1
|
Li W, Wang L, Qian Y, Wang M, Li F, Zeng M. True-solution-scale utilization of natural chlorophyll a in aqueous media through cooperative aggregation with phycocyanin. Food Chem 2024; 460:140678. [PMID: 39098190 DOI: 10.1016/j.foodchem.2024.140678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
The challenge of applying chlorophyll(Chl) in aqueous media has been a significant obstacle to the diversified development of Chl a-related industries. This study presents the first report on the true-solution-scale utilization of Chl in aqueous media through the construction of chlorophyll a-phycocyanin (Chls-PC) composite nanoparticles. This study determined the optimal conditions for Chls-PC preparation: a composite ratio of 1:25, a solvent ratio of 1:4, and a stirring time of 1 h. Fluorescence spectroscopy, transmission electron microscope, and confocal microscopy confirmed Chl a and PC aggregation. Surface hydrophobicity and contact angle measurements showed that Chls-PC water solubility was similar to PC and much higher than Chl. Infrared spectroscopy, quantum chemical calculations, X-ray photoelectron spectroscopy, and molecular dynamics simulations elucidated the water solubilization mechanism of Chls-PC both experimentally and theoretically. This research provides theoretical guidance for the development and production of water-based products using Chl as a raw material.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Lijuan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yuemiao Qian
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Mengwei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| | - Fangwei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| | - Mingyong Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| |
Collapse
|
2
|
Chen H, Li H, Chen K, Wang Z, Fu M, Kan J. Effect of oleic acid-rich rapeseed oil on the physicochemical, rheological, and structural characteristics of wheat dough. Food Chem 2024; 458:140227. [PMID: 38943950 DOI: 10.1016/j.foodchem.2024.140227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Some wheat-based foods require different doses of oil to moderate quality of dough during processing and the influence mechanisms remain unclear. Therefore, the effect of rapeseed oil addition on physicochemical characteristics and fine structure of dough and underlying mechanism were elucidated by rheometer, scanning microscope and molecular spectroscopic method. Results showed that compared with native dough (without exogenous rapeseed oil), the addition of rapeseed oil changed the fine structure, improved extensibility, but reduced viscoelasticity of the dough. Moreover, high addition especially 20 wt% oil (based on wheat flour) significantly changed gelatinization and retrogradation behaviors of the dough, whilst disrupted gluten network and increased random coil content (32.1%) of dough except that decreased its α-helix (21.2%), β-sheet (23.1%), disulfide bond (7.9 μmol/g) compared with native dough which were 16.3%, 29.2%, 33.1%, 11.0 μmol/g, respectively. Results in the study could provide a certain understanding for application of vegetable oils in wheat-based products.
Collapse
Affiliation(s)
- Huijing Chen
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Huiying Li
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Kewei Chen
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Mingze Fu
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Jianquan Kan
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Zhang Q, Gu F, Li T, Guo X, Li Y, Liang M, Wang F, Guo Q, Wang Q. Spore germination and lactic acid combined treatment: A new processing strategy for the shelf-life extension of instant wet noodles. Int J Food Microbiol 2024; 423:110829. [PMID: 39047617 DOI: 10.1016/j.ijfoodmicro.2024.110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Bacillus amyloliquefaciens (BAM) was identified as the predominant spoilage bacteria in instant wet noodles (IWNs). The utilization of industrial acid treatment as a long shelf-life strategy resulted in reduced consumer acceptance due to the acidic taste of the products. This study proposed a processing strategy that integrated spore germination (SG) and lactic acid (LA) treatment to effectively reduce the spore survival rate and extend the shelf life of IWNs. L-histidine, d-glucose, and sodium chloride were highly efficient and safe germinants for BAM spores. In IWNs, compound germinants (1.0 % L-histidine, 0.5 % d-glucose, and 1.0 % sodium chloride) boosted the SG rate by 3.61 times. With synergistic LA treatment, the spore lethality increased by 34.41 % -41.68 %. Under the SG and reduced acid-heat conditions of pH 2.30-2.50, the mortality of spores could reach 92.00 %-93.17 %, which was 14.11 %-15.28 % higher than the industrial acid-heat condition of pH 2.10. DPA, ATP, and membrane potential showed that germinants reduced the spore membrane permeability and promoted the occurrence of spore membrane damage under acid-heat conditions. Moreover, this strategy significantly extended the shelf-life of IWNs by 3.00-5.50 times and controlled the pH ≥ 5.50. Additionally, it improved color, texture, and overall sensory evaluation. Accordingly, this strategy solved the contradiction between the long shelf-life of IWNs and the unacceptable acidification in industrial production.
Collapse
Affiliation(s)
- Qiaozhen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Food Laboratory of Zhongyuan, Henan Luohe, 462300, China
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Manzhu Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
4
|
Liang Y, Cao Z, Wang J, Jie Y, Liu H, He B, Wang J. Effects of sanxan on water and ice crystal status of salt free frozen cooked noodles during freeze-thaw cycles. Food Chem 2024; 448:139137. [PMID: 38569406 DOI: 10.1016/j.foodchem.2024.139137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
This study compared four biocolloids (sanxan, xanthan gum, curdlan, and guar gum) in different concentrations to replace NaCl in improving the recooking quality of salt free frozen cooked noodles (SF-FCNs). Sanxan outperformed NaCl and other biocolloids significantly improving the firmness (21.0%), chewiness (63.5%), and toughness (15.4%) of SF-FCNs after 10 freeze-thaw (FT) cycles. The results of the freezing-thawing curves showed SF-FCNs had prior FT stability when sanxan was added at 1.2%. Subsequently, the result of differential scanning calorimetry and nuclear magnetic resonance revealed sanxan reduced the content and mobility of freezable water while increasing the content of bound water. The scanning electron microscope, mercury intrusion, and optical microscopy analyses indicated that sanxan reduced the size and volume of ice crystals and the structural damage of SF-FCNs by controlling the water. The work contributes to a theoretical framework for enhancing SF-FCNs quality through precise water and ice crystal control.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihui Cao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangyi Jie
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Chang T, Bian L, Zhang X, Chen S, Lyu Y, Li G, Zhang C. Impacts of transglutaminase on the processing and digestion characteristics of glutinous rice flour: Insight of the interactions between enzymic crossing-linked protein and starch. Food Res Int 2024; 189:114533. [PMID: 38876603 DOI: 10.1016/j.foodres.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Glutinous rice is extensively consumed due to its nutritious content and wonderful flavor. However, glutinous rice flour has a high glycemic index, and the storage deterioration of sweet dumplingsissevere. Transglutaminase (TG) was used to cross-link glutinous rice protein and improve the characteristics of glutinous rice products. The findings demonstrated that TG significantly catalysed protein cross-linking to form a dense protein network, reduced the viscosity of glutinous rice paste and improved the thermal stability. The protein network may physically block the access of starch granules to digestive enzymes to lower the digestion rate of starch, and attenuate the damage of ice crystal molecules to the starch structure to improve the freezing stability of starch gels. The cracking rate and water loss of sweet dumplings prepared using glutinous rice flour with TG treated for 60 min reduced significantly. In conclusion, this study broadened the application of TG in starch products.
Collapse
Affiliation(s)
- Tingting Chang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luyao Bian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoxuan Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Siyu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Hu J, Zhu L, Yin X, Chen X, Zhang H, Zhang Y. Effects of protein morphological structures on the cereal processing, sensorial property and starch digestion: a review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950560 DOI: 10.1080/10408398.2024.2365354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.
Collapse
Affiliation(s)
- Jiali Hu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xianting Yin
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Chen
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
7
|
Gao L, Guan M, Qin Y, Ji N, Wang Y, Li Y, Li M, Xiong L, Sun Q. Utilization of heat-induced curdlan gel to improve the cooking qualities of thermally sterilized fresh rice noodles. Int J Biol Macromol 2024; 262:129693. [PMID: 38278386 DOI: 10.1016/j.ijbiomac.2024.129693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Thermal sterilization is the most economical and efficient method to guarantee the shelf life of extruded fresh rice noodles, but it often leads to a high cooking breakage rate and poor elongation at break of the noodles. The aim of this study was to improve the edible quality of sterilized fresh rice noodles through the addition of low concentrations of curdlan (0.38 %-1.13 %), which can form a thermal-irreversible gel to resist high-temperature sterilization. Compared with the control group without curdlan, the cooking breakage rate of sterilized fresh rice noodles with 1.13 % curdlan decreased from 16.85 % to 5.22 %, the tensile strain increased from 91.15 % to 147.05 %, and the microstructure was more dense and uniform. The results showed that adding the proper amount of curdlan is an effective strategy to improve the quality of sterilized fresh rice noodles.
Collapse
Affiliation(s)
- Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Minghang Guan
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, 257100, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, 257100, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
8
|
Zhou S, Yuan T, Chen J, Ye F, Zhao G. Mung Bean Starch and Mung Bean Starch Sheet Jelly: NaCl-Based Characteristics Variation. Foods 2023; 12:4469. [PMID: 38137275 PMCID: PMC10742820 DOI: 10.3390/foods12244469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Empirical evidence indicates that NaCl can improve the quality of mung bean starch sheet jelly (MBSS) when properly incorporated. In this study, by comparison with a sample without NaCl, the influences of NaCl (1.5-8%, w/w) on the physicochemical and structural properties of mung bean starch (MBS) and the quality of MBSS were investigated. MBS with added NaCl had greater gelatinization temperature and pasting parameters but lower gelatinization enthalpy than native MBS. With the addition of NaCl, the drying rate of MBSS first accelerated and then declined in the oven-drying process. The addition of NaCl improved the cooking properties of MBSS but decreased the hardness of cooked MBSS. Rheological results implied that the linear viscoelastic region of cooked MBSS decreased with the NaCl addition, and the storage modulus and tan δ were more frequency-dependent than the loss modulus of cooked MBSS. The addition of NaCl gradually increased the toughness of dried MBSS and the overall acceptability of cooked MBSS. Furthermore, NaCl decreased the structure order degree of starch in MBSS. Correlation analysis demonstrated that the quality of MBSS had a significant correlation with the molecular and lamellar order of starch. Overall, NaCl could improve the quality of MBSS by regulating the thermal, gelatinizing, and structural properties of MBS.
Collapse
Affiliation(s)
- Shulan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (S.Z.); (T.Y.); (J.C.); (G.Z.)
| | - Tiantian Yuan
- College of Food Science, Southwest University, Chongqing 400715, China; (S.Z.); (T.Y.); (J.C.); (G.Z.)
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, China; (S.Z.); (T.Y.); (J.C.); (G.Z.)
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, China; (S.Z.); (T.Y.); (J.C.); (G.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (S.Z.); (T.Y.); (J.C.); (G.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|