could inhibit fatty acid synthesis by reducing the gene expression levels of fatty acid synthase (FAS) and acetyl-CoA carboxylase-1 (ACC-1). A 16 sRNA analysis indicated that SPPE treatment also reversed gut dysbiosis by increasing the abundance of beneficial bacteria (Bacteroides and Lactobacillus) and suppressing the proliferation of harmful bacteria (Enterococcus and Helicobacter). Untargeted metabolomics results indicated that histidine metabolism, nicotinate and nicotinamide metabolism and fatty acid biosynthesis were significantly influenced by SPPE. Thus, SPPE may be applied as an effective dietary supplement or drug in the management of T2DM.
Collapse
Affiliation(s)
- Xing Xie
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Xiu W, Wang X, Na Z, Yu S, Wang J, Yang M, Ma Y. Ultrasound-assisted hydrogen peroxide-ascorbic acid method to degrade sweet corncob polysaccharides can help treat type 2 diabetes via multiple pathways in vivo. ULTRASONICS SONOCHEMISTRY 2023; 101:106683. [PMID: 37948893 PMCID: PMC10663900 DOI: 10.1016/j.ultsonch.2023.106683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
In this study, we aimed to investigate the impact of various ultrasound durations on the structure and bioactivity of sweet corncob polysaccharides treated with ultrasound-assisted degradation using hydrogen peroxide and ascorbic acid (H2O2-Vc). We subjected sweet corncob polysaccharides to ultrasound treatment for 0, 30, 60, and 90 min alongside the H2O2-Vc method. We then analyzed their chemical composition and structure. Additionally, we administered these polysaccharides to mice with type 2 diabetes (T2DM) through gavage at a dosage of 200 mg/kg/day. The results indicated a significant reduction in the molecular weight of the degraded sweet corncob polysaccharides, while their composition remained relatively stable. However, the basic structure of the polysaccharides was retained. In vivo experiments demonstrated that ultrasound-assisted degradation of these polysaccharides had a positive impact on T2DM, particularly the 60-minute ultrasound treatment (UH-DSCBP-60 min), which effectively controlled blood glucose levels by regulating glycolipid metabolism in the livers of mice with T2DM. This approach also reduced inflammation and oxidative stress levels and inhibited disaccharide activity in the small intestine. We demonstrated that ultrasound can positively affect the sweet corncob polysaccharides hypoglycemic activity. The findings of our study provide a theoretical foundation for the valuable utilization of sweet corncob polysaccharides.
Collapse
Affiliation(s)
- Weiye Xiu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Xin Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China.
| | - Zhiguo Na
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Shiyou Yu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Jingyang Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Mengyuan Yang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Yongqiang Ma
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| |
Collapse
|
12
|
Cao X, Wang X, Ren Y, Sun Y, Yang Z, Ge J, Ping W. Lonicera caerulea L. polyphenols improve short-chain fatty acid levels by reshaping the microbial structure of fermented feces in vitro. Front Microbiol 2023; 14:1228700. [PMID: 37965545 PMCID: PMC10641692 DOI: 10.3389/fmicb.2023.1228700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Increasing evidence suggests that the pathogenesis of type 2 diabetes mellitus (T2DM) is closely related to the gut microbiota. Polyphenols have been shown to alleviate T2DM, but the effects of L. caerulea L. polyphenols (LPs) on the gut microbiota and metabolites remain elusive. In this study, the inhibitory effects of fermented L. caerulea L. polyphenols (FLPs) and unfermented L. caerulea L. polyphenols (ULPs) on α-amylase and α-glucosidase and the impact of LP on the gut microbiota and metabolites were investigated. Furthermore, the relationship between the two was revealed through correlation analysis. The results showed that ULP and FLP had the highest inhibitory rates against α-amylase and α-glucosidase at 4 mg ml-1, indicating a strong inhibitory ability. In addition, LP plays a regulatory role in the concentration of short-chain fatty acids (SCFAs) and tends to restore them to their normal levels. LP reversed the dysbiosis of the gut microbiota caused by T2DM, as evidenced by an increase in the abundance of bacterial genera such as Lactobacillus, Blautia, and Bacteroides and a decrease in the abundance of bacterial genera such as Escherichia-Shigella and Streptococcus. Similarly, after LP intervention, the relationships among microbial species became more complex and interconnected. In addition, the correlation between the gut microbiota and metabolites was established through correlation analysis. These further findings clarify the mechanism of action of LP against T2DM and provide a new target for T2DM interventions.
Collapse
Affiliation(s)
- Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xuemeng Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yanxin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhichao Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| |
Collapse
|
13
|
Ding L, Teng R, Zhu Y, Liu F, Wu L, Qin L, Wu X, Liu T. Electroacupuncture treatment ameliorates metabolic disorders in obese ZDF rats by regulating liver energy metabolism and gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1207574. [PMID: 37441502 PMCID: PMC10335763 DOI: 10.3389/fendo.2023.1207574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Metabolic disorders represent a major therapeutic challenge to public health worldwide due to their dramatically increasing prevalence. Acupuncture is widely used as adjuvant therapy for multiple metabolic diseases. However, detailed biological interpretation of the acupuncture stimulations is still limited. The gut and the liver are intrinsically connected and related to metabolic function. Microbial metabolites might affect the gut-liver axis through multiple mechanisms. Liver metabolomics and 16S rRNA sequencing were used to explore the specific mechanism of electroacupuncture in treating ZDF rats in this study. Electroacupuncture effectively improved glycolipid metabolism disorders of the ZDF rats. Histopathology confirmed that electroacupuncture improved diffuse hepatic steatosis and hepatocyte vacuolation, and promoted glycogen accumulation in the liver. The treatment significantly improved microbial diversity and richness and upregulated beneficial bacteria that maintain intestinal epithelial homeostasis and decreased bacteria with detrimental metabolic features on host metabolism. Liver metabolomics showed that the main effects of electroacupuncture include reducing the carbon flow and intermediate products in the TCA cycle, regulating the metabolism of various amino acids, and inhibiting hepatic glucose output and de novo lipogenesis. The gut-liver axis correlation analysis showed a strong correlation between the liver metabolites and the gut microbiota, especially allantoin and Adlercreutzia. Electroacupuncture treatment can improve abnormal energy metabolism by reducing oxidative stress, ectopic fat deposition, and altering metabolic fluxes. Our results will help us to further understand the specific mechanism of electroacupuncture in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lei Ding
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rufeng Teng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Zhu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengming Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Wu
- Department of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Gulzar B, Hussain SZ, Naseer B, Bhat TA, Bashir O. Exploring modified rice flour and supplementation approach to enhance resistant starch content: Visco thermal and structural characterization. Int J Biol Macromol 2023:125297. [PMID: 37315668 DOI: 10.1016/j.ijbiomac.2023.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Supplementation of rice flour with Apple Pomace Powder (APP) and Synthetic Vinegar (SV) was investigated to reduce the glycemic potential of ready-to-eat snacks using extrusion cooking. The aim of the study was to compare the increase in resistant starch and decrease in glycemic index of modified rice flour based extrudates after supplementing the Modified rice flour with synthetic vinegar and apple pomace. The effects of independent variables-SV (3-6.5 %) and APP (2-23 %) were evaluated on resistant starch, predicted glycemic index, glycemic load, L*, a*, b*, ΔE and overall acceptability of supplemented extrudates. Design expert predicted 6 % SV and 10 % APP as desirable conditions for enhancement of resistant starch and reduction of glycemic index. Resistant Starch (RS) of supplemented extrudates increased by 88 % while as pGI and GL was decreased by 12 % and 66 % respectively as compared to un-supplemented extrudates. L* value increased from 39.11 to 46.78, a* value increased from 11.85 to 22.55, b* value increased from 10.10 to 26.22 and Δ E increased from 7.24 to 17.93 respectively in supplemented extrudates. The results suggested that apple pomace and vinegar can act in synergy to reduce the in-vitro digestibility of rice based snacks, while maintaining the sensory acceptance of the developed product. The significant (p < 0.001) decrease in the glycemic index was achieved as the supplementation level increased. The increase in RS correlates with the decrease in glycemic index and glycemic load.
Collapse
Affiliation(s)
- Beenish Gulzar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India.
| | - Bazila Naseer
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) Kashmir, Shalimar 190025, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University (LPU), Punjab 144402, India
| |
Collapse
|
15
|
Wang Y, Jia Y, Li S, Li N, Zhou J, Liu J, Yang S, Zhang M, Panichayupakaranant P, Chen H. Gut microbiome-mediated glucose and lipid metabolism mechanism of star apple leaf polyphenol-enriched fraction on metabolic syndrome in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154820. [PMID: 37094426 DOI: 10.1016/j.phymed.2023.154820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Diabetes is a kind of metabolic syndrome (MetS) that seriously threatens human health globally. The leaf of star apple (Chrysophyllum cainito L.) is an incompletely explored folk medicine on diabetes. And, the effects and mechanisms on diabetes complicated glycolipid metabolism disorders are unknown till now. PURPOSE This study aimed to investigate the constituents of star apple leaf polyphenol enriched-fraction (SAP), and elucidate their treatment effects and mechanism on diabetes and accompanied other MetS. METHODS The components of SAP were tentatively identified by HPLC-Q-TOF-MS/MS. The antioxidant activity was determined by the scavenging of free radicals and hypoglycemic activities by inhibition of α-glucosidase in vitro. HepG2 cells were used for evaluating the alleviation effects of SAP on lipid accumulation. Streptozotocin and high-fat diet induced diabetic mice were grouped to evaluate the effects of different dosages of SAP. 16S rRNA was conducted to analysis gut microbiome-mediated glucose and lipid metabolism mechanism. RESULTS It showed that myricitrin was one of the main active constituents of SAP. SAP not only showed low IC50 on -glucosidase (24.427± 0.626 μg/mL), OH·(3.680± 0.054 μg/mL) and ABTS· (9.155±0.234 μg/mL), but significantly induced the lipid accumulation in HepG2 cells (p < 0.05). SAP at 200 mg/kg·day significantly decreased the blood glucose, insulin and oral glucose tolerance test value (p < 0.05). The insulin resistance indexes and oxidative stress were alleviated after administration. SAP not only attenuated hepatic lipid deposition, but also reversed the hepatic glycogen storage. 16S rRNA sequencing results revealed that the interaction between SAP and gut microbiota led to the positive regulation of beneficial bacteria including Akkermansia, Unspecified S24_7, Alistipes and Unspecified_Ruminococcaceae, which might be one of the mechanisms of SAP on MetS. CONCLUSION For the first time, this study explored the regulation effect of star apple leaf polyphenols on the hepatic glycolipid metabolism and studied the underlying mechanism from the view of gut microbiota. These findings indicated that SAP possesses great potential to serve as a complementary medicine for diabetes and associated MetS. It provided scientific evidence for folk complementary medicine on the treatment of diabetes-complicated multiple metabolic disorders.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
16
|
Study on the interaction between grain polyphenols and intestinal microorganisms: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Aydin OC, Aydın S, Barun S. Role of natural products and intestinal flora on type 2 diabetes mellitus treatment. World J Clin Cases 2023; 11:65-72. [PMID: 36687192 PMCID: PMC9846977 DOI: 10.12998/wjcc.v11.i1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetes mellitus (DM) is a complicated, globally expanding disease that is influenced by hereditary and environmental variables. Changes in modern society's food choices, physical inactivity, and obesity are significant factors in the development of type 2 DM (T2DM). The association between changes in intestinal flora and numerous disorders, including obesity, diabetes, and cardiovascular diseases, has been studied in recent years. The purpose of this review is to analyze the mechanisms underlying the alteration of the diabetic patients' intestinal flora, as well as their therapeutic choices. Also included is a summary of the anti-diabetic benefits of natural compounds demonstrated by studies. The short-chain fatty acids theory, the bile acid theory, and the endotoxin theory are all potential methods by which intestinal flora contributes to the establishment and progression of T2DM. Due to an intestinal flora imbalance, abnormalities in short-chain fatty acids and secondary bile acids have been found in diabetic patients. Additionally, metabolic endotoxemia with altering flora induces a systemic inflammatory response by stimulating the immune system via bacterial translocation. The agenda for diabetes treatment includes the use of short-chain fatty acids, probiotics, prebiotics in the diet, fecal bacteria transplantation, and antibiotics. Animal studies have proven the antidiabetic benefits of numerous bioactive substances, including Flavonoids, Alkaloids, Saponin, and Allicin. However, further research is required to contribute to the treatment of diabetes.
Collapse
Affiliation(s)
- Ozlem Celik Aydin
- Department of Medical Pharmacology, Erzincan Mengücek Gazi Training and Research Hospital, Erzincan 24100, Turkey
| | - Sonay Aydın
- Department of Radiology, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan 24100, Turkey
| | - Sureyya Barun
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara 06500, Turkey
| |
Collapse
|
18
|
Detection of the Alcohol Fermentation Process in Vinegar Production with a Digital Micro-Mirror based NIR Spectra set-up and Chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Chen L, Xue S, Dai B, Zhao H. Effects of Coix Seed Oil on High Fat Diet-Induced Obesity and Dyslipidemia. Foods 2022. [PMCID: PMC9601554 DOI: 10.3390/foods11203267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dietary intervention is becoming more popular as a way to improve lipid metabolism and reduce the prevalence of diet-related chronic disorders. We evaluated the effects of several dietary oils on body weight, fat mass, liver weight, and tumor necrosis factor in obese mice given a high-fat diet (HFD) to discover if coix seed oil (CSO) had an anti-obesity impact. As compared to other dietary fats, CSO treatment considerably lowered body weight and liver index, successfully sup-pressed total cholesterol and triglyceride content, and raised liver lipid deposition and lipid metabolism problem induced by high fat intake. Furthermore, gas chromatography research revealed that CSO extracted by supercritical fluid, with 64% being CSO extracted by supercritical fluid, and the greatest amounts of capric acids and lauric acids being 35.28% and 22.21%, respectively. CSO contained a high content of medium-chain fatty acids and was able to modify hepatic fatty acid metabolism and lipid levels in HFD-induced obese mice. According to the results, CSO has the potential to replace dietary lipids as a promising functional lipid in the prevention of met-abolish disorders.
Collapse
Affiliation(s)
- Lichun Chen
- Correspondence: ; Tel.: +86-137-7757-7107; Fax: +86-571-2800-8902
| | | | | | | |
Collapse
|