1
|
Massahi T, Kiani A, Moradi M, Soleimani H, Omer AK, Habibollahi MH, Mansouri B, Sharafi K. A worldwide systematic review of ochratoxin A in various coffee products - human exposure and health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024:1-17. [PMID: 39259858 DOI: 10.1080/19440049.2024.2400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Coffee is one of the most commonly consumed beverages worldwide, so assessing its quality for potential health risks is essential. Therefore, this review aimed to determine the levels of ochratoxin A (OTA) in coffee worldwide and then estimate its human intake and health risks. The systematic search took place from June 1997 to April 2024 and 40 of 254 articles were selected based on the selection criteria. The results showed significant differences in average levels of OTA between countries, continents and coffee types (p < 0.001). Of 3256 samples, OTA was detected in 1778, accounting for 54.6% of the total, with the percentage of positive results varying between 7.5% and 100%. Only two studies reported OTA average levels in roasted coffee exceeding the maximum limit (ML) set by the European Commission (ML-EC = 5 μg/kg). The average OTA in soluble coffee was lower than ML-EC (10 μg/kg) in all studies, and in instant coffee, the level of OTA was higher than ML-EC (10 μg/kg) only in one study. The estimated daily intake (EDI) of OTA in all coffee types was lower than the provisional tolerable daily intake (PTDI) values set by joint FAO/WHO Expert Committee on Food Additives (JECFA) (14 ng/kg bw/day) and proposed by the European Food Safety Authority (EFSA) (17 ng/kg bw/day). Non-carcinogenic risk assessment through coffee consumption indicated that the hazard quotient (HQ) was below the acceptable level, HQ = 1. The Margin of Exposure (MoE) for neoplastic effects was acceptable and unacceptable for non-neoplastic effects (NNE) in 4.5% (one of 22 cases) of the roasted and soluble coffees, but acceptable for all instant coffees. In conclusion, the study shows that the OTA content of coffee is not toxic to consumers worldwide. However, preventative measures should be taken, including inhibiting fungal growth and reducing OTA-producing fungal growth.
Collapse
Affiliation(s)
- Tooraj Massahi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars Sharafi
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
López-Rodríguez C, Verheecke-Vaessen C, Strub C, Fontana A, Schorr-Galindo S, Medina A. Reduction in Ochratoxin A Occurrence in Coffee: From Good Practices to Biocontrol Agents. J Fungi (Basel) 2024; 10:590. [PMID: 39194915 DOI: 10.3390/jof10080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin mainly produced by Aspergillus section Circumdati and section Nigri across the coffee chain. OTA is nephrotoxic and is a threat to human health. This review summarizes current knowledge on how to reduce OTA concentration in coffee from farm to cup. After a brief introduction to the OTA occurrence in coffee, current good management practices are introduced. The core of this review focuses on biocontrol and microbial decontamination by lactic acid bacteria, yeasts and fungi, and their associated enzymes currently reported in the literature. Special attention is given to publications closest to in vivo applications of biocontrol agents and microbial OTA adsorption or degradation agents. Finally, this review provides an opinion on which future techniques to promote within the coffee supply chain.
Collapse
Affiliation(s)
- Claudia López-Rodríguez
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | | | - Caroline Strub
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angélique Fontana
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Sabine Schorr-Galindo
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angel Medina
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
3
|
Fakhri Y, Mahdavi V, Ranaei V, Pilevar Z, Sarafraz M, Mahmudiono T, Khaneghah AM. Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis, and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:211-220. [PMID: 36372738 DOI: 10.1515/reveh-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Contamination of food with mycotoxins can pose harmful effects on the health of consumers in the long term. Coffee contamination with mycotoxins has become a global concern. This study attempted to meta-analyze the concentration and prevalence of ochratoxin A (OTA) in coffee products and estimate consumers' health risks. The search was conducted among international databases, including Scopus, PubMed, Embase, and Web of Science, for 1 January 2010 to 1 May 2022. The concentration and prevalence of OTA in coffee products were meta-analyzed according to country subgroups. Health risk assessment was conducted based on Margin of Exposures (MOEs) using the Monte Carlo simulation (MCS) technique. The three countries that had the highest Pooled concentration of OTA in coffee were observed in Chile (100.00%), Kuwait (100.00%), and France (100.00%). The overall prevalence of OTA in coffee products was 58.01%, 95% CI (48.37-67.39). The three countries that had the highest concentration of OTA were Philippines (39.55 μg/kg) > Turkey (39.32 μg/kg) > and Panama (21.33 μg/kg). The mean of MOEs in the adult consumers in Panama (9,526) and the Philippines (8,873) was lower than 10,000, while the mean of MOEs in other countries was higher than 10,000. Therefore, monitoring and control plans should be carried out in different countries.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Tseng HS, Lin BY, Wang YF, Liao YF. Ochratoxin A detoxification potentials of basil, chan, and chia seeds. Lett Appl Microbiol 2024; 77:ovae018. [PMID: 38414284 DOI: 10.1093/lambio/ovae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
The most toxic of the ochratoxins is ochratoxin A (OTA), which is primarily produced by species of Aspergillus and Penicillium that can be found in maize, wheat, coffee, red wine, and various grains. OTA induces immunotoxicity, nephrotoxicity, hepatotoxicity, teratogenicity, and carcinogenicity in both animals and humans. Thus, there is a need to identify mycotoxin detoxification agents that can effectively decontaminate OTA. Seeds of basil (Ocimum basilicum L.), chan (Hyptis suaveolens L.), and chia (Salvia hispanica L.) are functional foods capable of eliminating harmful substances. Despite this potential, the impact of these seeds on OTA detoxification remains unclear. This study reveals that milled basil, chan, and chia seeds adsorb significant levels of OTA, with chia demonstrating the highest adsorption capacity, followed by chan and basil seeds showing the least efficiency. Furthermore, milled basil, chan, and chia seeds effectively reduced OTA residues in artificial gastric and intestinal fluids, where they achieved up to 93% OTA adsorption in the former. In addition, these milled seeds were able to remove OTAs from canned, drip, and instant coffee. This study is the first to report the OTA elimination potential of basil, chan, and chia seeds.
Collapse
Affiliation(s)
- Hsin-Shun Tseng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500010, Taiwan
| | - Bing-Yi Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Yu-Fen Wang
- Cancer Research Center, Department of Research, Changhua Christian Hospital, Changhua 500010, Taiwan
| | - Ya-Fan Liao
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
- Asia Mycotoxin Analysis Center, Chaoyang University of Technology, Taichung 413310, Taiwan
| |
Collapse
|
5
|
Lee HJ, Kim HD, Ryu D. Practical Strategies to Reduce Ochratoxin A in Foods. Toxins (Basel) 2024; 16:58. [PMID: 38276534 PMCID: PMC10819544 DOI: 10.3390/toxins16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Ochratoxin A (OTA), a potent nephrotoxin, is one of the most deleterious mycotoxins, with its prevalence in agricultural crops and their processed foods around the world. OTA is a major concern to food safety, as OTA exposure through dietary intake may lead to a significant level of accumulation in the body as a result of its long half-life (about 35 days). Its potent renal toxicity and high risk of exposure as well as the difficulty in controlling environmental factors OTA production has prompted the need for timely information on practical strategies for the food industry to effectively manage OTA contamination during food processing. The effects of various food processes, including both nonthermal and thermal methods, on the reduction in OTA were summarized in this review, with emphasis on the toxicity of residual OTA as well as its known and unknown degradation products. Since complete removal of OTA from foodstuffs is not feasible, additional strategies that may facilitate the reduction in OTA in food, such as adding baking soda and sugars, was also discussed, so that the industry may understand and apply practical measures to ensure the safety of its products destined for human consumption.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Hae Dun Kim
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Dojin Ryu
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
6
|
da Costa DS, Albuquerque TG, Costa HS, Bragotto APA. Thermal Contaminants in Coffee Induced by Roasting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5586. [PMID: 37107868 PMCID: PMC10138461 DOI: 10.3390/ijerph20085586] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Roasting is responsible for imparting the main characteristics to coffee, but the high temperatures used in the process can lead to the formation of several potentially toxic substances. Among them, polycyclic aromatic hydrocarbons, acrylamide, furan and its derivative compounds, α-dicarbonyls and advanced glycation end products, 4-methylimidazole, and chloropropanols stand out. The objective of this review is to present a current and comprehensive overview of the chemical contaminants formed during coffee roasting, including a discussion of mitigation strategies reported in the literature to decrease the concentration of these toxicants. Although the formation of the contaminants occurs during the roasting step, knowledge of the coffee production chain as a whole is important to understand the main variables that will impact their concentrations in the different coffee products. The precursors and routes of formation are generally different for each contaminant, and the formed concentrations can be quite high for some substances. In addition, the study highlights several mitigation strategies related to decreasing the concentration of precursors, modifying process conditions and eliminating/degrading the formed contaminant. Many of these strategies show promising results, but there are still challenges to be overcome, since little information is available about advantages and disadvantages in relation to aspects such as costs, potential for application on an industrial scale and impacts on sensory properties.
Collapse
Affiliation(s)
- David Silva da Costa
- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária, R. Monteiro Lobato 80, Campinas 13083-862, Brazil
| | - Tânia Gonçalves Albuquerque
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P. Av. Padre Cruz, 1649-016 Lisboa, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Helena Soares Costa
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P. Av. Padre Cruz, 1649-016 Lisboa, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Adriana Pavesi Arisseto Bragotto
- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária, R. Monteiro Lobato 80, Campinas 13083-862, Brazil
| |
Collapse
|
7
|
Ruttanadech N, Phetpan K, Srisang N, Srisang S, Chungcharoen T, Limmun W, Youryon P, Kongtragoul P. Rapid and accurate classification of Aspergillus ochraceous contamination in Robusta green coffee bean through near-infrared spectral analysis using machine learning. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Portillo OR. El procesamiento del grano de café. Del tueste a la infusión. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El café es una de las bebidas más consumidas en el mundo y su popularidad no está basada en su valor nutricional o sus potenciales beneficios a la salud, si no en su sabor placentero y las propiedades estimulantes de la cafeína. Esto es respaldado por las últimas estadísticas publicadas por la Organización Internacional del Café (ICO, por sus siglas en inglés) según la cual aproximadamente 1.4 billones de tazas de café son consumidas diariamente además del hecho de que la taza de consumo global se ha duplicado en los últimos 50 años por causa de la apertura de nuevos mercados.
La amplia aceptación del café está ligada a sus propiedades sensoriales las cuales a su vez están fuertemente influenciadas por una cadena de eventos que inician desde la cosecha y las practicas postcosecha (i.e., fermentación, lavado, secado, tamizado, eliminación de granos defectuosos y almacenamiento), seguidas por el tueste, molido y empacado del producto para su posterior comercialización. No obstante, existen otros factores que también afectan las propiedades organolépticas de la bebida tales como, pero no limitado a: el pH y temperatura del agua, las mezclas realizadas antes o después del tueste, la especie y/o variedad de café, las adulteraciones, la incorporación de aditivos, el método de preparación de la bebida, el tipo de recipiente en el que se sirve la infusión, entre otros.
El presente artículo presenta una breve descripción de los factores que afectan la calidad de la taza relacionados con el procesamiento del grano oro del café. Sin embargo, aunque los factores ya mencionados son tomados en consideración por los catadores, para fines comerciales, la calidad del café está y siempre estará en manos del consumidor. Después de todo la mejor prueba es cuando la persona lo prueba.
Palabras clave: organoléptica, perfil de tueste, endotérmica, exotérmico, ma-croscópica, microscópica, reacción Maillard, caramelización.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Facultad de Ingeniería, Universidad Nacional Autónoma de Honduras, (UNAH), Tegucigalpa, Honduras
| |
Collapse
|
9
|
Carbon H, Lee H. Varied reduction of ochratoxin A in brown and white rice during roasting. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) is a possible human carcinogen commonly found in various agricultural commodities worldwide. While this potent nephrotoxin tends to survive common food processes and contaminate food products, certain process with higher temperature treatments may reduce OTA contents. Roasting has been suggested as a possible method to reduce OTA in coffee beans with up to 90% reduction, which may be applied to other food commodities. In this study, the possible influence of fibres on the reduction of OTA was investigated with brown and white rice with 2.2 and 6.7% of total dietary fibre content, respectively, roasting at two different temperatures (160 and 200 °C) for up to 30 min. The results showed that the rate and extent of OTA reduction were dependent on time, temperature, and rice type; greater than 60% of OTA reduction were achieved at 200 °C for 30 min for white rice and 37% for brown rice at the same conditions. No significant differences in reduction were observed between the samples roasted at 160 °C for 30 min and 200 °C for 15 min for both the white and brown rice, while white rice roasted at 160 °C for 15 min during roasting may be affected by the presence of fibre and/or fat in the cereal grains.
Collapse
Affiliation(s)
- H.N. Carbon
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| | - H.J. Lee
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| |
Collapse
|
10
|
Zapaśnik A, Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Podolska G. Ochratoxin A and 2' R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2021; 27:188. [PMID: 35011417 PMCID: PMC8746423 DOI: 10.3390/molecules27010188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to estimate the contamination of grain coffee, roasted coffee, instant coffee, and cocoa purchased in local markets with ochratoxin A (OTA) and its isomerization product 2'R-ochratoxin A (2'R-OTA), and to assess risk of dietary exposure to the mycotoxins. OTA and 2'R-OTA content was determined using the HPLC chromatography with immunoaffinity columns dedicated to OTA. OTA levels found in all the tested samples were below the maximum limits specified in the European Commission Regulation EC 1881/2006. Average OTA concentrations calculated for positive samples of grain coffee/roasted coffee/instant coffee/cocoa were 0.94/0.79/3.00/0.95 µg/kg, with the concentration ranges: 0.57-1.97/0.44-2.29/0.40-5.15/0.48-1.97 µg/kg, respectively. Average 2'R-OTA concentrations calculated for positive samples of roasted coffee/instant coffee were 0.90/1.48 µg/kg, with concentration ranges: 0.40-1.26/1.00-2.12 µg/kg, respectively. In turn, diastereomer was not found in any of the tested cocoa samples. Daily intake of both mycotoxins with coffee/cocoa would be below the TDI value even if the consumed coffee/cocoa were contaminated with OTA/2'R-OTA at the highest levels found in this study. Up to now only a few papers on both OTA and 2'R-OTA in roasted food products are available in the literature, and this is the first study in Poland.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland;
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
11
|
Aguilar-Alvarez ME, Saucedo-Castañeda G, Durand N, Perraud-Gaime I, González-Robles RO, Rodríguez-Serrano GM. The variety, roasting, processing, and type of cultivation determine the low OTA levels of commercialized coffee in Chiapas State, Mexico. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Pereira LL, Júnior DB, de Sousa LHBP, dos Santos Gomes W, Cardoso WS, Guarçoni RC, ten Caten CS. Relationship Between Coffee Processing and Fermentation. FOOD ENGINEERING SERIES 2021. [DOI: 10.1007/978-3-030-54437-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
|
14
|
Ochratoxin A and citrinin in green coffee and dietary supplements with green coffee extract. Toxicon 2020; 188:172-177. [PMID: 33096150 DOI: 10.1016/j.toxicon.2020.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine the degree of mold contamination and mycotoxin levels in commercially available green coffee products and dietary supplements with green coffee extract. The study included 34 samples from green coffee products: raw beans (n = 16), ground coffee (n = 15) and instant coffee (n = 3), as well as 22 samples from dietary supplements in form of capsules (n = 19), tablets (n = 2) and sachets (n = 1). Total mold count was determined with spread-plate method. Anamorphic mold were identified based on their microscopic morphology and the type of sporulation. Concentrations of mycotoxins, ochratoxin A and citrinin, were quantified by means of HPLC-fluorescence detection. Molds, typically Aspergillus spp. and Penicillium spp., were found in 94% of green coffee beans, 100% of ground and instant coffee samples, and 55% of dietary supplement samples. None of the samples contained detectable levels of citrinin. Ochratoxin A (0.4 ng/g) was detected in only one sample of raw green coffee beans, but in up to 40% and 67% of ground and instant coffee samples, respectively. Mean concentrations of ochratoxin A in ground and instant coffee samples were 3.28 ng/g and 4.09 ng/g, respectively, and maximum concentrations amounted to 6.65 ng/g and 7.44 ng/g, respectively. Ochratoxin A (mean concentration 9.60 ng/g, maximum level 31.4 ng/g) was also detected in up to 58% of the supplement capsules, but in none of tablets and sachets.
Collapse
|
15
|
Fungal Diversity and Evaluation of Ochratoxin A Content of Coffee from Three Cameroonian Regions. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8884514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study had the objective to assess the ochratoxin A content of coffee through chromatographic analysis and design a method using PCR-DGGE to analyze at the same moment the totality of fungal flora present in the coffee samples in order to determine their geographic origin. 96 samples of coffee were collected from the west region (Bafoussam and Dschang), centre region (Bafia), and east region (Batouri) of Cameroon during two years (2017 and 2018). Two treatments (dry and wet routes) were evaluated at three different steps of coffee processing (parchment coffee, green coffee, and husk coffee). The characterization of the fungal profile was done with PCR-DGGE and sequencing. The levels of OTA were assessed using HPLC analysis. The results indicated that the toxinogenic mycoflora associated with coffee beans was mainly Aspergillus niger, A. carbonarius, and A. ochraceus. PCR-DGGE data revealed that each sampling site is characterized by a specific fungal profile. Despite the influence of the treatment on the fungal population of coffee, bands common to samples coming from the same site were observed. These bands could therefore constitute potential biological markers to trace back to the origin of coffee. OTA was detected in most of the coffee samples analyzed and only few samples contented OTA at levels higher than the maximum tolerable limit for food intended for human consumption. The OTA content of coffee was significantly influenced by the sampling step and the sampling period.
Collapse
|
16
|
dePaula J, Cunha SC, Revi I, Batista AM, Sá SVMD, Calado V, Fernandes JO, Cruz A, Farah A. Contents of key bioactive and detrimental compounds in health performance coffees compared to conventional types of coffees sold in the United States market. Food Funct 2020; 11:7561-7575. [PMID: 32820768 DOI: 10.1039/d0fo01674h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The United States is the largest coffee consuming country worldwide. Recently, in addition to cup quality, the focus on health promotion has increased significantly in the country, with launching of many brands with health claims, mainly highlighting the antioxidative and stimulating properties of the beverage. On the other hand, mycotoxins and, to a lesser extent, acrylamide, have raised concerns among consumers and health authorities. This study investigated the contents of the main bioactive compounds (caffeine, chlorogenic acids and their 1,5-γ-quinolactones, and trigonelline) in health performance coffees and compared them to those of conventional roasted coffees available on the U.S. market. The following categories were compared by ANOVA at p ≤ 0.05, followed by Fisher's test: 1 - health performance, 2 - gourmet and 3 - traditional, totaling 127 samples. As complementary results, the contents of acrylamide and ochratoxin A were evaluated in part of the samples (n = 58). The mean contents (g per 100 g) of bioactive compounds for categories 1 to 3, respectively, were 1.09, 1.11 and 1.07 for caffeine; 1.75, 1.88 and 1.34 for chlorogenic acids/lactones, and 0.63, 0.64 and 0.56 for trigonelline. The mean contents (μg kg-1) of acrylamide for categories 1 to 3, respectively, were 82, 71 and 85. Only about 7% of the evaluated samples presented quantifiable amounts of OTA and all of them were within the maximum limits established by health authorities. In general, the contents of bioactive and potentially harmful compounds were not consistently different among categories, with high and low individual amounts in all of them. Most health claims on labels related to the amount of bioactive compounds in health performance coffees were unjustified, suggesting the need for improvement in coffee labeling regulation in the U.S.
Collapse
Affiliation(s)
- Juliana dePaula
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core - NUPECAFÉ, NutritionInstitute, Federal University of Rio de Janeiro, Ilha do Fundão, CCS bloco J, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Sara C Cunha
- Laboratory of Bromatology and Hydrology LAQV-REQUIMTE-Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Ildi Revi
- Purity Coffee and Ally Coffee - Greenville, South Carolina EUA.
| | - Alessandro M Batista
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core - NUPECAFÉ, NutritionInstitute, Federal University of Rio de Janeiro, Ilha do Fundão, CCS bloco J, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Soraia V M D Sá
- Laboratory of Bromatology and Hydrology LAQV-REQUIMTE-Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Veronica Calado
- Chemistry School, Federal University of Rio de Janeiro, Brazil.
| | - José O Fernandes
- Laboratory of Bromatology and Hydrology LAQV-REQUIMTE-Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Adriano Cruz
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Brazil.
| | - Adriana Farah
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core - NUPECAFÉ, NutritionInstitute, Federal University of Rio de Janeiro, Ilha do Fundão, CCS bloco J, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
17
|
Han B, Fang C, Sha L, Jalalah M, Al-Assiri MS, Harraz FA, Cao Y. Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A. Food Chem 2020; 338:127827. [PMID: 32822900 DOI: 10.1016/j.foodchem.2020.127827] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite that is widely distributed in food products. Herein, we proposed a new fluorescent aptasensor for OTA detection by using cascade strand displacement reaction. The binding of OTA and OTA aptamer on magnetic beads surface inhibited its hybridization with complementary DNA, and subsequently initiated the strand displacement reaction that induced amplified fluorescence signal. By tracing fluorescence response, our method demonstrated an improved detection limit of 0.63 ng/mL, a short assay time of 110 min, and a satisfactory detection specificity by using ochratoxin B, aflatoxin B1, and zearalenone as control toxins. Recovery studies were conducted by spiking OTA in real food samples, including white wine, red wine, cereal drink, coffee beverage and tea beverage, and confirmed desirable accuracy and practical applicability of our method. Therefore, our method may have a great potential use in the food quality control in the future.
Collapse
Affiliation(s)
- Bing Han
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Cheng Fang
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Department of Critical Care Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingjun Sha
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - M S Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
|
19
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
20
|
Jonatova P, Dzuman Z, Prusova N, Hajslova J, Stranska-Zachariasova M. Occurrence of ochratoxin A and its stereoisomeric degradation product in various types of coffee available in the Czech market. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) belongs among the most frequently occurring mycotoxins in coffee. In order to investigate its contamination levels in products currently available in the market, a broad set of coffee samples (103 in total) collected between 2016 and 2018 in the Czech Republic was investigated. Aqueous-methanolic extracts purified by using immunoaffinity columns were analysed by ultra-performance liquid chromatography coupled with tandem mass spectrometry (U-HPLC-MS/MS). The undertaken study revealed a relatively low OTA contamination of roasted coffee (in the range 0.2-2.5 μg/kg with the mean concentration of 0.6 μg/kg, and 71% of positive samples). The roasted coffee samples did not exceed the maximum limit of 5 μg/kg set by 1881/2006/EC. With regard to instant coffee samples, OTA concentrations were considerably higher. All the samples were positive, with a mean concentration of 2.9 μg/kg (ranging from 0.6 to 12.8 μg/kg, with 100% of positive samples). One of the analysed samples of instant coffee even exceeded the maximum limit of 10 μg/kg (1881/2006/EC). The study further revealed a relatively high incidence of 14-(R)-OTA, stereoisomer of OTA (14-(S)-OTA), originating as its main degradation product. Its identity was confirmed by high resolution mass spectrometry (HRMS/MS). Most of the samples positive for OTA were also positive for this diastereoisomer, with signal intensities of approx. one-third to one half of the signal of 14-(S)-OTA.
Collapse
Affiliation(s)
- P. Jonatova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Z. Dzuman
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - N. Prusova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - J. Hajslova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | | |
Collapse
|
21
|
Nora NS, Feltrin ACP, Sibaja KVM, Furlong EB, Garda-Buffon J. Ochratoxin A reduction by peroxidase in a model system and grape juice. Braz J Microbiol 2019; 50:1075-1082. [PMID: 31338707 DOI: 10.1007/s42770-019-00112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 02/02/2023] Open
Abstract
This study aimed at evaluating the potential of the peroxidase (PO) enzyme to reduce ochratoxin A (OTA) levels and its application to grape juice. Both commercial PO and PO extracted from rice bran were evaluated, respectively, regarding their activity towards OTA in a model system. The affinity between PO and OTA was verified by the Michaelis-Menton constant and the maximum velocity parameters, resulting in 0.27 μM and 0.015 μM min-1 for the commercial enzyme, and 6.5 μM and 0.031 μM min-1 for PO extracted from rice bran, respectively. The lowest residual OTA levels occurred when 0.063 U mL-1 of the enzyme was applied. Under these conditions, the OTA reduction was 41% in 5 h for the commercial enzyme, and 59% in 24 h, for PO extracted from rice bran. When the extracted PO, with the activity of 0.063 U mL-1, was applied to whole grape juice, the OTA levels decreased to 17%, at 24 h. The capacity shown by PO for reducing OTA levels was confirmed in whole white grape juice, as a model system. This study may assist the wine industry to offer healthier products and add value to rice bran. Graphical abstract.
Collapse
Affiliation(s)
- Náthali Saião Nora
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Ana Carla Penteado Feltrin
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Karen Vanessa Marimón Sibaja
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Eliana Badiale Furlong
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Jaqueline Garda-Buffon
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
22
|
Sueck F, Hemp V, Specht J, Torres O, Cramer B, Humpf HU. Occurrence of the Ochratoxin A Degradation Product 2'R-Ochratoxin A in Coffee and Other Food: An Update. Toxins (Basel) 2019; 11:toxins11060329. [PMID: 31181754 PMCID: PMC6628416 DOI: 10.3390/toxins11060329] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Food raw materials can contain the mycotoxin ochratoxin A (OTA). Thermal processing of these materials may result in decreased OTA levels but also in the formation of the thermal isomerization product 2′R-ochratoxin A (2′R-OTA). So far, only 2′R-OTA levels reported from 15 coffee samples in 2008 are known, which is little when compared to the importance of coffee as a food and trading good. Herein, we present results from a set of model experiments studying the effect of temperatures between 120 °C and 270 °C on the isomerization of OTA to 2′R-OTA. It is shown that isomerization of OTA starts at temperatures as low as 120 °C. At 210 °C and above, the formation of 25% 2′R-OTA is observed in less than one minute. Furthermore, 51 coffee samples from France, Germany, and Guatemala were analyzed by HPLC-MS/MS for the presence of OTA and 2′R-OTA. OTA was quantified in 96% of the samples, while 2′R-OTA was quantifiable in 35% of the samples. The highest OTA and 2′R-OTA levels of 28.4 µg/kg and 3.9 µg/kg, respectively, were detected in coffee from Guatemala. The OTA:2′R-OTA ratio in the samples ranged between 2.5:1 and 10:1 and was on average 5.5:1. Besides coffee, 2′R-OTA was also for the first time detected in a bread sample and malt coffee powder.
Collapse
Affiliation(s)
- Franziska Sueck
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Vanessa Hemp
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Jonas Specht
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Olga Torres
- Laboratorio Diagnostico Molecular S.A, Guatemala City, Guatemala.
- Centro de Investigaciones en Nutrición y Salud, Guatemala City, Guatemala.
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| |
Collapse
|
23
|
Abstract
Ochratoxin A (OTA) is a widespread bioactive extrolite from secondary metabolism of fungi which presence in foods like coffee is of public health concern, particularly for heavy drinkers. Coffee is one of the most consumed and appreciated non-alcoholic beverage in the world. Its production from the plantation to the coffee cup involves several steps that would determine the final concentration of OTA in the beverage. This review gives an overview of OTA contamination in roasted coffee beans in different countries and mitigation strategies for OTA reduction.
Collapse
|
24
|
Durand N, Fontana A, Meile JC, Suàrez-Quiroz ML, Schorr-Galindo S, Montet D. Differentiation and quantification of the ochratoxin A producers Aspergillus ochraceus and Aspergillus westerdijkiae using PCR-DGGE. J Basic Microbiol 2018; 59:158-165. [PMID: 30240041 DOI: 10.1002/jobm.201800172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 11/11/2022]
Abstract
Ochratoxin A (OTA) is a nephrotoxic, teratogenic, immunotoxic, and carcinogenic mycotoxin which is produced in tropical zones mainly by Aspergillus carbonarius, A. niger, A. ochraceus, and A. westerdijkiae. A. ochraceus and A. westerdijkiae species are phenotypically and genomically very close but A. westerdijkiae produce OTA at a very higher level than A. ochraceus. These species have been differentiated recently. The DNA primer pairs which were drawn so far are not specific and a genomic region of the same size is amplified for both species or they are too specific, and in this case, the DNA of a single species is amplified. To help preventing OTA contamination of foodstuffs, the PCR-DGGE (Denaturing Gradient Gel Electrophoresis) method was used to discriminate between A. ochraceus and A. westerdijkiae DNA fragments of the same size but with different sequences and thus faster access to a diagnosis of the toxigenic potential of the fungal microflora. The proposed methodology was able to differentiate A. westerdijkiae from A. ochraceus with only one primer pairs in a single run. A calibration based on initial DNA content was obtained from image analysis of the DGGE gels and a method of quantification of the two strains was proposed.
Collapse
Affiliation(s)
- Noël Durand
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France
| | - Angélique Fontana
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France
| | - Jean-Christophe Meile
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France
| | | | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France
| | - Didier Montet
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France
| |
Collapse
|
25
|
|
26
|
Dahal S, Lee HJ, Gu K, Ryu D. Heat Stability of Ochratoxin A in an Aqueous Buffered Model System. J Food Prot 2016; 79:1748-1752. [PMID: 28221848 DOI: 10.4315/0362-028x.jfp-16-160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ochratoxin A (OTA) represents one of the most widespread mycotoxins in agricultural commodities in the world and is considered a possible human carcinogen with its potent nephrotoxicity. OTA is stable under most food processing conditions; however, higher-temperature treatment may reduce OTA content in foods. Since OTA can be found in processed products destined for both human and animal consumption, factors affecting its stability or reduction during thermal processes were investigated here. The reduction of OTA was measured during various heating times (up to 60 min) at different temperatures (100, 125, 150, 175, and 200°C) in aqueous buffer solutions at different pHs (pH 4, 7, and 10). Quantification of OTA was carried out using high-performance liquid chromatography with fluorescence detection. The results showed that the rate and extent of OTA reduction were dependent on pH, processing time, and temperature; greater than 90% OTA reduction was achieved at 200°C for all treatments except pH 4. After processing under an alkaline condition (pH 10) at 100°C for 60 min, about 50% of the OTA was lost, while after 60 min under neutral and acidic conditions at 100°C, significant reductions of OTA were not shown.
Collapse
Affiliation(s)
- Samjhana Dahal
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA
| | - Hyun Jung Lee
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA
| | - Kejia Gu
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA.,Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, People's Republic of China
| | - Dojin Ryu
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA
| |
Collapse
|
27
|
Santos JR, Lopo M, Rangel AO, Lopes JA. Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Vidal A, Sanchis V, Ramos AJ, Marín S. Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products. Food Chem 2015; 178:276-86. [PMID: 25704712 DOI: 10.1016/j.foodchem.2015.01.098] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 11/18/2022]
Abstract
The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), de-epoxy-deoxynivalenol (DOM-1) and ochratoxin A (OTA) during thermal processing has been studied. Baking temperature, time and initial mycotoxin concentration in the raw materials were assayed as factors. An improved UPLC-MS/MS method to detect DON, DON-3-glucoside, 3-ADON, 15-ADON and DOM-1 in wheat baked products was developed in the present assay. The results highlighted the importance of temperature and time in mycotoxin stability in heat treatments. OTA is more stable than DON in a baking treatment. Interestingly, the DON-3-glucoside concentrations increased (>300%) under mild baking conditions. On the other hand, it was rapidly reduced under harsh conditions. The 3-ADON decreased during the heat treatment; while DOM-1 increased after the heating process. Finally, the data followed first order kinetics for analysed mycotoxins and thermal constant rates (k) were calculated. This parameter can be a useful tool for prediction of mycotoxin levels.
Collapse
Affiliation(s)
- Arnau Vidal
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain
| | - Vicente Sanchis
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain
| | - Antonio J Ramos
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain
| | - Sonia Marín
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| |
Collapse
|
29
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Toman J, Bazin I, Roubal T. Transfer of ochratoxin A into tea and coffee beverages. Toxins (Basel) 2014; 6:3438-53. [PMID: 25525684 PMCID: PMC4280543 DOI: 10.3390/toxins6123438] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is nephrotoxic, hepatotoxic, immunotoxic, neurotoxic, reprotoxic, teratogenic, and carcinogenic (group 2B), being characterized by species and sex differences in sensitivity. Despite the fact that OTA is in some aspects a controversial topic, OTA is the most powerful renal carcinogen. The aim of this study was to make a small survey concerning OTA content in black tea, fruit tea, and ground roasted coffee, and to assess OTA transfer into beverages. OTA content was measured using a validated and accredited HPLC-FLD method with a limit of quantification (LOQ) of 0.35 ng/g. The OTA amount ranged from LOQ up to 250 ng/g in black tea and up to 104 ng/g in fruit tea. Black tea and fruit tea, naturally contaminated, were used to prepare tea infusions. The transfer from black tea to the infusion was 34.8% ± 1.3% and from fruit tea 4.1% ± 0.2%. Ground roasted coffee naturally contaminated at 0.92 ng/g was used to prepare seven kinds of coffee beverages. Depending on the type of process used, OTA transfer into coffee ranged from 22.3% to 66.1%. OTA intakes from fruit and black tea or coffee represent a non-negligible human source.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Ingrid Bazin
- Ecole des mines d'Ales, 6 av de Clavieres, 30100 Ales Cedex, France.
| | - Tomas Roubal
- National Reference Laboratory for Biomarkers of Mycotoxins and Mycotoxins in Food, Institute of Public Health in Usti nad Labem, Regional Branch Hradec Kralove, 50002 Hradec Kralove, Czech Republic.
| |
Collapse
|
30
|
|
31
|
Toschi TG, Cardenia V, Bonaga G, Mandrioli M, Rodriguez-Estrada MT. Coffee silverskin: characterization, possible uses, and safety aspects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10836-10844. [PMID: 25321090 DOI: 10.1021/jf503200z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The reuse of coffee silverskin (CS), the main waste product of the coffee-roasting industry, could be an alternative to its environmental disposal. However, CS could also contain undesirable compounds, such as ochratoxin A (OTA) and phytosterol oxidation products (POPs). A study on the composition of CS (caffeine, moisture, dietary fibers, carbohydrates, and polyphenol contents) was carried out, with emphasis on OTA and POPs for safety reasons. The lipid fraction showed significant amounts of linoleic acid and phytosterols (7.0 and 12.1% of lipid fraction). Noticeable levels of POPs (114.11 mg/100 g CS) were found, and the phytosterol oxidation rate varied from 27.6 to 48.1%. The OTA content was 18.7-34.4 μg/kg CS, which is about 3 times higher than the European Commission limits for coffee products. The results suggest that CS could be used as a source of cellulose and/or bioactive compounds; however, the contents of POPs and OTA might represent a risk for human safety if intended for human or livestock use.
Collapse
Affiliation(s)
- Tullia Gallina Toschi
- Food Waste Innovation Centre, Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna , Viale Fanin 40, 40127 Bologna, Italy
| | | | | | | | | |
Collapse
|
32
|
Casal S, Vieira T, Cruz R, Cunha SC. Ochratoxin A in commercial soluble coffee and coffee substitutes. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
|
34
|
Ribeiro VS, Leitão AE, Ramalho JC, Lidon FC. Chemical characterization and antioxidant properties of a new coffee blend with cocoa, coffee silverskin and green coffee minimally processed. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Effect of different roasting levels and particle sizes on ochratoxin A concentration in coffee beans. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Durand N, El Sheikha AF, Suarez-Quiros ML, Oscar GR, Nganou ND, Fontana-Tachon A, Montet D. Application of PCR-DGGE to the study of dynamics and biodiversity of yeasts and potentially OTA producing fungi during coffee processing. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Vanesa D, Ana P. Occurrence of Ochratoxin A in coffee beans, ground roasted coffee and soluble coffee and method validation. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Daskaya-Dikmen C, Heperkan D. Fumonisin production of black Aspergilliin vitro, fumonisin and ochratoxin A production in figs of positive strains and their growth assessment. TOXIN REV 2013. [DOI: 10.3109/15569543.2012.756524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Budryn G, Nebesny E, Żyżelewicz D, Oracz J, Miśkiewicz K, Rosicka-Kaczmarek J. Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100324] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|