1
|
Pang X, Liu W, Zheng Z, Zheng X, Wang J, Wang Q, Niu L, Gao F. Hybridization-driven synchronous regeneration of biosensing interfaces for Listeria monocytogenes based on recognition of fullerol to single- and double-stranded DNA. Food Chem 2024; 461:140906. [PMID: 39173262 DOI: 10.1016/j.foodchem.2024.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
A novel sensitive and reusable electrochemical biosensor for Listeria monocytegenes DNA has been constructed based on the recognition of water-soluble hydroxylated fullerene (fullerol) to single- and double-stranded DNA. First, the fullerol was electrodeposited on glassy carbon electrode (GCE), acting as a matrix for non-covalent adsorption of single-stranded probe DNA. Upon hybridization with the target DNA, the double helix structure was formed and desorbed from the electrode surface, driving synchronous regeneration of the biosensing interfaces. The biosensor showed a probe DNA loading density of 144 pmol∙cm-2 with the hybridization efficiency of 72.2%. The biosensor is applicable for the analysis of target DNA in actual milk samples with recoveries between 101.0% and 104.0%. This sensing platform provides a simple method for the construction of sensitive and reusable biosensor to monitor Listeria monocytogenes-related food pollution.
Collapse
Affiliation(s)
- Xiangkun Pang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Wenjie Liu
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Zhenan Zheng
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Xuan Zheng
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Jiaai Wang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Qingxiang Wang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China.
| | - Li Niu
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China; Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Feng Gao
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China.
| |
Collapse
|
2
|
Kim JH, Cho CH, Park TJ, Park JP. Rapid and sensitive detection of domoic acid in shellfish using a magnetic bead-based competitive ELISA with a high-affinity peptide as a molecular binder. CHEMOSPHERE 2024; 364:143274. [PMID: 39243896 DOI: 10.1016/j.chemosphere.2024.143274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Addressing the critical health concerns posed by domoic acid (DA), a neurotoxic compound produced by toxic marine algae and bioaccumulated in shellfish, necessitates the development of a rapid, precise, and robust detection system. Traditional DA detection methods have stability and sensitivity issues, which hinder effective toxin detection. To overcome these limitations, we developed a novel direct competitive enzyme-linked immunosorbent assay (dc-ELISA) platform that utilizes peptide-immobilized magnetic beads (MGBs/peptide). The affinity peptides identified through phage display and chemically synthesized with biotin labels present an innovative alternative to conventional antibodies for ELISA applications. Streptavidin-modified MGBs were used as the bioreceptor carriers to facilitate magnetic separation and simplify sample preparation, making the MGB/peptide-based dc-ELISA platform an ideal tool for comprehensive monitoring efforts. The developed platform exhibits a detection range of 0.5-10 ng mL-1 and a low limit of detection of 0.29 ng mL-1, offering enhanced sensitivity and cost-effectiveness. Moreover, our developed dc-ELISA demonstrated a high recovery rate when validated with DA-spiked CRM-mussel samples. This method overcomes the limitations of traditional detection techniques and offers a scalable and efficient approach to marine toxin surveillance with improved marine environmental monitoring and public health management.
Collapse
Affiliation(s)
- Ji Hong Kim
- Department of Food Science and Technology, and GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chae Hwan Cho
- Department of Food Science and Technology, and GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, and GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
3
|
Wang R, Kong L, Liu Y, Chai Y, Yuan R. A simple and reliable interenzyme distance regulation strategy based on a DNA quadrangular prism scaffold for ultrasensitive ochratoxin A detection. Food Chem 2024; 446:138872. [PMID: 38442680 DOI: 10.1016/j.foodchem.2024.138872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Developing sensitive and accurate Ochratoxin A (OTA) detection methods is essential for food safety. Herein, a simple and reliable strategy for regulating interenzyme distance based on a rigid DNA quadrangular prism as a scaffold was proposed to establish a new electrochemical biosensor for ultrasensitive detection of OTA. The interenzyme distances were precisely adjusted by changing the sequences of the hybridized portions of hairpins SH1 and SH2 to the DNA quadrangular prism, avoiding the complexity and instability of the previous DNA scaffold-based enzyme spacing adjustment strategies. The electrochemical biosensor constructed at the optimal interenzyme distance (10.4 nm) achieved sensitive detection of OTA in a dynamic concentration range from 10 fg/mL to 250 ng/mL with a detection limit of 3.1 fg/mL. In addition, the biosensor was applied to quantify OTA in real samples, exhibiting great application potential in food safety.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lingqi Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Cho CH, Kim JH, Padalkar NS, Reddy YVM, Park TJ, Park J, Park JP. Nanozyme-assisted molecularly imprinted polymer-based indirect competitive ELISA for the detection of marine biotoxin. Biosens Bioelectron 2024; 255:116269. [PMID: 38579624 DOI: 10.1016/j.bios.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Saxitoxin (STX), which is produced by certain dinoflagellate species, is a type of paralytic shellfish poisoning toxin that poses a serious threat to human health and the environment. Therefore, developing a technology for the convenient and cost-effective detection of STX is imperative. In this study, we developed an affinity peptide-imprinted polymer-based indirect competitive ELISA (ic-ELISA) without using enzyme-toxin conjugates. AuNP/Co3O4@Mg/Al cLDH was synthesized by calcining AuNP/ZIF-67@Mg/Al LDH, which was obtained by combining AuNPs, ZIF-67, and flower-like Mg/Al LDH. This synthesized nanozyme exhibited high catalytic activity (Km = 0.24 mM for TMB and 132.5 mM for H2O2). The affinity peptide-imprinted polymer (MIP) was imprinted with an STX-specific template peptide (STX MIP) on a multi-well microplate and then reacted with an STX-specific signal peptide (STX SP). The interaction between the STX SP and MIP was detected using a streptavidin-coated nanozyme (SA-AuNP/Co3O4@Mg/Al cLDH). The developed MIP-based ic-ELISA exhibited excellent selectivity and sensitivity, with a limit of detection of 3.17 ng/mL (equivalent: 0.317 μg/g). Furthermore, the system was validated using a commercial ELISA kit and mussel tissue samples, and it demonstrated a high STX recovery with a low coefficient of variation. These results imply that the developed ic-ELISA can be used to detect STX in real samples.
Collapse
Affiliation(s)
- Chae Hwan Cho
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ji Hong Kim
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Navnath S Padalkar
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Qin Y, Xiao D, Gao X, Zhang X, Xu Y. Nanocubic cobalt-containing Prussian blue analogue-derived carbon-coated CoFe alloy nanoparticles for noninvasive uric acid sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2496-2504. [PMID: 38578053 DOI: 10.1039/d4ay00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This work describes an electrochemical sensor for the fast noninvasive detection of uric acid (UA) in saliva. The sensing material was based on a cobalt-containing Prussian blue analogue (Na2-xCo[Fe(CN)6]1-y, PCF). By optimizing the ratio of Co and Fe as 1.5 : 1 in PCF (PCF1.5,0), particles with a regular nanocubic morphology were formed. The calcination of PCF1.5,0 produced a carbon-coated CoFe alloy (CCF1.5), which possessed abundant defects and achieved an excellent electrochemical performance. Subsequently, CCF1.5 was modified on a screen-printed carbon electrode (SPCE) to fabricate the electrochemical sensor, CCF1.5/SPCE, which showed a sensitive and selective response toward salivary UA owing to its good conductivity, sufficient surface active sites and efficient catalytic activity. The determination of UA in artificial saliva achieved the wide linear range of 40 nM-30 μM and the low limit of detection (LOD) of 15.3 nM (3σ/s of 3). The performances of the sensor including its reproducibility, stability and selectivity were estimated to be satisfactory. The content of UA in human saliva was determined and the recovery was in the range of 98-107% and the total RSD was 4.14%. The results confirmed the reliability of CCF1.5/SPCE for application in noninvasive detection.
Collapse
Affiliation(s)
- Yunting Qin
- School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China
| | - Dan Xiao
- Institute of Advanced Study, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China.
- College of Chemical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu, P. R. China.
| | - Xilan Gao
- College of Food and Bioengineering, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China
| | - Xicui Zhang
- Sichuan Institute of Product Quality Supervision & Inspection, No. 16, Xinmao Street, Chengdu, China.
| | - Yanxue Xu
- Institute of Advanced Study, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China.
| |
Collapse
|
6
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
7
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
8
|
Balasubramaniyan NG, Perumal P. Highly efficient electrochemical detection of H 2O 2 utilizing an innovative copper porphyrinic nanosheet decorated bismuth metal-organic framework modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:624-638. [PMID: 38198128 DOI: 10.1039/d3ay01804k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The ability to detect hydrogen peroxide is important due to the presence in biological systems. Researchers are highly interested in developing efficient electrochemical hydrogen peroxide sensors. Metal-organic frameworks (MOFs) with their composites, an emerging class of porous materials, are ideal candidates for heterogeneous catalysts because of their versatile functionalities. Using a facile solvothermal reaction, we fabricated a 2D Cu-TCPP nanosheet uniformly grown on a 3D Bi-MOF. The process takes advantage of the large surface area and pore volume of the Bi-MOF while maintaining the crystallinity of Bi-BTC when Cu-TCPP is added to the surface. The sensor was fabricated by depositing the Bi-BTC-Cu-TCPP nanocomposites on a glassy carbon electrode to conduct electrochemical measurements such as cyclic voltammetry and electrochemical impedance spectroscopy. Finally, differential pulse voltammetry was utilized to investigate the effect of hydrogen peroxide on the electrochemical activity of Bi-BTC-Cu-TCPP deposited on a glassy carbon electrode. This electrode showed high electrochemical performance activity for the reduction of hydrogen peroxide. The sensor showed a linear response to H2O2 in the 10-120 μM concentration range, with a detection limit of 0.20 μM. The sensor was also stable and selective for H2O2 in the presence of other interfering species. This work demonstrates the potential of nanocomposite-based electrochemical sensors for sensitive and selective detection of H2O2. Besides, the modified electrode has many advantages, including remarkable catalytic activity, long-term stability, good reproducibility, and a good signal response during H2O2 reduction.
Collapse
Affiliation(s)
- Nandha Gopal Balasubramaniyan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| |
Collapse
|
9
|
Zeng W, Tang X, Wu T, Han B, Wu L. Development of a highly sensitive aptamer-based electrochemical sensor for detecting saxitoxin based on K 3Fe(CN) 6 regulated silver nanoparticles. Anal Chim Acta 2024; 1287:342134. [PMID: 38182355 DOI: 10.1016/j.aca.2023.342134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Saxitoxin (STX) is the most toxic marine toxin, which can pose several adverse effects on human health. High sensitivity, fast response, and low-cost detection of STX contamination are of significance to reducing the fishery and seafood industries' loss. Among the various types of biosensors, the electrochemical biosensors have been extensively studied in the detection of STX, but the electrode surface modification material is easy to fall off, resulting in unstable electrochemical signals and poor reproducibility. It is imperative to have a ratiometric electrochemical biosensor for STX. RESULTS In this study, we developed a novel aptamer-based electrochemical sensor (AECs) for the sensitive detection of STX based on a K3Fe(CN)6 regulated silver nanoparticles (Ag NPs) modified with aptamer. The AECs was constructed by immobilizing aptamer on Ag NPs surfaces. Under optimized conditions, the AECs showed a linear response towards STX in the range from 0.04 to 0.15 μM with the regression equation of Y = -8.0 + 233.7 X (R2 = 0.9956). The limit of detection (LOD) was calculated to be 1 nM (based on 3 N/S), which is significantly lower than the regulatory limits for STX in seafood. Moreover, the AECs showed excellent sensitivity, reproducibility and stability, as well as the detection in samples with acceptable recovery ranged from 71.2 % to 93.8 %, demonstrating its broad application prospects in detection of STX in seafood samples. SIGNIFICANCE This work proposed an AECs to achieve sensitive detection of STX. A reaction system of K3Fe(CN)6 etched Ag NPs was introduced and used as the signal source to avoid the instability of the electrochemical signal, which can produce a ratiometric electrochemical signal output mode, improving the stability and sensitivity of electrochemical detection of STX.
Collapse
Affiliation(s)
- Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Bingjun Han
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Xu Z, Jin X, Li Y, Zhang M, Yin W, Yang Y, Jia W, Xie D. Conductive imprinted polymeric interfacially modified electrochemical sensors based on covalently bonded layer-by-layer assembly of Gr/Au with flower-like morphology for sensitive detection of 2,4,6-TCP. RSC Adv 2024; 14:3834-3840. [PMID: 38274160 PMCID: PMC10809438 DOI: 10.1039/d3ra06668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Polymeric membrane sensors based on molecular imprinted polymers (MIPs) have been attractive analytical tools for detecting organic species. However, the MIPs in electrochemical sensors developed so far are usually prepared by in situ polymerization of pre-polymers and non-covalent adsorption on the surface of the working electrode. Meanwhile, the MIPs in the electrochemical sensors developed are typically made of a non-conductive polymer film. This results in a relatively low current due to the lack of electron transfer. Additionally, the smoothness of the traditional electrochemical substrate results in a low specific surface area, which reduces the sensitivity of the electrochemical sensor. Here, we describe a novel electrochemical sensor with a conductive interface and MIPs modification. The electrochemical sensor was modified by covalent coupled layer by layer self-assembly with the imprinted polymer film. The incorporation of these two conductive functional materials improves the conductivity of the electrodes and provides interface support materials to obtain high specific surface area. By using 2,4,6-trichlorophenol as the model, the sensitivity of the developed conductive sensor was greatly improved compared to that of the traditional MIPs sensor. We believe that the proposed MIPs-based sensing strategy provides a general and convenient method for making sensitive and selective electrochemical sensors.
Collapse
Affiliation(s)
- Ziang Xu
- College of Chemistry and Environmental Science, Hebei University Baoding 071002 China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Xiangying Jin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Yuqing Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Manwen Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Wenhua Yin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Yanyan Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Wenchao Jia
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Danping Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| |
Collapse
|
11
|
Alnuwaiser MA, Rabia M. Simple potentiometry and cyclic voltammetry techniques for sensing Hg 2+ ions in water using a promising flower-shaped WS 2-WO 3/poly-2-aminobenzene-1-thiol nanocomposite thin film electrode. RSC Adv 2024; 14:3878-3887. [PMID: 38283592 PMCID: PMC10811525 DOI: 10.1039/d3ra07932e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
A highly promising flower-shaped WS2-WO3/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was successfully synthesized via a reaction involving 2-aminobenzene-1-thiol, Na2WO4, and K2S2O8 as oxidants. The WS2-WO3/P2ABT nanocomposite demonstrated remarkable potential as a sensor for detecting harmful Hg2+ ions in aqueous solutions. The sensing behavior was evaluated over a wide concentration range, from 10-6 to 10-1 M, using a simple potentiometric study on a two-electrode cell. The calibration curve yielded an excellent Nernstian slope of 33.0 mV decade-1. To further validate the sensing capabilities, cyclic voltammetry was employed, and the results showed an increasing trend in the cyclic voltammetry curve as the Hg2+ concentration increased from 10-6 to 10-1 M with an evaluated sensitivity of 2.4 μA M-1. The WS2-WO3/P2ABT nanocomposite sensor exhibited exceptional selectivity for detecting Hg2+ ions, as no significant effects were observed from other interfering ions such as Zn2+, Ni2+, Ca2+, Mg2+, Al3+, and K+ ions in the cyclic voltammetry tests. Furthermore, the sensor was tested on a natural sample that was free of Hg2+ ions, and the cyclic voltammetry curves did not produce any characteristic peaks, confirming the sensor's specificity for Hg2+ detection. The sensor's cost-effectiveness and ease of fabrication present the potential for developing a simple and practical sensor for detecting highly poisonous ions in aqueous solutions.
Collapse
Affiliation(s)
- Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University PO Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
12
|
Karuppaiah G, Koyappayil A, Go A, Lee MH. Ratiometric electrochemical detection of kojic acid based on glassy carbon modified MXene nanocomposite. RSC Adv 2023; 13:35766-35772. [PMID: 38115984 PMCID: PMC10728780 DOI: 10.1039/d3ra05629e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
The significance of developing a selective and sensitive sensor for quality control purposes is underscored by the prevalent use of kojic acid (KA) in cosmetics, pharmaceuticals, and food items. KA's utility stems from its ability to inhibit tyrosinase activity. However, the instability of KA and its potential adverse effects have created a pressing need for accurate and sensitive sensors capable of analyzing real samples. This research introduces an electrochemical ratiometric sensor designed to accurately detect KA in actual cosmetic and food samples. The ratiometric sensor offers distinct advantages such as enhanced selectivity, reproducibility, and sensitivity. It achieves this by leveraging the ratio between two output signals, thereby producing reliable and undistorted results. The sensor is constructed by modifying a Glassy Carbon Electrode (GCE) with a nanocomposite consisting of Ti3C2 MXene, Prussian blue, and gold nanoparticles. The incorporation of MXene and gold nanoparticles heightens sensitivity and reduces impedance. Meanwhile, the Prussian blue signal diminishes proportionally with increasing KA concentration, forming the basis for the ratiometric sensing mechanism. The outcomes of the study reveal a broad linear range (1-600 μM), a low detection limit (1 μM), and strong selectivity for KA. These findings suggest the sensor's potential efficacy in quality control across cosmetics, pharmaceuticals, and food products.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- School of Integrative Engineering, Chung-Ang University 84 Heuseok-ro, Dongjak-Gu Seoul 06974 Republic of Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University 84 Heuseok-ro, Dongjak-Gu Seoul 06974 Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University 84 Heuseok-ro, Dongjak-Gu Seoul 06974 Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University 84 Heuseok-ro, Dongjak-Gu Seoul 06974 Republic of Korea
| |
Collapse
|
13
|
Feng J, Li C, Liu WNY, Min X, Lin X. Co-MOF@MWCNTs/GCE for the sensitive detection of TBHQ in food samples. Dalton Trans 2023; 52:16754-16766. [PMID: 37902558 DOI: 10.1039/d3dt03158f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
tert-Butylhydroquinone (TBHQ) is a novel synthetic antioxidant with a higher safety profile and antioxidant effect that is more excellent than other synthetic antioxidants and is internationally recognized as one of the best food antioxidants. However, its excessive use in food can have unfavorable effects on the human body. Thus, it is critical to establish a rapid method for the detection of TBHQ in food samples. In this study, a cobalt-based metal-organic framework (Co-MOF) was fabricated by a one-pot hydrothermal method and embedded in multi-walled carbon nanotubes (MWCNTs) to construct an economical and sensitive electrochemical sensor for TBHQ. The results showed that this sensor possessed a wide linear range (0.004-20 μM and 20-300 μM), a low limit of detection (LOD = 2.5 nM, S/N = 3) as well as an ultra-high sensitivity (43.19 μA μM-1 cm-2). Moreover, the sensor also has superior selectivity, repeatability, reproducibility and anti-interference ability and can be successfully applied for the detection of TBHQ in samples of instant noodles and potato chips.
Collapse
Affiliation(s)
- Junhui Feng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Chenxin Li
- School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Wan-Nai-Yi Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Xiaoqin Min
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Xiaoyun Lin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
14
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor for simultaneous determination of trifluoperazine and dopamine in human serum based on graphene oxide-carbon nanotubes/iron-nickel nanoparticles. RSC Adv 2023; 13:25209-25217. [PMID: 37622009 PMCID: PMC10445055 DOI: 10.1039/d3ra04334g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Trifluoperazine (TFLP) is an important psychiatric medication that balances the dopamine (DA) level in the brain for patients suffering from neurological disorder diseases. An efficient electrochemical sensor is developed for detecting TFLP in real human serum samples. The sensor is fabricated by casting the GC surface with two consecutive thin layers, namely a graphene oxide-carbon nanotubes mixture (GRO-CNT), and iron-nickel nanoparticles (Fe-Ni). The diffusion-controlled oxidation process of TFLP at the composite surface includes one electron transfer process. Under optimized conditions, the sensor in human serum shows excellent catalytic effect for simultaneous determination of TFLP and dopamine (DA) in the same concentration range (0.5 μM to 18 μM) with low detection limits of 0.13 μM and 0.32 μM respectively. The combined effect of a large conductive surface area and the excellent catalytic activity of the nanocomposite improves the sensor's performance. The sensor exhibits a stable current response over four weeks, excellent reproducibility, and insignificant interference from common species present in human serum samples. The reliability test of using the sensor in serum samples shows good recovery of TFLP.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| |
Collapse
|
15
|
Jiang M, Liao J, Liu C, Liu J, Chen P, Zhou J, Du Z, Liu Y, Luo Y, Liu Y, Chen F, Fang X, Lin X. Metal-organic frameworks/metal nanoparticles as smart nanosensing interfaces for electrochemical sensors applications: a mini-review. Front Bioeng Biotechnol 2023; 11:1251713. [PMID: 37614634 PMCID: PMC10442806 DOI: 10.3389/fbioe.2023.1251713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials with huge specific surface area and abundant active sites, which are composed of metal ions or clusters and organic ligands in the form of coordination bonds. In recent years, MOFs have been successfully applied in many fields due to their excellent physical, chemical, and biological properties. Electrochemical sensors have advantages such as economy, portability, and sensitivity, making them increasingly valued in the field of sensors. Many studies have shown that the electrode materials will affect the performance of electrochemical sensors. Therefore, the research on electrode materials is still one of the hotspots. MOFs are also commonly used to construct electrochemical sensors. However, electrochemical sensors prepared from single MOFs have shortcomings such as insufficient conductivity, low sensitivity, and poor electrochemical catalytic ability. In order to compensate for these defects, a new type of nanocomposite material with very ideal conductivity was formed by adding metal nanoparticles (MNPs) to MOFs. The combination of the two is expected to be widely applied in the field of sensors. This review summarizes the applications of various MNPs/MOFs composites in the field of electrochemical sensors and provides some references for the development of MNPs/MOFs composites-based electrochemical sensors in the future.
Collapse
Affiliation(s)
- Min Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Jing Liao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Chenghao Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Jun Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Peixian Chen
- Department of Health Services, Fujian Hwa Nan Women’s College, Fuzhou, China
| | - Jia Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Zhizhi Du
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yangbin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Fei Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Xiaojun Fang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| |
Collapse
|