1
|
Rasheed H, Deng B, Ahmad D, Bao J. Genetic Diversity and Genome-Wide Association Study of Total Phenolics, Flavonoids, and Antioxidant Properties in Potatoes ( Solanum tuberosum L.). Int J Mol Sci 2024; 25:12795. [PMID: 39684503 DOI: 10.3390/ijms252312795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic diversity of nutritional quality traits is crucial for potato breeding efforts to develop better varieties for the diverse market demands. In this study, the genetic diversity of 104 potato genotypes was estimated based on nutritional quality traits such as color parameters, total phenolic content, total flavonoid content, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis-(3-ethylbezothiazoline-6-sulphonic acid) radical scavenging potential across two environments. The results indicated that environment II, Hangzhou 2020, exhibited higher bioactive compounds and antioxidant properties than environment I, Hangzhou 2019. The colored potato accessions exhibited higher levels of total phenolic content, total flavonoid content, DPPH, and ABTS activities than the white potato accessions, indicating the superiority of the colored to white potato accessions. The genome sequencing identified 1,101,368 high-quality single-nucleotide polymorphisms (SNPs), and 141,656 insertion/deletions (Indels). A population structure analysis revealed that genotypes can be divided into two subpopulations. Genome-wide association studies (GWAS) identified 128 significant SNPs associated with potato's color, total phenolic content, total flavonoid content, and antioxidant properties. Thus, the study provides new opportunities for strategic breeding and marker-assisted selection of ideal varieties and favorable alleles to enhance bioactive compounds and health-beneficial properties.
Collapse
Affiliation(s)
- Haroon Rasheed
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Bowen Deng
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Yu Y, Weng W, Ren Z, Zhang Y, Li P, Shi L. Quality deterioration of mashed potatoes during the freeze-thaw cycle: From the perspective of moisture and microstructure. Food Chem X 2024; 23:101753. [PMID: 39280215 PMCID: PMC11402148 DOI: 10.1016/j.fochx.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
This study aimed to simulate cold chain sales temperatures to predict the effects of temperature fluctuations on the physicochemical properties, moisture distribution, microstructure, and flavor of mashed potatoes. The results showed a decline in the hardness and chewability of mashed potatoes alongside the migration of water from bound water states to weakly bound states under freeze-thaw cycles (FTC) conditions. Microstructural analysis indicated that the adhesive forces between proteins and starch granules were weakened, and the structure of mashed potatoes particles was destroyed following FTC. The oxidation and degradation of fat induced by FTC increased the content of key compounds such as octanal and nonanal, thereby contributing to an overall deterioration in the flavor of mashed potatoes. This study elucidates the effects of FTC on water migration, microstructure, and flavor characteristics of mashed potatoes, thereby providing a theoretical foundation for improving the quality of prefabricated frozen mashed potatoes dishes.
Collapse
Affiliation(s)
- Yingying Yu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
3
|
Lu H, Zhao R, Zhang L, Liu W, Liu Q, Liu S, Hu H. Interactions between partially gelatinized starch and nonstarch components in potato flour and their performance in emulsification. Int J Biol Macromol 2024; 269:132044. [PMID: 38701998 DOI: 10.1016/j.ijbiomac.2024.132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
To develop natural complex materials as starch-dominated emulsifiers, pregelatinization was conducted on potato flour. The effects of gelatinization degrees (GDs, 0 %-50 %) on the structural characteristics, physicochemical properties, and emulsifying potentials of potato flour were investigated. Increasing GD of potato flour promoted protein aggregation on starch granules surfaces and transformed starch semicrystalline structures into melted networks. The emulsion stabilized with 50 % GD potato flour exhibited excellent storage stability (7 d) and gel-like behavior. With increasing GD from 0 to 50 %, the respective apparent viscosities and elastic moduli of emulsion increased from 21.4 Pa to 1126.7 Pa, and from 0.133 Pa·s to 1176.6 Pa·s, promoting the formation of a stable network structure in the emulsion. Fourier transform infrared spectra from emulsions with a continuous phase of >20 % GD displayed a new peak around 1740 cm-1, suggesting improved covalent interactions between droplets, thereby facilitating emulsion stability. Confocal laser scanning microscopy images indicated that droplets could be anchored in the melted networks and broken starch granules, inhibiting droplets coalescence. These results suggest that pregelatinization is a viable strategy for customizing natural starch-dominated emulsions.
Collapse
Affiliation(s)
- Huimin Lu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China.
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
4
|
Lee JS, Ahn J, Han J. Enhancing effect on postharvest quality of potatoes through combined treatment of edible coating with UV-C irradiation. Food Sci Biotechnol 2024; 33:1393-1405. [PMID: 38585569 PMCID: PMC10992078 DOI: 10.1007/s10068-023-01449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 04/09/2024] Open
Abstract
Various edible polymers [sodium alginate, carboxyl methylcellulose, sodium oleate, liquid paraffin, pectin, pullulan, polyvinyl acetate, and shellac (SHE)] as potato-coating materials and their effect on extending the shelf life of potatoes when combined with an edible coating and UV-C irradiation treatments were evaluated. As a result of the characterization of the edible polymers, SHE was selected as the optimal coating material because it had the best moisture and light barrier properties. SHE coating successfully prevented the greening, respiration, and sprouting of potatoes caused by exposure to light and oxygen. Additionally, it reduced weight loss by inhibiting transpiration on the potato surface. While the SHE coating did not exhibit antimicrobial effects, a significant effect was observed when combined with UV-C irradiation. This study suggests the potential of combined treatment of SHE coating and UV-C irradiation in extending the postharvest quality of potatoes.
Collapse
Affiliation(s)
- Jung-Soo Lee
- Institute of Control Agents for Microorganisms, Korea University, Seoul, 02841 Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jiwon Ahn
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
5
|
Chen G, Zhao R, Zhang Y, Liu Q, Guo Z, Zhang G, Wu T, Liu W, Hu H. Rheological properties and microstructure of wheat flour dough systems with enzyme-hydrolyzed mashed potatoes. J Food Sci 2024; 89:941-953. [PMID: 38317415 DOI: 10.1111/1750-3841.16916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
The interest in incorporating potatoes into wheat dough is increasing. However, potatoes exhibit significant viscosity during thermal processing, affecting product processing and quality. This study aims to find an effective method to reduce the viscosity of mashed potatoes. We aimed to compare the effects of different enzymes (α-amylase, β-amylase, and flavourzyme) and concentrations (0.01%, 0.05%, and 0.1%) on the micromorphology and rheological properties of mashed potatoes and potato-wheat dough. The impact of flavourzyme was the most significant (p<0.05). When enzyme concentration increased, viscosity decreased, and the degree of structural damage, indicated by increased porosity. Notably, the addition of flavourzyme can increase the content of sweet and umami free amino acids, improving the flavor of mashed potatoes. The scanning electron microscopy and confocal laser scanning microscopy images of potato-wheat dough revealed that enzyme-hydrolyzed mashed potatoes had improved homogeneity, reestablished the dough continuity, and strengthened the three-dimensional structure comprising proteins and starch. Notably, flavourzyme demonstrated the most significant effect on enhancing the protein-starch network structure. This was attributed to the exposure of functional groups resulting from protein hydrolysis, facilitating interaction with starch molecules. Our findings indicate that the addition of 0.1% flavourzyme (500 LAPU/g, pH 5.5, 55 ± 2°C, 30 min treated) was the most effective in reducing viscosity and reconstructing the gluten network. Enzymatic hydrolysis plays a vital role in the production of high-quality potato products, with particular importance in the baking industry, where flavourzyme exhibits significant potential. PRACTICAL APPLICATION: Enzymatic hydrolysis plays a vital role in the production of high-quality potato products, with particular importance in the baking industry, where flavourzyme exhibits significant potential.
Collapse
Affiliation(s)
- Guoxing Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin, China
| | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yixuan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiqian Guo
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan,Ningxia, China
| | - Guohui Zhang
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan,Ningxia, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin, China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
6
|
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Pozo LMF, Ramos-Pacheco BS, Palomino-Rincón H, Gutiérrez RJG, Peralta-Guevara DE. Effect of Inlet Air Temperature and Quinoa Starch/Gum Arabic Ratio on Nanoencapsulation of Bioactive Compounds from Andean Potato Cultivars by Spray-Drying. Molecules 2023; 28:7875. [PMID: 38067603 PMCID: PMC10708246 DOI: 10.3390/molecules28237875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Lizeth M. Flores Pozo
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Rodrigo J. Guzmán Gutiérrez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Diego E. Peralta-Guevara
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| |
Collapse
|