1
|
Zhiyuan L, Minqiao X, Jiaojiao X, Hongbo S, Rubing H, Bin Z. Flower-like biomimetic enzyme for rapid and sensitive detection of zearalenone in vegetable oil deodorizer distillate. Anal Biochem 2025; 700:115780. [PMID: 39875011 DOI: 10.1016/j.ab.2025.115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
In order to achieve high quality production of vitamin E and plant sterols, it is necessary to conduct rapid and accurate detection of fungal toxins in their production raw material (vegetable oil deodorizer distillate, VODD). In this study, the flower-like biomimetic enzyme of silver-doped ZnO was synthesized through wet chemical method and in-situ reduction method. Based on above work, a flower-like biomimetic enzyme modified glass carbon electrode was fabricated, and its excellent detection capability against fungal toxins zearalenone was confirmed through electrochemical analysis. The detection limit was 8 ng mL-1, with a linear range of 40 ng mL-1-25 μg mL-1. Simultaneously, the biomimetic enzyme sensor takes only 10 min from preparation to completion of detection, and the RSD between the 7 repeated test results was only 0.612 %. After seven days of storage, the current response value remains 91.5 % of the initial value. In practical applications, the recovery rate of zearalenone in VODD using this sensor ranged from 98.1 % to 102.08 %, yielding satisfactory results. Therefore, the novel flower-like biomimetic enzyme represents an ideal choice for developing zearalenone sensors and holds promising prospects for wide application in fungal toxins analysis.
Collapse
Affiliation(s)
- Lin Zhiyuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xue Minqiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xia Jiaojiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Suo Hongbo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Huang Rubing
- School of Computer Science and Technology, Macau University of Science and Technology, Macau, 999078, China
| | - Zou Bin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Chen M, Liu G, Wang L, Zhang A, Yang Z, Li X, Zhang Z, Gu S, Cui D, Haick H, Tang N. Neural Network-Enhanced Electrochemical/SERS Dual-Mode Microfluidic Platform for Accurate Detection of Interleukin-6 in Diabetic Wound Exudates. Anal Chem 2025; 97:4397-4406. [PMID: 39985433 DOI: 10.1021/acs.analchem.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Interleukin-6 (IL-6) plays a pivotal role in the inflammatory response of diabetic wounds, providing critical insights for clinicians in the development of personalized treatment strategies. However, the low concentration of IL-6 in biological samples, coupled with the presence of numerous interfering substances, poses a significant challenge for its rapid and accurate detection. Herein, we present a dual-mode microfluidic platform integrating electrochemical (EC) and surface-enhanced Raman spectroscopy (SERS) to achieve the timely and highly reliable quantification of IL-6. Efficient binding between IL-6 and antibody-conjugated SERS nanoprobes is obtained through a square-wave micromixer with nonleaky obstacles, forming sandwich immunocomplexes with IL-6 capture antibodies on the working electrode in the detection area, enabling acquisition of both EC and SERS signals. This microfluidic platform demonstrates excellent selectivity and sensitivity, with detection limits of 0.085 and 0.047 pg/mL for EC and SERS modes, respectively. Importantly, by incorporating a neural network (NN) with a self-attention (SA) mechanism to evaluate the relative weights of data from both modes, the platform achieves a quantitative accuracy of up to 99.8% across a range of 0.05-1000 pg/mL, demonstrating significant performance at low concentrations. Moreover, the NN-enhanced dual-mode microfluidic platform effectively detects IL-6 in diabetic wound exudates with results that align closely with clinical data. This integrated dual-mode microfluidic platform offers promising potential for the rapid and accurate detection of cytokines.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Amin Zhang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Yang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xia Li
- Trauma Center in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhong Zhang
- Trauma Center in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Song Gu
- Trauma Center in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ning Tang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
3
|
Jiao S, Wu L, Jiang H, Zhang S, Han Y, Huang H. A review on SERS-based techniques for mycotoxin detection: From construction to application. Trends Analyt Chem 2025; 184:118120. [DOI: 10.1016/j.trac.2024.118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Zhou R, Wu X, Xue S, Yin L, Gao S, Zhang Y, Wang C, Wang Y, El-Seedi HR, Zou X, Guo Z. Magnetic metal-organic frameworks-based ratiometric SERS aptasensor for sensitive detection of patulin in apples. Food Chem 2025; 466:142200. [PMID: 39612841 DOI: 10.1016/j.foodchem.2024.142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Patulin (PAT), a major contaminant in apples, poses a considerable food safety risk, necessitating a rapid, sensitive and reliable detection method. This study developed a novel magnetic metal-organic frameworks (MOFs)-based ratiometric surface-enhanced Raman scattering (SERS) aptasensor. The sensor consists of magnetic MOFs loaded with 4-Mercaptobenzoic acid (4-MBA) internal labeled AuMBA@Ag as the SERS substrate, and gold nanorods (AuNRs) modified with Rhodamine 6G and aptamers as capture probes. This strategy enhances sensitivity through magnetic separation and abundant SERS hotspots provided by the magnetic MOF nanocomposites. The SERS intensity ratio showed a negative correlation with PAT concentrations from 0.01 to 100 ng/mL, with a LOD of 0.0465 ng/mL. Moreover, the aptasensor achieved 95.90 % ∼ 105.83 % recoveries in apple samples, indicating high accuracy and anti-interference capability. The excellent sensing performance demonstrates great potential of the SERS nanosensor for mycotoxin detection in actual food matrices.
Collapse
Affiliation(s)
- Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Focusight Technology (Jiangsu) Co., LTD, Changzhou 213100, China
| | - Xinchen Wu
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Xue
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansong Wang
- Focusight Technology (Jiangsu) Co., LTD, Changzhou 213100, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Sun D, Liu T, Yao Y, Kong D, Liu C, Ye H, Zhang Q, Li S, Li Y, Shi Q. A core-satellite self-assembled SERS aptasensor used for ultrasensitive detection of AFB 1. Mikrochim Acta 2025; 192:190. [PMID: 40009200 DOI: 10.1007/s00604-025-07040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
A surface-enhanced Raman scattering (SERS) aptasensor was developed using gold nanostars (Au NSs) and Fe3O4@Au nanoparticles (NPs) for the highly sensitive detection of aflatoxin B1 (AFB1). Au NSs were modified by the Raman reporter 4-aminothiophenol (PATP) and then coupled with cDNA to act as the capture probes (Au NSs@PATP-cDNA). Fe3O4@Au NPs were modified with the AFB1 aptamer (AFB1 Apt) and used as signal probes (Fe3O4@Au NPs-AFB1 Apt). The SERS peak of PATP at 1078 cm-1 was used for quantitative analysis. When the core-satellite nanostructures (Fe3O4@Au NPs-AFB1 Apt/cDNA-Au NSs@PATP) were self-assembled by oligonucleotide hybridization, the SERS intensity was significantly enhanced. When AFB1 was present, AFB1 Apt specifically binds to AFB1, causing the Fe3O4@Au NPs-AFB1 Apt and Au NSs@PATP-cDNA to dissociate, resulting in a decrease in the SERS intensity measured after magnetic separation. Under optimal conditions, the limit of detection (LOD) of AFB1 can be reduced to 0.24 pg/mL. This is attributed to the high affinity of AFB1 Apt, excellent magnetic separation characteristics, and multiple SERS hotspots. The assay has been validated to perform well in recovery and accuracy by evaluating spiked samples (rice, corn, and wheat) and positive samples (corn, brown rice, and wheat).
Collapse
Affiliation(s)
- Danni Sun
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Tao Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Yiran Yao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
6
|
Guo W, Zhang X, Deng B, Chen H, Wu S, Wu Y, Wang Y, Ning G. Dual-signal ratiometric electrochemical aptasensor for Zearalenone detection based on magnetic-assisted enrichment and hybridization chain reaction. Food Chem 2025; 465:141963. [PMID: 39531970 DOI: 10.1016/j.foodchem.2024.141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In this work, a dual-signal ratiometric electrochemical aptasensor based on the hybrid chain reaction (HCR) and streptavidin-modified magnetic beads (SA-MBs) was developed to rapidly detect zearalenone (ZEN). The HCR, as a powerful signal amplification technique to imporve the signal of sonser. When the target is present, they specifically bind with ZEN-Apt and release ZEN-cDNA to trigger HCR. Simultaneously, more double-stranded DNA causes the signal of Thi to be blocked. As a result, the two signals tend to change in the opposite direction as the ZEN concentration changes. Additionally, the peak current ratio of IThi/IFc showed a positive correlation with the ZEN concentration. Under optimal conditions, the constructed biosensor showed an excellent linear detection range (1.0 × 10-10 mol/L to 1.0 × 10-6 mol/L), a low detection limit (4.4 × 10-11 mol/L) and high specificity for ZEN. In addition, the detection method retains the characteristics of low cost and rapid detection of electrochemical detection, while improving the detection limit and detection accuracy via SA-MBs and internal reference signal. This provides a new idea for the practical detection of ZEN.
Collapse
Affiliation(s)
- Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuxin Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bin Deng
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hao Chen
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shun Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; Yuelushan Laboratory, Changsha 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
7
|
Xue S, Gao L, Yin L, El-Seedi HR, Abolibda TZ, Zou X, Guo Z. SERS aptasensor for simultaneous detection of ochratoxin A and zearalenone utilizing a rigid enhanced substrate (ITO/AuNPs/GO) combined with Au@AgNPs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124991. [PMID: 39163773 DOI: 10.1016/j.saa.2024.124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The contamination of mycotoxins poses a serious threat to global food security, hence the urgent need for simultaneous detection of multiple mycotoxins. Herein, two SERS nanoprobes were synthesized by embedded SERS tags (4-mercaptopyridine, 4MPy; 4-mercaptobenzonitrile, TBN) into the Au and Ag core-shell structure, and each was coupled with the aptamers specific to ochratoxin A (OTA) and zearalenone (ZEN). Meanwhile, a rigid enhanced substrate Indium tin oxide glass/AuNPs/Graphene oxide (ITO/AuNPs/GO) was combined with aptamer functionalized Au@AgNPs via π-π stacking interactions between the aptamer and GO to construct a surface-enhanced Raman spectroscopy (SERS) aptasensor, thereby inducing a SERS enhancement effect for the effective and swift simultaneous detection of both OTA and ZEN. The presence of OTA and ZEN caused signal probes dissociation, resulting in an inverse correlation between Raman signal intensity (1005 cm-1 and 2227 cm-1) and the concentrations of OTA and ZEN, respectively. The SERS aptasensor exhibited wide linear detection ranges of 0.001-20 ng/mL for OTA and 0.1-100 ng/mL for ZEN, with low detection limits (LOD) of 0.94 pg/mL for OTA and 59 pg/mL for ZEN. Furthermore, the developed SERS aptasensor demonstrated feasible applicability in the detection of OTA and ZEN in maize, showcasing its substantial potential for practical implementation.
Collapse
Affiliation(s)
- Shanshan Xue
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lingbo Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
8
|
Rojas Martínez V, Lee E, Oh JW. Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1839. [PMID: 39591079 PMCID: PMC11597564 DOI: 10.3390/nano14221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent advancements in the application of standalone SERS nanoprobes, with a special focus on quantifiable SERS tags. We conducted a comprehensive analysis of the recent literature, focusing on the development of SERS nanoprobes that employ novel nanostructuring techniques to enhance signal reliability and quantification. Standalone SERS nanoprobes exhibit significant enhancements in sensitivity and specificity due to optimized hot spot generation and improved reporter molecule interactions. Recent innovations include the development of nanogap and core-satellite structures that enhance electromagnetic fields, which are crucial for SERS applications. Standalone SERS nanoprobes, particularly those utilizing indirect detection mechanisms, represent a significant advancement in the field. They hold potential for wide-ranging applications, from disease diagnostics to environmental monitoring, owing to their enhanced sensitivity and ability to operate under complex sample conditions.
Collapse
Affiliation(s)
| | | | - Jeong-Wook Oh
- Department of Chemistry, Hankuk University of Foreign Studies (HUFS), Yongin 17035, Republic of Korea; (V.R.M.); (E.L.)
| |
Collapse
|
9
|
Wang C, Gu C, Zhao X, Yu S, Zhang X, Xu F, Ding L, Huang X, Qian J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem 2024; 457:140190. [PMID: 38924915 DOI: 10.1016/j.foodchem.2024.140190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
An innovative aptasensor incorporating MoS2-modified bicolor quantum dots and a portable spectrometer, designed for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) in corn was developed. Carbon dots and CdZnTe quantum dots were as nano-donors to label OTA and AFB1 aptamers, respectively. These labeled aptamers were subsequently attached to MoS2 receptors, enabling fluorescence resonance energy transfer (FRET). With targets, the labeled aptamers detached from the nano-donors, thereby disrupting the FRET process and resulting in fluorescence recovery. Furthermore, a portable dual-mode fluorescence detection system, complemented with customized python-based analysis software, was developed to facilitate rapid and convenient detection using this dual-color FRET aptasensor. The developed host program is connected to the spectrometer and transmits data to the cloud, enabling the device to have Internet of Things (IoT) characteristics. Connected to the cloud, this IoT-enabled device offers convenient and reliable fungal toxin detection for food safety.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chengdong Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Guo Z, Fu X, Zhou R, Zhang Y, El-Seedi H, Watson N, Zou X, Povey M. A silicon-based functional self-assembled aptasensor for the detection of aflatoxin B1 by SERS sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6994-7004. [PMID: 39282884 DOI: 10.1039/d4ay01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
One of the most harmful contaminants found in corn and its products is aflatoxin B1 (AFB1) and thus developing reliable detection methods is of great significance to consumers and the food industry. In this research, AuMBA@Ag nanoparticles (NPs) and AgNPs deposited on a silicon wafer (Si@AgNPs) were functionalized with an aptamer and its complementary strand, respectively, and self-assembled into a SERS aptasensor, which generated strong SERS signals. AFB1 bound to the aptamer prior to the complementary chain, causing AuMBA@Ag NPs to detach from Si@AgNPs. The complex dissociated, leading to a decrease in signal intensity from the solid-phase substrate. Under optimal conditions, the linear detection range was 0.05-20.0 ng mL-1, and the detection limit was 0.039 ng mL-1. Notably, the aptasensor demonstrated a recovery rate between 92.77% and 110.13% when utilized for the detection of AFB1 in corn flour and oil, indicating its good potential for detecting AFB1 in real sample matrices. In conclusion, a quantitative and reliable specific SERS detection system for AFB1 was developed in this study with significant applicability to food safety.
Collapse
Affiliation(s)
- Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xuan Fu
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Nicholas Watson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Wang B, Han Y, Zhang L, Chen Z, Zhang W, Ren M, Shi J, Xu X, Yang Y. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39388195 DOI: 10.1080/10408398.2024.2413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Residues of harmful substances in food can severely damage human health. The content of these substances in food is generally low, making detection difficult. Surface-enhanced Raman scattering (SERS), based on noble metal nanomaterials, mainly gold (Au) and silver (Ag), has exhibited excellent capabilities for trace detection of various substances. Noble metal nanoassemblies, in particular, have extraordinary flexibility and tunable optical properties, which cannot be offered by single nanoparticles (NPs). These nanoassemblies, with their various morphologies synthesized using NPs through artificially induced self-assembly or template-driven preparation, can significantly enhance the local electric field and create "hot spots" due to the gaps between adjacent NPs. Consequently, the SERS properties of NPs become more prominent, leading to improved performance in the trace detection of various substances and detection limits that are considerably lower than the current relevant standards. Noble metal nanoassemblies show promising potential in ensuring food safety. This review discusses the synthesis methods and SERS properties of noble metal nanoassemblies and then concentrates on their application in detecting biotoxins, drug residues, illegal additives, and heavy metals. The study provides valuable references for further research into the application of nanoassemblies in food safety detection.
Collapse
Affiliation(s)
- Baojun Wang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zikuo Chen
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
12
|
Wang X, Chen C, Waterhouse GIN, Qiao X, Sun Y, Xu Z. Ultrasensitive SERS aptasensor using Au@Ag bimetallic nanorod SERS tags for the selective detection of amantadine in foods. Food Chem 2024; 453:139665. [PMID: 38776796 DOI: 10.1016/j.foodchem.2024.139665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Herein, a novel surface enhanced Raman spectroscopy (SERS) aptasensor was developed for amantadine (AMD) detection, based on magnetite nanoparticles coated with polyethylenimine, silver nanoclusters and aptamers (Fe3O4@PEI@AgNC-apt) as the capture probe and complementary DNA-modified gold nanorods (AuNRs@4-MPBA@Ag-c-DNA containing 4-mercaptophenylboric acid molecules) as the reporter probe. In the presence of AMD, the AMD and the reporter probe competed for the aptamer on the surface of the capture probe, resulting in the reporter probe detaching from the capture probe leading to a decrease in intensity of the SERS signal at 1067 cm-1 for 4-MPBA. Under optimal conditions, a good linear relationship was established between the SERS intensity at 1067 cm-1 and the logarithm of the AMD concentration over the range 10-6-102 mg L-1, with a LOD of 0.50 × 10-6 mg L-1. The AMD levels in spiked samples were evaluated using the SERS aptasensor, with good recoveries ranging from 90.57% to 113.49% being obtained.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yufeng Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
13
|
Li M, Teng W, Lu W, Sun M, Duan J, Qiu X. Exo I-based cyclic digestion coupled with synergistic enhancement strategy for integrating dual-mode optical aptasensor platform. Talanta 2024; 276:126286. [PMID: 38776778 DOI: 10.1016/j.talanta.2024.126286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The improvement of dual-mode techniques was of particular interest to researchers, which might enhance the detection performance and applicability. Here, a dual-mode optical aptasensor (DO-aptasensor) platform based on exonuclease I (Exo I) cyclic digestion and synergistic enhancement strategy had proposed for zearalenone (ZEN). Following the preparation of dumbbell-shaped signal probe, the Exo I-based cyclic digestion amplification performed, and then the synergistic enhancement effect carried out to achieve the Poly-HRP-based colorimetry and FAM-SGI-based fluorescence. The efficient homogeneous system realized through the magnetic separation, while the signal interference further eliminated by the graphene oxide (GO). The LOD values were as low as 0.067 ng mL-1 for colorimetry mode and 0.009 ng mL-1 for fluorescence mode, which reduced 23-fold and 172-fold than ELASA by same ZEN-Apt. This promising platform gave rise to a dual-mode optical readout, improved sensitivity and positively correlated detection. Meanwhile, the DO-aptasensor also exhibited the acceptable specificity, desirable reliability and excellent practicability. This novel avenue of aptasensor platform hold great potential for dual-mode optical monitoring of other targets, which can further expand the application scope of Exo I-based signal amplification and synergistic enhancement effect.
Collapse
Affiliation(s)
- Ming Li
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Weipeng Teng
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenying Lu
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, Hefei, 230031, PR China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, Hefei, 230031, PR China
| | - Xuchun Qiu
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
14
|
Zhou Y, Wei Y, Zhang J, Shi X, Ma L, Yuan R. Highly Specific Aptamer-Antibody Birecognized Sandwich Module for Ultrasensitive Detection of a Low Molecular Weight Compound. Anal Chem 2024; 96:11326-11333. [PMID: 38953527 DOI: 10.1021/acs.analchem.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Zhou
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yuying Wei
- Guangxi Zhuang Autonomous Region Grain and Oil Quality Inspection Center, Nanning 530031, P. R. China
| | - Jia Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyu Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
15
|
Yin L, Cai J, Ma L, You T, Arslan M, Jayan H, Zou X, Gong Y. Dual function of magnetic nanocomposites-based SERS lateral flow strip for simultaneous detection of aflatoxin B1 and zearalenone. Food Chem 2024; 446:138817. [PMID: 38401299 DOI: 10.1016/j.foodchem.2024.138817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (Fe3O4@PEI/AuMBA@AgMBA) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.1-10 μg/kg and 4-400 μg/kg, respectively. Moreover, the test results for two mycotoxins in contaminated corn samples employing the suggested SERS-LFIA was in line with those of the HPLC technique. In view of its satisfactory sensitivity, accuracy, precision and short testing time (20 min), the developed system has a promising application prospect in the on-site simultaneous detection of AFB1 and ZEN.
Collapse
Affiliation(s)
- Limei Yin
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianrong Cai
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lixin Ma
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
16
|
Liu J, Zeng S, Zhu H, Wan X, Sohan ASMMF, Yin B. A Portable Automated Microfluidic Platform for Point-of-Care Testing for Multiple Mycotoxins in Wine. Foods 2024; 13:2066. [PMID: 38998571 PMCID: PMC11241659 DOI: 10.3390/foods13132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Food safety requires point-of-care testing (POCT) for mycotoxins, since their presence in wine significantly impacts the wine industry and poses a severe threat to human life. Traditional detection methods are usually limited to detecting one mycotoxin and cannot achieve high-throughput, automated, and rapid quantitative analysis of multiple mycotoxins in real samples. Here, we propose a portable automated microfluidic platform (PAMP) integrating a chemiluminescence (CL) imaging system and a microfluidic chip to realize POCT for multiple mycotoxins in real samples, simplifying complex manual operations, shortening the detection time, and improving the detection sensitivity. Specially, silicone films were used as substrates on microfluidic chips to incubate mycotoxin conjugations, and the streptavidin-biotin (SA-B) system and an indirect immunoassay were implemented on silicone films to improve the sensitivity of reaction results. Interestingly, these methods significantly improved detection results, resulting in sensitive detection of mycotoxins, including zearalenone (ZEA) ranging from 1 to 32 ng/mL, aflatoxin B1 (AFB1) ranging from 0.2 to 6.4 ng/mL, and ochratoxin A (OTA) ranging from 2 to 64 ng/mL. The recovery of samples reached 91.39-109.14%, which verified the reliability and practicability of the PAMP. This PAMP enables sensitive and rapid detection of multiple mycotoxins in markets or wineries that lack advanced laboratory facilities. Therefore, it is essential to develop a portable microfluidic platform for POCT to detect mycotoxins in real samples.
Collapse
Affiliation(s)
- Jun Liu
- Suqian Product Quality Supervision and Inspection Institute, Suqian 223800, China
| | - Shiyu Zeng
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haoyu Zhu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - A S M Muhtasim Fuad Sohan
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
17
|
Guo W, Hu Y, Zhang X, Wang Y, Li Y, Wang Y, Ning G. An electrochemical aptasensor for zearalenone detection based on the Co 3O 4/MoS 2/Au nanocomposites and hybrid chain reaction. Mikrochim Acta 2024; 191:367. [PMID: 38832980 DOI: 10.1007/s00604-024-06439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.
Collapse
Affiliation(s)
- Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuda Hu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xuxin Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanjun Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yihao Li
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Yuelushan Laboratory, Changsha, 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
18
|
Xue S, Yin L, Gao S, Zhou R, Zhang Y, Jayan H, El-Seedi HR, Zou X, Guo Z. A film-like SERS aptasensor for sensitive detection of patulin based on GO@Au nanosheets. Food Chem 2024; 441:138364. [PMID: 38219369 DOI: 10.1016/j.foodchem.2024.138364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Patulin (PAT) commonly contaminates fruits, posing a significant risk to human health. Therefore, a highly effective and sensitive approach in identifying PAT is warranted. Herein, a SERS aptasensor was constructed based on a two-dimensional film-like structure. GO@Au nanosheets modified with SH-cDNA were employed as capture probes, while core-shell Au@Ag nanoparticles modified with 4-MBA and SH-Apt were utilized as signal probes. Through the interaction between capture probes and signal probes, adjustable hotspots were formed, yielding a significant Raman signal. During sensing, the GO@Au-cDNA competitively attached to Au@AgNPs@MBA-Apt, resulting in an inverse relationship between PAT levels and SERS intensity. The acquired results exhibited linear responses to PAT within the range of 1-70 ng/mL, with a calculated limit of detection of 0.46 ng/mL. In addition, the SERS aptasensor exhibited satisfactory recoveries in apple samples, which aligned closely with HPLC. With high sensitivity and specificity, this method holds significant potential for PAT detection.
Collapse
Affiliation(s)
- Shanshan Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Ke Q, Yin L, Jayan H, El-Seedi HR, Zou X, Guo Z. Ag-coated tetrapod gold nanostars (Au@AgNSs) for acetamiprid determination in tea using SERS combined with microfluidics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2721-2731. [PMID: 38629244 DOI: 10.1039/d4ay00297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Acetamiprid is an organic and highly toxic compound. Despite being widely used as a pesticide agent on a large scale, acetamiprid poses numerous health risks to living organisms, particularly humans. Herein, a strategy for the detection of acetamiprid in tea employing surface-enhanced Raman scattering (SERS) technology incorporated with a microfluidic chip was developed. Significantly, a seed-mediated growth approach was utilized to engineer Ag-coated tetrapod gold nanostars (core-shell Au@AgNSs) with four sharp tips. The synthesized Au@AgNSs showed an enhancement factor of 7.2 × 106. Solid works was used to figure out the two-channel microfluidic chip featuring four circular split hybrid structures, and COMSOL (Software for Multiphysics Simulation) was utilized to model the fusion effect between the substrate (Au@AgNSs) and the sample (acetamiprid). For the first time, the core-shell Au@AgNSs and acetamiprid were fused in the microfluidic channel to facilitate the detection of acetamiprid using SERS. The outcomes pointed out that the standard curve correlation coefficient between SERS intensity (876 cm-1) and the concentration of acetamiprid in tea specimens was calculated as 0.991, while the limit of detection (LOD) was 0.048 ng mL-1, which is well below the minimum limit set by the European Union (10 ng mL-1). Thus, the developed technique combining SERS and microfluidics demonstrated high potential for the rapid and efficient detection of acetamiprid in tea.
Collapse
Affiliation(s)
- Qian Ke
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Kang M, Yao Y, Yuan B, Zhang S, Oderinde O, Zhang Z. A sensitive bimetallic copper/bismuth metal-organic frameworks-based aptasensors for zearalenone detection in foodstuffs. Food Chem 2024; 437:137827. [PMID: 37897827 DOI: 10.1016/j.foodchem.2023.137827] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Electrochemical aptasensors have emerged as promising platforms for effectivelydetection of various target analytes. Here, we developed a sensitive and selective electrochemical aptasensor for zearalenone (ZEN) determination based on a bimetallic organic framework (CuBi-BPDC). The results of HR-TEM, FE-SEM, XPS, etc. indicate the CuBi-BPDC possessing mixed nodes of Cu(II) and Bi(III) and multilayered nanosheets bearing nanoparticles. Due to its improved electrochemical activity and strong affinity for aptamers, the CuBi-BPDC-based aptasensor obtains a low limit of detection of 0.19 fg mL-1 (IUPAC S/N = 3) in a wide range of 1 fg mL-1-10 ng mL-1 via EIS and 0.73 fg mL-1 from 0 fg mL-1 to 1 × 107 fg mL-1 via DPV for ZEN detection, respectively. Moreover, the excellent selectivity allows this aptasensor to specifically identify ZEN from other interfering substances in raw milk and rice, indicating the potential applicability of the CuBi-BPDC-based aptasensor in sensitive and selective detection of ZEN.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China.
| | - Yu Yao
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China
| | - Beibei Yuan
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China.
| |
Collapse
|
21
|
Jayan H, Yin L, Xue S, Zou X, Guo Z. Raman spectroscopy-based microfluidic platforms: A promising tool for detection of foodborne pathogens in food products. Food Res Int 2024; 180:114052. [PMID: 38395567 DOI: 10.1016/j.foodres.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Rapid and sensitive detection of foodborne pathogens in food products is paramount for ensuring food safety and public health. In the ongoing effort to tackle this issue, detection methods are continually researched and upgraded to achieve rapidity, sensitivity, portability, and cost-effectiveness. This review addresses the critical need for improved technique by focusing on Raman spectroscopy-based microfluidic platforms, which have shown potential in revolutionizing the field of foodborne pathogen analysis offering point-of-care diagnosis and multiplex detection. The key problem lies in the persistent threat of compromised food quality and public health due to inadequate pathogen detection. The review elucidates the various trapping strategies employed in a microfluidic platform, including optical trapping, electrical trapping, mechanical trapping, and acoustic trapping for the capture of microbial cells. Subsequently, the review delves into the key aspects of the application of microbial detection in food products, highlighting recent advances and challenges in the field. The integrated technique allows point-of-care application assessment, which is an attractive quality for in-line and real-time detection of foodborne pathogens. However, the application of the technique in food products is limited and requires further research to combat the complexity of the food matrix, reduced costs of production, and ensure real-time use for diverse pathogens. Ultimately, this review aims to propel advancements in microbial detection, thus promoting enhanced food safety through state-of-the-art technologies.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Guo Z, Wu X, Jayan H, Yin L, Xue S, El-Seedi HR, Zou X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem 2024; 434:137469. [PMID: 37729780 DOI: 10.1016/j.foodchem.2023.137469] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
This article reviewed the latest research progress of Surface-enhanced Raman Spectroscopy (SERS) in the security detection of fruits and vegetables in recent years, especially in three aspects: pesticide residues, microbial toxin contamination and harmful microorganism infection. The binding mechanism and application potential of SERS detection materials (including universal type and special type) and carrier materials (namely rigid and flexible materials) were discussed. Finally, the application prospect of SERS in fruit and vegetable safety detection was explored, and the problems to be solved and development trends were put forward. The poor stability and reproducibility of SERS substrates make it difficult for practical applications. It is necessary to continuously optimize SERS substrates and develop small and portable Raman spectroscopy analyzers. In the future, SERS technology is expected to play an important role in human health, food safety and economy.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinchen Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| |
Collapse
|