1
|
Yang L, Chen S, Ma N, Chen W, Zhang Z, Zhang H. Effect of gelatin edible coating with Aronia melanocarpa pomace polyphenols on the cold storage of chilled pork. Meat Sci 2025; 219:109677. [PMID: 39357111 DOI: 10.1016/j.meatsci.2024.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
In this research, the Aronia melanocarpa pomace polyphenols (AMPPs) were extracted and purified. The purified AMPPs contained the most abundant chlorogenic acid (CGA) at 36.91 mg/100 mg, followed by chrysin at 8.61 mg/100 mg. At a concentration of 60 μg/mL, the purified AMPPs exhibited stronger scavenging activity against: DPPH radical, hydroxyl radical, ABTS∙+, and also showed greater Fe3+ reducing activity than the VC control group. To solve the problem of easy spoilage of chilled meat during storage, gelatin edible coatings containing Aronia melanocarpa pomace polyphenols, referred to as G/AMPPs, were investigated for their effect on the chilled storage of pork. At a 1:1 volume ratio of 1 % polyphenol solution to 3 % gelatin solution, the G/AMPPs coating effectively curbed pH, TVB-N, TVC, drip loss, and b* value increases in chilled pork, while delaying declines in hardness, adhesion, a* value and L* value; The TVB-N content and TVC values demonstrated that the G/AMPPs coating significantly extended the shelf life of chilled pork by up to 15 days. The results showed that G/AMPPs had good preservative, antibacterial and antioxidant effects on chilled pork and thus development of G/AMPPs based coating shows appeared to offer promise for meat preservation.
Collapse
Affiliation(s)
- Liu Yang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Sheng Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Ning Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Wenwen Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zhenyuan Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyuan Zhang
- Chemistry College, Baicheng Nomal University, Baicheng 137000, China.
| |
Collapse
|
2
|
Yang Z, Wang Z, Liu P, Liu W, Xu Y, Zhou Y, Yu Z, Zheng M, Xiao Y, Liu Y. Development of dual-channel starch-based film incorporated with betanin@β-cyclodextrin inclusion complex and berberine for indicating shrimp freshness. Food Chem 2024; 454:139830. [PMID: 38820633 DOI: 10.1016/j.foodchem.2024.139830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
In this study, the β-cyclodextrin encapsulated betanin (BET@β-CD) with improved thermal stability and retention as well as the berberine (BBR) with aggregate induced luminescence effect were incorporated into corn amylose (CA) biomatrix to develop colorimetric/fluorescent dual-channel smart film. Results shown that the added functional components were uniformly distributed in the film matrix. The high tensile strength (78.87%), low water solubility (31.15%) and water vapor permeability (1.24 × 10-10 g Pa-1 s-1 m-1) of the film predicted its acceptable stability. It was worth mentioning that the film displayed excellent responsiveness to volatile ammonia (0.025-25 mg/mL) with at least 4 times recyclability. Application experiment demonstrated that the film can achieve macroscopic dynamic monitoring of the freshness of shrimps stored at 25 °C, 4 °C, -20 °C under daylight (red to yellow) and UV light (yellow-green to blue-green). Thus, the study suggests an attractive and effective strategy for constructing dual-mode smart packaging materials for food freshness detection.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Pan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Bian Z, Wu X, Sun X, Huang X, Zhuo X, Wang H, Komarneni S, Zhang K, Ni Z, Hu G. Gellan gum and pullulan-based films with triple functionalities of antioxidant, antibacterial and freshness indication properties for food packaging. Int J Biol Macromol 2024; 278:134825. [PMID: 39154683 DOI: 10.1016/j.ijbiomac.2024.134825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The objective of this research was to fabricate pH-responsive and active films based on gellan gum (GG) and pullulan (PL) with extracts of Broussonetia papyrifera fruits (BPFE) and leaves (BPLE) by a casting method. Results indicated that the extracts had good compatibility with GG and PL, which were uniformly distributed throughout the matrix. The incorporation of BPFE and BPLE increased the thickness, UV-vis barrier property, mechanical strength, thermal stability and moisture content of the films, while decreasing the water contact angle. Notably, the films exhibited enhanced antioxidant properties, with maximum radical scavenging rates of 77.45 % using 2,2 Diphenyl-1-picrylhydrazyl and 66.21 % using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid). The antibacterial capability of the films also increased significantly after adding BPLE and BPFE. The results of XRD and FTIR showed that BPFE was bound to GG and PL by hydrogen bond. The release behavior of BPFE from the films agreed best with the first-level kinetic model. Furthermore, the films displayed obvious color responses to ammonia gas and different pH environments. Simultaneously, the films were applied to monitor the freshness of Pelteobagrus fulvidraco fish. The color parameters of the films demonstrated high correlations with the freshness indexes measured through standard laboratory procedures.
Collapse
Affiliation(s)
- Zhentao Bian
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China; Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou, Anhui 234000, PR China
| | - Xiaoqian Wu
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Xiujun Sun
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Xinran Huang
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou, Anhui 234000, PR China
| | - Xin Zhuo
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou, Anhui 234000, PR China
| | - Hongyan Wang
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Keying Zhang
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou, Anhui 234000, PR China.
| | - Zhonghai Ni
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China.
| | - Guangzhou Hu
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Mazur F, Han Z, Tjandra AD, Chandrawati R. Digitalization of Colorimetric Sensor Technologies for Food Safety. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404274. [PMID: 38932639 DOI: 10.1002/adma.202404274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Colorimetric sensors play a crucial role in promoting on-site testing, enabling the detection and/or quantification of various analytes based on changes in color. These sensors offer several advantages, such as simplicity, cost-effectiveness, and visual readouts, making them suitable for a wide range of applications, including food safety and monitoring. A critical component in portable colorimetric sensors involves their integration with color models for effective analysis and interpretation of output signals. The most commonly used models include CIELAB (Commission Internationale de l'Eclairage), RGB (Red, Green, Blue), and HSV (Hue, Saturation, Value). This review outlines the use of color models via digitalization in sensing applications within the food safety and monitoring field. Additionally, challenges, future directions, and considerations are discussed, highlighting a significant gap in integrating a comparative analysis toward determining the color model that results in the highest sensor performance. The aim of this review is to underline the potential of this integration in mitigating the global impact of food spoilage and contamination on health and the economy, proposing a multidisciplinary approach to harness the full capabilities of colorimetric sensors in ensuring food safety.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zifei Han
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Faria CSV, Vieira JM, Vicente AA, Martins JT. Locust Bean Gum/κ-Carrageenan Film Containing Blueberry or Beetroot Extracts as Intelligent Films to Monitoring Hake ( Merluccius merluccius) Freshness. Foods 2024; 13:3088. [PMID: 39410122 PMCID: PMC11475751 DOI: 10.3390/foods13193088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The main goal of this work was to develop bio-based and ecofriendly intelligent films as freshness indicators to monitor European hake (Merluccius merluccius) quality during storage by using a visual, non-destructive, and real-time technique. Locust bean gum (LBG)/κ-carrageenan (Car) films incorporating blueberry extract (BLE) or beetroot extract (BEE) were developed and their effectiveness to detect hake deterioration during 7 days of storage at 4 °C was evaluated. A visible color response from pink to blue was observed on the BLE films at the end of hake storage, which correlated with the hake deterioration profile, namely an increase in pH values (from 6.60 ± 0.04 to 8.02 ± 0.03), total viable count (TVC, from 4.61 ± 0.36 to 8.61 ± 0.21 log CFU/g), and total volatile basic nitrogen content (TVB-N, from 10.21 ± 1.97 to 66.78 ± 4.81 mg/100 g) beyond the spoilage threshold. The results of this study are very promising, since it was possible to develop a new effective intelligent bio-based responsive indicator film incorporating natural dye BLE, which has the potential to contribute to food waste reduction and improve food safety by detecting the hake freshness status.
Collapse
Affiliation(s)
- Carla S. V. Faria
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
| | - Jorge M. Vieira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Lacerda VR, Bastante CC, Machado ND, Vieites RL, Casas Cardoso L, Mantell-Serrano C. Supercritical extraction of betalains from the peel of different pitaya species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5513-5521. [PMID: 38353869 DOI: 10.1002/jsfa.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Pitaya is a fruit with high consumer acceptance and health benefits. Pitaya peel is a waste product with potential in the food industry, as an antioxidant enrichment and natural colouring. Therefore, there is an interest in recovering its constituents and searching for pitaya species with greater potential. This work aimed to obtain bioactive extracts from the dried peel of pitaya fruits of the species Selenicereus monacanthus (Lem.), S. costaricensis W. and S. undatus H. using supercritical fluids at different pressures (100, 250 and 400 bar) and ethanol-water 15% v/v or ethanol 100% as co-solvents. The extraction yield, antioxidant activity, colour and total betalain content were evaluated. RESULTS The extract obtained from S. monacanthus showed the highest extraction yield (49.6 g kg-1), followed by S. costaricensis (27.5 g kg-1) and S. undatus (17.7 g kg-1) at 400 bar and 35 °C using ethanol 15%, v/v. The antioxidant capacity was strongly influenced by pressure, favouring the obtaining of betalain-rich extracts at higher pressures, especially in the species S. costaricensis (0.6 g kg-1) and S. monacanthus (0.3 g kg-1). To improve the extraction of S. undatus (the most cultivated species), the procedure of subsequential extractions was applied. This procedure considerably increased the extraction yield, antioxidant activity and total content of betalains. The use of ethanol 100% provided more bioactive fractions and achieved a good separation of betalains. CONCLUSION The supercritical extraction method can overcome the challenge of efficiently extracting compounds from pitaya peel, due to the presence of bioactive compounds of great polarity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vander Rocha Lacerda
- Department of Vegetable Production (Horticulture), School of Agriculture, São Paulo State University (UNESP), Botucatu, Brazil
| | - Cristina Cejudo Bastante
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| | - Noelia D Machado
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| | - Rogério Lopes Vieites
- Department of Vegetable Production (Horticulture), School of Agriculture, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lourdes Casas Cardoso
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| | - Casimiro Mantell-Serrano
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| |
Collapse
|
7
|
Khan MI, Liu J, Saini RK, Khurshida S. Plant betalains-mixed active/intelligent films for meat freshness monitoring: A review of the fabrication parameters. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1238-1251. [PMID: 38910928 PMCID: PMC11190134 DOI: 10.1007/s13197-023-05881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 06/25/2024]
Abstract
The plant pigments called betalains are nutritionally safe polar compounds. They are subdivided into betaxanthins (having orange to yellow hues) and betacyanins (purple to red violet hues). Betacyanins change color with a change in pH, particularly in the range 6-8 and 9-11. Perishable foods like fish, chicken, beef, pork, and others tend to release total volatile base-nitrogen (TVB-N) during storage or deterioration, which leads to a change in the pH of pH-sensitive materials in the vicinity. pH-sensitive pigment-incorporated polymeric films with inherent active properties (or active/intelligent films) are increasingly being studied as an alternative to synthetic pH indicators to detect the accumulation of TVB-N by changing its color to indicate the stage of perishable food spoilage. There are many methods of developing such films under different conditions using different bio-based biodegradable polymer(s) and biocompatible plasticizer combinations. Among the reported methods, solution casting method has been the preferred one in most studies covered in this review. This method can be carried out under mild conditions. As such, betacyanins-incorporated polymeric films essentially require mild processing conditions because of their heat sensitivity, which will invariably affect the performance in food freshness monitoring. In this review, film fabrication parameters like temperature and duration of dissolution of polymers, plasticizer concentration, pH of the film-forming solution, film drying, and conditioning/aging, have been critically appraised based on the available literature. The lack of studies on the safety of active/intelligent films has been systematically highlighted in this review to focus future studies on this area. Graphical abstract
Collapse
Affiliation(s)
- Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati, Assam India
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul, 143-701 Republic of Korea
| | - Singamayum Khurshida
- College of Food Technology, Central Agricultural University, Imphal, 795004 India
| |
Collapse
|
8
|
Guo C, Li Y, Zhang H, Zhang Q, Wu X, Wang Y, Sun F, Shi S, Xia X. A review on improving the sensitivity and color stability of naturally sourced pH-sensitive indicator films. Compr Rev Food Sci Food Saf 2024; 23:e13390. [PMID: 39031881 DOI: 10.1111/1541-4337.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.
Collapse
Affiliation(s)
- Chang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Chiu I, Yang T. Biopolymer-based intelligent packaging integrated with natural colourimetric sensors for food safety and sustainability. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2300065. [PMID: 38948319 PMCID: PMC11210745 DOI: 10.1002/ansa.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024]
Abstract
Increasing concerns about global food safety and security demands innovative solutions, particularly in food packaging technologies. This review paper investigates the advanced integration of natural colourimetric sensors with biopolymer-based packaging materials, with a focus on developments over the past 5 years. These sensors change colour in response to environmental stimuli such as oxygen, temperature, pH and relative humidity, intuitively indicating food freshness and safety. The paper emphasizes the recent advancements in using natural colourants, such as alizarin, anthocyanins, betacyanins, chlorophyll, curcumin and shikonin. When combined with either natural or synthetic biopolymers, these colourants contribute to a sustainable and eco-friendly approach to food packaging. Such technological advances could notably decrease the incidence of foodborne illnesses by signaling potential spoilage or contamination, while also addressing food wastage by providing clear indications of edibility. Although challenges remain in sensor longevity and widespread adoption, the prospects for biopolymer-based food packaging with embedded natural colourimetric sensors are promising.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| |
Collapse
|
10
|
Das D, Panesar PS, Saini CS. Effect of montmorillonite (MMT) on the properties of soybean meal protein isolate-based nanocomposite film loaded with debittered kinnow peel powder. Food Res Int 2024; 185:114292. [PMID: 38658072 DOI: 10.1016/j.foodres.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The synthetic, non-renewable nature and harmful effects of plastic packaging have led to the synthesis of eco-friendly renewable bio-nanocomposite film. The present work was aimed at the formulation and characterization of bio-nanocomposite film using soybean meal protein, montmorillonite (MMT), and debittered kinnow peel powder. The composition of film includes protein isolate (5% w/v), glycerol (50% w/w), peel powder (20% w/w), and MMT (0.5-2.5% w/w). Incorporation of MMT in soybean meal protein-based film loaded with kinnow peel powder showed lesser solubility (16.76-26.32%), and swelling ability (142.77-184.21%) than the film prepared without MMT (29.41%, & 229.41%, respectively). The mechanical properties like tensile strength of nanocomposite film improved from 9.41 to 38.69% with the increasing concentration of MMT. The water vapor transmission rate of the nanocomposite film was decreased by 3.45-17.85% when the MMT concentration increased. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed no considerable change in the structural properties of the film after the addition of MMT. Differential scanning colorimeter analysis revealed the increment in melting temperature (85.33-92.67 °C) of the film with a higher concentration of MMT. Scanning electron microscopy analysis indicated an increased distributed area of MMT throughout the film at higher concentrations. The antimicrobial activity of the film was remarkably increased by 4.96-17.18% with the addition of MMT. The results obtained in the current work confirmed that MMT incorporation in soybean meal protein-based film can augment its properties and can be utilized for enhancing the storage period of food products.
Collapse
Affiliation(s)
- Dipak Das
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106, India
| | - Parmjit S Panesar
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106, India.
| | - Charanjiv S Saini
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106, India
| |
Collapse
|
11
|
Shavisi N. Electrospun fiber mats based on chitosan-carrageenan containing Malva sylvestris anthocyanins: Physic-mechanical, thermal, and barrier properties along with application as intelligent food packaging materials. Int J Biol Macromol 2024; 266:131077. [PMID: 38531525 DOI: 10.1016/j.ijbiomac.2024.131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to encapsulate Malva sylvestris extract (MSE) into chitosan-carrageenan (CH-KC) fibers using the electrospinning technique and monitor the freshness of silver carp fillets during the refrigerated storage conditions for 8 days. The CH-KC + MSE 4 % fiber mats were red at pH values lower than 3, purple at pH 4-6, dark blue at pH 7, green at pH 8-10, and brown at pH 11-12. The tensile strength, elongation at break, water vapor permeability, oxygen transmission rate, moisture content, and water solubility of fabricated fiber mats were 7.71-11.02 MPa, 13.12 %-30.00 %, 7.35-20.01 × 10-4 g mm/m2 h Pa, 3.81-8.23 cm3/m2 h, 15.74 %-27.34 %, and 3.90 %-7.56 %, respectively. Regarding the potential application of a fabricated indicator for freshness monitoring of silver carp fillets, total viable count, psychrotrophic bacterial count, pH, and total volatile basic nitrogen reached 8.91 log CFU/g, 8.03 log CFU/g, 8.10, and 40.18 mg N/100 g at the end of the study, respectively. Meanwhile, the CH-KC + MSE 4 % fiber mat color changed from white to green. These findings suggest that CH-KC + MSE 4 % fiber mats can be further utilized in the food industry to control the freshness of refrigerated silver carp fillets.
Collapse
Affiliation(s)
- Nassim Shavisi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
12
|
Pu Y, Wang H, Jiang H, Cao J, Qu G, Jiang W. Techno-functional properties of active film based on guar gum-propolis and its application for "Nanguo" pears preservation. Int J Biol Macromol 2024; 261:129578. [PMID: 38246454 DOI: 10.1016/j.ijbiomac.2024.129578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Guar gum (GG) composite films, incorporating the ethanolic extract of propolis (EEP), were prepared and subjected to a comprehensive investigation of their functional characteristics. The addition of EEP resulted in a discernible enhancement in the opacity, moisture barrier capacity, and elongation at break. Incorporating EEP led to a noteworthy increase in the total phenolic and total flavonoid content of the films, resulting in superior antioxidant capacity upon GG-EEP films. Remarkably, the addition of 5 % EEP yielded noteworthy outcomes, manifesting in a DPPH radical scavenging rate of 47.60 % and the ABTS radical scavenging rate of 94.87 %, as well as FRAP and cupric reducing power of 331.98 mmol FeSO4-7H2O kg-1 and 56.95 μg TE mg-1, respectively. In addition, GG-EEP films demonstrated antifungal effect against Penicillium expansum and Aspergillus niger, along with a sustained antibacterial effect against Escherichia coli and Staphylococcus aureus. GG-EEP films had superior inhibitory ability against Gram-positive bacteria than Gram-negative bacteria. Crucially, GG-EEP composite films played a pivotal role in reducing both lesion diameter and depth, concurrently mitigating weight loss and firmness decline during the storage period of "Nanguo" pears. Therefore, GG-EEP composite films have the considerable potential to serve as advanced and effective active packaging materials for food preservation.
Collapse
Affiliation(s)
- Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Hongxuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
13
|
Khaledian Y, Moshtaghi H, Shahbazi Y. Development and characterization of smart double-layer nanofiber mats based on potato starch-turnip peel anthocyanins and guar gum-cinnamaldehyde. Food Chem 2024; 434:137462. [PMID: 37734152 DOI: 10.1016/j.foodchem.2023.137462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
This experiment was conducted with the objectives of developing bilayer nanofiber mats based on potato starch-turnip peel extract (PS-TPE) and guar gum-cinnamaldehyde (GG-CA) for freshness monitoring and enhancing the quality of lamb meat during cooled storage conditions. Encapsulating CA/TPE into the nanofibers resulted in reduced tensile strength, water vapor permeability, moisture content, and water solubility. Colorimetric nanofibers, including PS-GG-TPE 6%, PS-GG-TPE 6%-CA 0.5%, and PS-GG-TPE 6%-CA 1%, presented red color at pH 1-4, purplish red at pH 5-7, green at pH 8-10, and brown at pH 11-12. The color of PS-GG-TPE 6% nanofiber mats changed from white to purplish red, signaling that the lamb meats had turned from fresh to spoiled. PS-GG-CA 1%, PS-GG-TPE 6%-CA 0.5%, and PS-GG-TPE 6%-CA 1% nanofibers have the potential to be utilized to control the growth of spoilage-related microorganisms for extending the shelf-life of fresh lamb meat under cooled storage conditions up to 13 days.
Collapse
Affiliation(s)
- Yousef Khaledian
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Shahrekord, Chaharmahal and Bakhtiari, Iran
| | - Hamdollah Moshtaghi
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Shahrekord, Chaharmahal and Bakhtiari, Iran
| | - Yasser Shahbazi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
14
|
Chen L, He X, Pu Y, Wang H, Cao J, Jiang W. Adsorption removal properties of β-cyclodextrin-modified pectin on cholesterol and sodium cholate. Food Chem 2024; 430:137059. [PMID: 37541039 DOI: 10.1016/j.foodchem.2023.137059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
A novel adsorbent β-cyclodextrin-modified pectin was synthesized for removing cholesterol and bile salts from the gastric-intestinal passage. Different amounts of β-cyclodextrin were cross-linked to pectin by aldol condensation reaction via glutaraldehyde. The prepared β-cyclodextrin-modified pectins were successfully confirmed by characterization, showing a higher specific surface area and improved thermal stability with satisfactory cellular compatibility. The introduction of β-cyclodextrins dramatically improved the cholesterol adsorption capacity of pectin due to their hydrophobic cavities. Meanwhile, the modified pectins exhibited superior adsorption for sodium cholate than β-cyclodextrin or pectin itself, which was attributed to hydrophobic interactions. P10:1 displayed the strongest adsorption performance, with a maximum adsorption ability of 44.21 mg/g for cholesterol and 21.38 mg/g for sodium cholate. Furthermore, their adsorption favored the Langmuir isotherm model and pseudosecond-order kinetic model. These results indicate that modified pectin has potential as a nature-based adsorbent for removal of cholesterol and bile salts in the health food industry.
Collapse
Affiliation(s)
- Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Xu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Hongxuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Rammak T, Boonsuk P, Champoochana N, Hutamekalin P, Kaewtatip K. Effect of kaolin impregnated with calico plant extract on properties of starch films. Int J Biol Macromol 2024; 254:127927. [PMID: 37944730 DOI: 10.1016/j.ijbiomac.2023.127927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Starch film has poor tensile properties and poor water resistance. We aimed to improve these properties by adding kaolin impregnated with calico plant extract (CP-Kaolin). UV-Vis spectrophotometry showed that the calico plant extract (CPE) contained 4867.52 mg/L of total phenolic compounds and betacyanins were the predominant constituents. CP-Kaolin was characterized by Fourier transform infrared spectroscopy (FTIR), zeta potential, scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. FTIR analysis showed that betacyanins were adsorbed on kaolin via hydrogen bonding. Zeta potential analysis confirmed the adsorption of betacyanins on kaolin. The intercalation of betacyanins between kaolin platelets was observed by XRD. SEM revealed that CP-Kaolin was well dispersed and embedded within the starch matrix. It was found that the addition of 10 wt% of CP-Kaolin increased the water resistance, tensile strength and thermal stability of starch film. Moreover, starch film containing 10 wt% of CP-Kaolin was sensitive to the change in pH of the fish during storage. Therefore, the addition of CP-Kaolin improved the properties of starch film and starch film composite with CP-Kaolin could be applied as a smart packaging in the food industry.
Collapse
Affiliation(s)
- Thitirat Rammak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Phetdaphat Boonsuk
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Nidanut Champoochana
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kaewta Kaewtatip
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
16
|
Kmail A, Said O, Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr Issues Mol Biol 2023; 45:9039-9059. [PMID: 37998744 PMCID: PMC10670084 DOI: 10.3390/cimb45110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Wound healing is a multifaceted process necessitating the collaboration of numerous elements to mend damaged tissue. Plant and animal-derived natural compounds have been utilized for wound treatment over the centuries, with many scientific investigations examining these compounds. Those with antioxidant, anti-inflammatory, and antibacterial properties are particularly noteworthy, as they target various wound-healing stages to expedite recovery. Thymoquinone, derived from Nigella sativa (N. sativa)-a medicinal herb with a long history of use in traditional medicine systems such as Unani, Ayurveda, Chinese, and Greco-Arabic and Islamic medicine-has demonstrated a range of therapeutic properties. Thymoquinone exhibits antimicrobial, anti-inflammatory, and antineoplastic activities, positioning it as a potential remedy for skin pathologies. This review examines recent research on how thymoquinone accelerates wound healing and the mechanisms behind its effectiveness. We carried out a comprehensive review of literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus. Our aim was to gather relevant papers published between 2015 and August 2023. The main criteria for inclusion were that the articles had to be peer reviewed, original, written in English, and discuss the wound-healing parameters of thymoquinone in wound repair. Our review focused on the effects of thymoquinone on the cellular and molecular mechanisms involved in wound healing. We also examined the role of cytokines, signal transduction cascades, and clinical trials. We found sufficient evidence to support the effectiveness of thymoquinone in promoting wound healing. However, there is no consensus on the most effective concentrations of these substances. It is therefore essential to determine the optimal treatment doses and the best route of administration. Further research is also needed to investigate potential side effects and the performance of thymoquinone in clinical trials.
Collapse
Affiliation(s)
- Abdalsalam Kmail
- Faculty of Sciences, Arab American University, Jenin P.O. Box 240, Palestine
| | - Omar Said
- Beleaf Pharma, Kfar Kana 16930, Israel;
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel
- Department of Biochemistry, Faculty of Medicine, Arab American University, Jenin P.O. Box 240, Palestine
| |
Collapse
|
17
|
Jiang H, Zhang W, Cao J, Jiang W. Development of biodegradable active films based on longan seed starch incorporated with banana flower bract anthocyanin extracts and applications in food freshness indication. Int J Biol Macromol 2023; 251:126372. [PMID: 37595722 DOI: 10.1016/j.ijbiomac.2023.126372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The recovery of food by-products is of great significance. Food by-products contain diverse materials showing promise for the development of food packaging or edible coatings. In the present study, the effects of banana flower bract anthocyanin extracts (BFBAEs) on properties of longan seed starch (LSS) films were investigated for the first time. The prepared BFBAEs presented great compatibility with LSS matrix without changing the film chemical structures. The LSS films containing BFBAEs presented improved UV light barrier capacities, increased water vapor permeability, and lowered thermal stability compared to the pure LSS films. Additionally, the introduction of BFBAEs significantly reduced tensile strength and increased elongation at break of LSS films. There is growing demands for the fabrication of intelligent films for the visible monitoring of food freshness. BFBAEs imparted great antioxidant activities and pH-sensitive and ammonia-sensitive discoloration capacities on LSS films. LSS/BFBAEs III films were employed to detect food (beef and shrimp) freshness, and distinguishable color variations could be observed as the food freshness reduced. The LSS-based films were almost completely degraded after 30 days. Two types of by-products were combined to develop novel biodegradable active films, which showed promise for the discernible detection of the freshness of perishable foods.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
18
|
Huang X, Song J, Xu F, Yun D, Li C, Liu J. Characterization and Application of Guar Gum/Polyvinyl Alcohol-Based Food Packaging Films Containing Betacyanins from Pokeweed ( Phytolacca acinosa Roxb.) Berries and Silver Nanoparticles. Molecules 2023; 28:6243. [PMID: 37687072 PMCID: PMC10489142 DOI: 10.3390/molecules28176243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Food packaging films were prepared by using guar gum/polyvinyl alcohol (GP) as the film matrix, 2% Ag nanoparticles (AgNPs) as reinforcing filler and antimicrobial agent, and 1%, 2% and 3% pokeweed betacyanins (PB) as the colorant and antioxidant agent. The structures and color-changing, barrier, mechanical, thermal and antioxidant/antibacterial properties of different films were measured. The results show that the PB were pH-sensitive pigments with pink, purple and yellow colors at pH 3-8, pH 9-11 and pH 12, respectively. PB improved the compatibility of guar gum and polyvinyl alcohol through hydrogen bonds. The films with PB showed a color-changing capacity under ammonia vapor and good color stability in chilled storage. AgNPs and PB elevated the barrier capacity of GP film to light, water vapor and oxygen gas. Meanwhile, AgNPs and PB improved the stiffness, thermal stability and antioxidant/antibacterial activity of GP film. The film with AgNPs and 3% PB showed the highest barrier capacity, stiffness, thermal stability and antioxidant/antimicrobial activity. In shrimp spoilage test, the films with AgNPs and 2% and 3% PB indicated shrimp freshness through film color changes. The results reveal the potential use of the prepared films in active and smart packaging.
Collapse
Affiliation(s)
- Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Jiangfeng Song
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.H.); (F.X.); (D.Y.); (C.L.)
| |
Collapse
|
19
|
Xu F, Yun D, Huang X, Sun B, Tang C, Liu J. Preparation, Characterization, and Application of pH-Response Color-Changeable Films Based on Pullulan, Cooked Amaranth ( Amaranthus tricolor L.) Juice, and Bergamot Essential Oil. Foods 2023; 12:2779. [PMID: 37509872 PMCID: PMC10379735 DOI: 10.3390/foods12142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pullulan-based smart packaging films were prepared by mixing cooked amaranth juice and bergamot essential oil. The impact of cooked amaranth juice and bergamot essential oil on the color-changeability, structural characterization, and barrier, antioxidant, mechanical and thermal properties of pullulan-based films was determined. Results showed the cooked amaranth juice contained pH-response color-changing betacyanins. The pullulan films containing cooked amaranth juice were color-changeable in pH 9-12 buffers and in ammonia vapor. The color-changeable property of betacyanins in cooked amaranth juice was unaffected by bergamot essential oils. The inner structure of pullulan films was greatly affected by cooked amaranth juice, forming big and ordered humps in film cross-sections. The crystallinity of pullulan films was improved by the combined addition of cooked amaranth juice and bergamot essential oil. Among the films, the pullulan film containing cooked amaranth juice and 6% bergamot essential oil showed the highest UV-vis light barrier property, antioxidant activity, and tensile strength; while the pullulan film containing cooked amaranth juice and 4% bergamot essential oil showed the highest oxygen barrier property and thermal stability. Moreover, the pullulan films containing cooked amaranth juice were able to monitor the freshness of shrimp by presenting color changes from reddish purple to dark red.
Collapse
Affiliation(s)
- Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bixue Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
20
|
Otálora MC, Wilches-Torres A, Gómez Castaño JA. Microencapsulation of Betaxanthin Pigments from Pitahaya ( Hylocereus megalanthus) By-Products: Characterization, Food Application, Stability, and In Vitro Gastrointestinal Digestion. Foods 2023; 12:2700. [PMID: 37509792 PMCID: PMC10379290 DOI: 10.3390/foods12142700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The yellow pitahaya peels generated as by-products during the consumption and processing of the fresh fruit are a rich and underutilized source of betaxanthins (natural yellow-orange pigment with antioxidant activity) and mucilage (structuring material used in the spray-drying process), molecules of high interest for the food industry. In this work, the betaxanthin-rich extract (BRE) obtained from this by-product was microencapsulated by spray drying (SD) using pitahaya peel mucilage (MPP) and maltodextrin (MD) as wall materials. Both types of microencapsulates (i.e., SD-MPP and SD-MD) retained high betaxanthin content (as measured by UV-vis) and antioxidant activity (ORAC). These microencapsulates were characterized structurally (FTIR and zeta potential), morphologically (SEM and particle size/polydispersity index), and thermally (DSC/TGA). The powdered microencapsulates were incorporated into the formulation of candy gummies as a food model, which were subjected to an in vitro gastrointestinal digestion process. The characterization study (FTIR and antioxidant activity) of the microcapsules showed that the fruit peel mucilage favors the retention of betaxanthins, while the SEM analysis revealed a particle size of multimodal distribution and heterogeneous morphology. The addition of SD-MPP microcapsules in the candy gummy formulation favored the total dietary fiber content as well as the gumminess and chewiness of the food matrix; however, the inhibition of AAPH• (%) was affected. The stability of the yellow color in the gummies after 30 days of storage indicates its suitability for storage. Consequently, the microencapsulation of betaxanthins with pitahaya peel mucilage can be used as a food additive colorant in the food industry, replacing synthetic colorants, to develop products with beneficial qualities for health that can satisfy the growing demand of consumers.
Collapse
Affiliation(s)
- María Carolina Otálora
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Boyacá, Colombia
| | - Andrea Wilches-Torres
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Boyacá, Colombia
| | - Jovanny A Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL®), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja 150003, Boyacá, Colombia
| |
Collapse
|
21
|
Abedi-Firoozjah R, Parandi E, Heydari M, Kolahdouz-Nasiri A, Bahraminejad M, Mohammadi R, Rouhi M, Garavand F. Betalains as promising natural colorants in smart/active food packaging. Food Chem 2023; 424:136408. [PMID: 37245469 DOI: 10.1016/j.foodchem.2023.136408] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Betalains are water-soluble nitrogen pigments with beneficial effects, including antioxidant, antimicrobial, and pH-indicator properties. The development of packaging films incorporated with betalains has received increasing attention because of pH-responsive color-changing properties in the colorimetric indicators and smart packaging films. As such, intelligent and active packaging systems based on biodegradable polymers containing betalains have been recently developed as eco-friendly packaging to enhance the quality and safety of food products. Betalains could generally improve the functional properties of packaging films, such as higher water resistance, tensile strength, elongation at break, and antioxidant and antimicrobial activities. These effects are dependent on betalain composition (about its source and extraction), content, and the kind of biopolymer, film preparation method, food samples, and storage time. This review focused on betalains-rich films as pH- and ammonia-sensitive indicators and their applications as smart packaging to monitor the freshness of protein-rich foods such as shrimp, fish, chicken, and milk.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Parandi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran; Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahshid Bahraminejad
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
22
|
Tavassoli M, Khezerlou A, Moghaddam TN, Firoozy S, Bakhshizadeh M, Sani MA, Hashemi M, Ehsani A, Lorenzo JM. Sumac (Rhus coriaria L.) anthocyanin loaded-pectin and chitosan nanofiber matrices for real-time monitoring of shrimp freshness. Int J Biol Macromol 2023; 242:125044. [PMID: 37224901 DOI: 10.1016/j.ijbiomac.2023.125044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, pectin (PC)/chitosan nanofiber (ChNF) films containing a novel anthocyanin from sumac extract were successfully developed for freshness monitoring and shelf-life extension of shrimp. The physical, barrier, morphological, color, and antibacterial properties of biodegradable films were evaluated. The addition of sumac anthocyanins to the films caused intramolecular interactions (such as hydrogen bonds) in the film structure, as confirmed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, suggesting good compatibility of film ingredients. Also, intelligent films showed significant sensitivity to ammonia vapors and changed color from reddish to olive color at the first 5 min. Moreover, the results showed that PC/ChNF and PC/ChNF/sumac films have significant antibacterial activity against Gram-positive bacteria and Gram-negative bacteria. In addition to the good functional characteristics of the smart film, the resulting films showed acceptable physicomechanical properties. So, PC/ChNF/sumac smart film exhibited the strength = 60 MPa with the flexibility = 23.3 %. Likewise, water vapor barrier reduced from 2.5 (×10-11 g. m/m2. s. Pa) to 2.3 (×10-11 g. m/m2. s. Pa) after adding anthocyanin. The results of the application of intelligent film containing anthocyanins of sumac extract for shrimp freshness monitoring showed that the color of the intelligent film changed from reddish to greenish color after 48 h of storage, which shows the high potential of the produced film for monitoring the spoilage of seafood products.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Niknazar Moghaddam
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Solmaz Firoozy
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Milad Bakhshizadeh
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain.
| |
Collapse
|
23
|
Roy S, Priyadarshi R, Łopusiewicz Ł, Biswas D, Chandel V, Rhim JW. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int J Biol Macromol 2023; 239:124248. [PMID: 37003387 DOI: 10.1016/j.ijbiomac.2023.124248] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Pectin is an abundant complex polysaccharide obtained from various plants. Safe, biodegradable, and edible pectin has been extensively utilized in the food industry as a gelling agent, thickener, and colloid stabilizer. Pectin can be extracted in a variety of ways, thus affecting its structure and properties. Pectin's excellent physicochemical properties make it suitable for many applications, including food packaging. Recently, pectin has been spotlighted as a promising biomaterial for manufacturing bio-based sustainable packaging films and coatings. Functional pectin-based composite films and coatings are useful for active food packaging applications. This review discusses pectin and its use in active food packaging applications. First, basic information and characteristics of pectin, such as the source, extraction method, and structural characteristics, were described. Then, various methods of pectin modification were discussed, and the following section briefly described pectin's physicochemical properties and applications in the food sector. Finally, the recent development of pectin-based food packaging films and coatings and their use in food packaging were comprehensively discussed.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Łukasz Łopusiewicz
- Center of Bioimmobilization and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India; Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| | - Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
24
|
Chen K, Li J, Li L, Wang Y, Qin Y, Chen H. A pH indicator film based on sodium alginate/gelatin and plum peel extract for monitoring the freshness of chicken. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
25
|
Perera KY, Hopkins M, Jaiswal AK, Jaiswal S. Nanoclays-containing bio-based packaging materials: properties, applications, safety, and regulatory issues. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 14:1-23. [PMID: 36747507 PMCID: PMC9893189 DOI: 10.1007/s40097-023-00525-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Food packaging is an important concept for consumer satisfaction and the increased shelf life of food products. The introduction of novel food packaging materials has become an emerging trend in recent years, which could be mainly due to environmental pollution caused by plastic packaging and to reduce food waste. Recently, numerous studies have been carried out on nanoclays or nanolayered silicate to be used in packaging material development as reinforcing filler composites. Different types of nanoclays have been used as food packaging materials, while montmorillonite (MMT), halloysite, bentonite (BT), Cloisite, and organically modified nanoclays have become of great interest. The incorporation of nanoclays into the packaging matrix improves the mechanical and barrier properties and at the same time prolongs the biodegradation of the packaging material. The purpose of this article is to examine the development of nanoclay-based food packaging materials. The review article highlights the current state of research on bio-based polymers with nanoclay for food packaging. In addition, the report analyses the mechanical, barrier, and antibacterial characteristics of nanoclay-based food packaging materials. Finally, it discusses the migration of nanoclays, toxicity levels, and the legislation associated with the application of nanoclays. Graphical abstract
Collapse
Affiliation(s)
- Kalpani Y. Perera
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin, D07 H6K8 Ireland
| | - Maille Hopkins
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin, D07 H6K8 Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin, D07 H6K8 Ireland
| |
Collapse
|