1
|
Yang X, Liu W, Zhang X, Sun M, Yi H, Liao S, Xiang R, Zhang H, Yang Q, Mori H. Glycerol-derived reuterin regulates human intestinal microbiota and metabolites. Front Microbiol 2024; 15:1454408. [PMID: 39493857 PMCID: PMC11527728 DOI: 10.3389/fmicb.2024.1454408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Reuterin, a mixture of different forms of 3-hydroxypropanal (3-HPA), including HPA hydrate and HPA dimer, is an antimicrobial compound converted from glycerol by Lactobacillus reuteri and other strains. Although its antimicrobial function may be related to its interaction with thiol groups, its temperature stability and effect on the gut environment remain unclear. The present study evaluated the antimicrobial effects and activity of reuterin against Escherichia coli and Salmonella typhimurium. Utilization of a reliable in vitro gut microbiome fermentation system revealed that reuterin has a modulatory effect on the gut microbial community. Reuterin treatment completely inhibited H2 and NH3 production in the gut and significantly enhanced the synthesis of branched short-chain fatty acids. 16s rRNA sequencing indicated that reuterin promoted the growth of Proteobacteria and Bacteroidetes in the in vitro system and significantly modulated gut microbiota composition.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoling Zhang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Minhua Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rong Xiang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Hirotada Mori
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
2
|
Niboucha N, Jubinville É, Péloquin L, Clop A, Labrie S, Goetz C, Fliss I, Jean J. Reuterin Enhances the Efficacy of Peracetic Acid Against Multi-species Dairy Biofilm. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10351-y. [PMID: 39264555 DOI: 10.1007/s12602-024-10351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.
Collapse
Affiliation(s)
- Nissa Niboucha
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Éric Jubinville
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Laurence Péloquin
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Amandine Clop
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Coralie Goetz
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Ismaïl Fliss
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Julie Jean
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Wen L, He H, Liu Y, Wang W, Du P, Hu P, Cao J, Ma Y. Research progress on natural preservatives of meat and meat products: classifications, mechanisms and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7085-7095. [PMID: 38546416 DOI: 10.1002/jsfa.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Meat and meat products are highly susceptible to contamination by microorganisms and foodborne pathogens, which cause serious economic losses and health hazards. The large consumption and waste of meat and meat products means that there is a need for safe and effective preservation methods. Furthermore, toxicological aspects of chemical preservation techniques related to major health problems have sparked controversies and have prompted consumers and producers to turn to natural preservatives. Consequently, natural preservatives are being increasingly used to ensure the safety and quality of meat products as a result of customer preferences and biological efficacy. However, information on the current status of these preservatives is scattered and a comprehensive review is lacking. Here, we review current knowledge on the classification, mechanisms of natural preservatives and their applications in the preservation of meat and meat products, and also discuss the potential of natural preservatives to improve the safety of meat and meat products. The current status and the current research gaps in the extraction, application and controlled-release of natural antibacterial agents for meat preservation are also discussed in detail. This review may be useful to the development of efficient food preservation techniques in the meat industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Wen
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai, China
| | - Yaobo Liu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Weiting Wang
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengfei Du
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Hu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianfang Cao
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanli Ma
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
4
|
Yang P, Liao X. High pressure processing plus technologies: Enhancing the inactivation of vegetative microorganisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:145-195. [PMID: 38906586 DOI: 10.1016/bs.afnr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
High pressure processing (HPP) is a non-thermal technology that can ensure microbial safety without compromising food quality. However, the presence of pressure-resistant sub-populations, the revival of sub-lethally injured (SLI) cells, and the resuscitation of viable but non-culturable (VBNC) cells pose challenges for its further development. The combination of HPP with other methods such as moderate temperatures, low pH, and natural antimicrobials (e.g., bacteriocins, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils) or other non-thermal processes (e.g., CO2, UV-TiO2 photocatalysis, ultrasound, pulsed electric fields, ultrafiltration) offers feasible alternatives to enhance microbial inactivation, termed as "HPP plus" technologies. These combinations can effectively eliminate pressure-resistant sub-populations, reduce SLI or VBNC cell populations, and inhibit their revival or resuscitation. This review provides an updated overview of microbial inactivation by "HPP plus" technologies and elucidates possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, P.R. China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; Beijing Key laboratory for Food Non-thermal processing, Beijing, P.R. China.
| |
Collapse
|
5
|
Sun MC, Hu ZY, Li DD, Chen YX, Xi JH, Zhao CH. Application of the Reuterin System as Food Preservative or Health-Promoting Agent: A Critical Review. Foods 2022; 11:foods11244000. [PMID: 36553742 PMCID: PMC9778575 DOI: 10.3390/foods11244000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The reuterin system is a complex multi-component antimicrobial system produced by Limosilactobacillus reuteri by metabolizing glycerol. The system mainly includes 3-hydroxypropionaldehyde (3-HPA, reuterin), 3-HPA dimer, 3-HPA hydrate, acrolein and 3-hydroxypropionic acid, and has great potential to be applied in the food and medical industries due to its functional versatility. It has been reported that the reuterin system possesses regulation of intestinal flora and anti-infection, anti-inflammatory and anti-cancer activities. Typically, the reuterin system exerts strong broad-spectrum antimicrobial properties. However, the antimicrobial mechanism of the reuterin system remains unclear, and its toxicity is still controversial. This paper presents an updated review on the biosynthesis, composition, biological production, antimicrobial mechanisms, stability, toxicity and potential applications of the reuterin system. Challenges and opportunities of the use of the reuterin system as a food preservative or health-promoting agent are also discussed. The present work will allow researchers to accelerate their studies toward solving critical challenges obstructing industrial applications of the reuterin system.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Plant Science, Jilin University, Changchun 130062, China
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zi-Yi Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| | - Chang-Hui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| |
Collapse
|
6
|
Rathod NB, Nirmal NP, Pagarkar A, Özogul F, Rocha JM. Antimicrobial Impacts of Microbial Metabolites on the Preservation of Fish and Fishery Products: A Review with Current Knowledge. Microorganisms 2022; 10:773. [PMID: 35456823 PMCID: PMC9028172 DOI: 10.3390/microorganisms10040773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial metabolites have proven effects to inhibit food spoilage microbiota, without any development of antimicrobial resistance. This review provides a recent literature update on the preservative action of metabolites derived from microorganisms on seafood. Fish and fishery products are regarded as a myriad of nutrition, while being highly prone to spoilage. Several proven controversies (antimicrobial resistance and health issues) related to the use of synthetic preservatives have caused an imminent problem. The demand for minimally processed and naturally preserved clean-label fish and fishery products is on rise. Metabolites derived from microorganisms have exhibited diverse preservation capacities on fish and fishery products' spoilage. Inclusions with other preservation techniques, such as hurdle technology, for the shelf-life extension of fish and fishery products are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Postharvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Raigad 402116, Maharashtra, India;
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Asif Pagarkar
- Marine Biological Research Station, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Ratnagiri 415612, Maharashtra, India;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
8
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
9
|
Soltani S, Couture F, Boutin Y, Ben Said L, Cashman-Kadri S, Subirade M, Biron E, Fliss I. In vitro investigation of gastrointestinal stability and toxicity of 3-hyrdoxypropionaldehyde (reuterin) produced by Lactobacillus reuteri. Toxicol Rep 2021; 8:740-746. [PMID: 33868958 PMCID: PMC8042431 DOI: 10.1016/j.toxrep.2021.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Reuterin (3-hyrdoxypropionaldehyde (3-HPA)) is a highly potent metabolite of Lactobacillus reuteri. Reuterin is highly stable in gastrointestinal condition. Human colorectal adenocarcinoma cells’ viability and membrane integrity remained unaltered by reuterin. No significant hemolytic activity was detected. Reuterin is a promising therapeutic and/or food preservative.
Reuterin (3-hyrdoxypropionaldehyde (3-HPA)) is a highly potent metabolite of L. reuteri, which has applications in food, health, and veterinary sectors. Similar to other natural antimicrobial compounds, the approval of reuterin as a bio-preservative or therapeutic agent by regulatory agencies relies on sufficient data on its cytotoxicity and behavior in the gastrointestinal environment. Although the antimicrobial activity of reuterin has been broadly studied, its safety and toxicity are yet to be explored in detail. In this study, the stability and activity of reuterin were investigated in the gastrointestinal tract using in vitro models simulating gastrointestinal conditions. In addition, hemolytic activity and in vitro cytotoxicity of reuterin were evaluated by neutral red assay and lactate dehydrogenase (LDH) colorimetric assay using the same cell line. Activity of reuterin was observed to be stable during gastrointestinal transit. Viability and membrane integrity of cells remained unaltered by reuterin up to 1080 mM concentration. Furthermore, no hemolysis was observed in blood cells exposed to 270 mM reuterin. This study provides unique and highly relevant in vitro data regarding gastrointestinal behavior and toxicity of reuterin. In conclusion, the current study indicates that within a certain concentration range, reuterin can be safely used in bio-preservation and therapeutics applications. However, further in vivo studies are required to confirm these findings.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Quebec, Canada
| | - Frédéric Couture
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Quebec, Canada.,TransBIOTech, 201 Rue Mgr Bourget, Lévis, Quebec, G6V 6Z9, Canada
| | - Yvan Boutin
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Quebec, Canada.,TransBIOTech, 201 Rue Mgr Bourget, Lévis, Quebec, G6V 6Z9, Canada
| | - Laila Ben Said
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Quebec, Canada
| | - Samuel Cashman-Kadri
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Quebec, Canada
| | - Muriel Subirade
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Quebec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec, Quebec, Canada
| | - Eric Biron
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec, Quebec, Canada
| | - Ismail Fliss
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Quebec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec, Quebec, Canada
| |
Collapse
|
10
|
Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 2021; 20:1800-1828. [PMID: 33594773 DOI: 10.1111/1541-4337.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
11
|
Al-Nabulsi AA, Osaili TM, Oqdeh SB, Olaimat AN, Jaradat ZW, Ayyash M, Holley RA. Antagonistic effects of Lactobacillus reuteri against Escherichia coli O157:H7 in white-brined cheese under different storage conditions. J Dairy Sci 2021; 104:2719-2734. [PMID: 33455758 DOI: 10.3168/jds.2020-19308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
This study aimed to investigate the survival of the foodborne pathogen Escherichia coli O157:H7 in white-brined cheeses as influenced by the presence of Lactobacillus reuteri. The white cheeses were made from pasteurized bovine milk inoculated with E. coli O157:H7 (cocktail of 3 strains) to achieve ∼5 log10 cfu/g with absence or presence of Lb. reuteri (∼6 log10 cfu/g). Cheese samples were brined in 10% or 15% NaCl solution and stored at 10°C and 25°C for 28 d. The white-brined cheeses were assessed for salt content, pH, water activity (Aw), and numbers of E. coli O157:H7, Lb. reuteri, nonstarter lactic acid bacteria (NSLAB), yeasts, and molds. Results showed that E. coli O157:H7 survived in cheese stored in both brine solutions at 10°C and 25°C regardless of the presence of Lb. reuteri. A substantial reduction was observed in cheese stored in 10% NaCl brine at 25°C, followed by cheese stored in 15% NaCl brine at 10°C by 2.64 and 2.16 log10 cfu/g, respectively, in the presence of Lb. reuteri and by 1.02 and 1.87 log10 cfu/g, respectively, in the absence of Lb. reuteri under the same conditions. The pathogen in brine solutions survived but at a lower rate. Furthermore, the growth of Lb. reuteri and NSLAB were enhanced or slightly decreased in cheese and brine by 28 d, respectively. The salt concentrations of cheese ranged from 4 to 6% and 5 to 7% (wt/wt), during 28-d ripening in 10 and 15% brine, respectively. Values of pH and Aw slightly increased at d 1 after exposure to brine and reached 4.69 to 6.08 and 0.91 to 0.95, respectively, in all treatments. Therefore, the addition of Lb. reuteri can be used as a biopreservation method to inhibit the survival of E. coli O157:H7 in white-brined cheese when combined with the appropriate temperature, NaCl level, and storage time.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Clinical Nutrition and Dietetics, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Saba B Oqdeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13115, Jordan
| | - Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mutamed Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| | - Richard A Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
12
|
Agregán R, Munekata PE, Zhang W, Zhang J, Pérez-Santaescolástica C, Lorenzo JM. High-pressure processing in inactivation of Salmonella spp. in food products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Begunova AV, Rozhkova IV, Shirshova TI, Glazunova OA, Fedorova TV. Optimization of Cultivation Conditions for the Lactobacillus reuteri LR1 Strain to Improve the Biosynthesis of Bacteriocin-Like Substances. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820090033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Li H, Sun X, Liao X, Gänzle M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr Rev Food Sci Food Saf 2020; 19:3476-3500. [PMID: 33337070 DOI: 10.1111/1541-4337.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023]
Abstract
High-pressure processing is among the most widely used nonthermal intervention to reduce pathogenic and spoilage bacteria in meat and meat products. However, resistance of pathogenic bacteria strains in meats at the current maximum commercial equipment of 600 MPa questions the ability of inactivation by its application in meats. Pathogens including Escherichia coli, Listeria, and Salmonelle, and spoilage microbiota including lactic acid bacteria dominate in raw meat, ready-to-eat, and packaged meat products. Improved understanding on the mechanisms of the pressure resistance is needed for optimizing the conditions of pressure treatment to effectively decontaminate harmful bacteria. Effective control of the pressure-resistant pathogens and spoilage organisms in meats can be realized by the combination of high pressure with application of mild temperature and/or other hurdles including antimicrobial agents and/or competitive microbiota. This review summarized applications, mechanisms, and challenges of high pressure on meats from the perspective of microbiology, which are important for improving the understanding and optimizing the conditions of pressure treatment in the future.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Isayenko OY, Knysh OV, Kotsar OV, Ryzhkova TN, Dyukareva GI. Simultaneous and sequential influence of metabolite complexes of Lactobacillus rhamnosus and Saccharomyces boulardii and antibiotics against poly-resistant Gram-negative bacteria. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
For the first time the poly-resistant strains of Gram-negative microorganisms were studied for the sensitivity to combined simultaneous and sequential influence of metabolic complexes of Lactobacillus rhamnosus GG and Saccharomyces boulardii, obtained by the author’s method without using the growth media, with antibiotics. The synergic activity of antibacterial preparations and metabolic complexes of L. rhamnosus GG and S. boulardii were studied using modified disk-diffusive method of Kirby-Bauer. During the sequential method of testing (at first the microorganisms were incubated with structural components and metabolites, then their sensitivity to the antibacterial preparations was determined), we observed increase in the diameters of the zones of growth inhibition of Pseudomonas aeruginosa PR to the typical antibiotics (gentamicin, amіcyl, ciprofloxacin, сefotaxime) and non-typical (lincomycin, levomycetin) depending on the tested combinations. Acinetobacter baumannii PR exhibited lower susceptibility: growth inhibition was seen for the combination with ciprofloxacin, сefotaxime, levomycetin. Susceptibility of Lelliottia amnigena (Enterobacter amnigenus) PR increased to levofloxacin, lincomycin. The zones of growth inhibition of Klebsiella pneumoniae PR increased to gentamicin, amіcyl, tetracycline, сeftriaxone. Maximum efficiency was determined during sequential combination of antibiotics with separate metabolic complexes of L. rhamnosus and S. boulardii, and also their combination (to 15.2, 20.2 and 15.4 mm respectively) compared with their simultaneous use (to 12.2, 15.2 and 13.0 mm respectively) for all the tested poly-resistant pathogens, regardless of the mechanism of action of antibacterial preparation. Metabolic complexes of L. rhamnosus GG and S. boulardii, due to increase in the susceptibility of microorganisms, can decrease the therapeutic concentration of antibiotic, slow the probability of the development of resistance of microorganisms, and are therefore promising candidates for developing “accompanying medications” to antibiotics and antimicrobial preparations of new generation.
Collapse
|
16
|
Identification of novel genes involved in high hydrostatic pressure resistance of Escherichia coli. Food Microbiol 2019; 78:171-178. [DOI: 10.1016/j.fm.2018.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/19/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022]
|
17
|
Purification of lactoperoxidase from bovine milk by integrating the technique of salting-out extraction with cation exchange chromatographic separation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00056-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Argyri AA, Papadopoulou OS, Nisiotou A, Tassou CC, Chorianopoulos N. Effect of high pressure processing on the survival of Salmonella Enteritidis and shelf-life of chicken fillets. Food Microbiol 2018; 70:55-64. [DOI: 10.1016/j.fm.2017.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/04/2017] [Accepted: 08/27/2017] [Indexed: 10/19/2022]
|
19
|
Franco I, Pérez MD, Conesa C, Calvo M, Sánchez L. Effect of technological treatments on bovine lactoferrin: An overview. Food Res Int 2017; 106:173-182. [PMID: 29579916 DOI: 10.1016/j.foodres.2017.12.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023]
Abstract
Lactoferrin (LF) is a multifunctional protein that exerts important activities in the neonate through its presence in milk, and also in other external mucosas, acting as a defense protein of innate immunity. The addition of bovine LF to infant formula and also to other functional products and cosmetics has increased during the last decades. Consequently, it is essential to know the effect that the technological processes, necessary to elaborate those products, have on LF activity. In this study, we have revised the effect of classical treatments on lactoferrin structure and activity, such as heat treatment or drying, and also of emerging technologies, like high pressure or pulsed electric field. The results of the studies included in this review indicate that LF stability is dependent on its level of iron-saturation and on the characteristics of the treatment media. Furthermore, the studies revised here reveal that the non-thermal treatments are interesting alternatives to the traditional ones, as they protect better the structure and activity of lactoferrin. It is also clear the need for research on LF encapsulation by different ways, to protect its properties before it reaches the intestine. All this knowledge would allow designing processes less harmful for LF, thus maintaining all its functionality.
Collapse
Affiliation(s)
- Indira Franco
- Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Campus Metropolitano Víctor Levi Sasso, Panamá, Panamá
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Miguel Servet, 177, 50013 Zaragoza, Spain.
| |
Collapse
|
20
|
Domínguez Avila JA, Wall Medrano A, Ruiz Pardo CA, Montalvo González E, González Aguilar GA. Use of nonthermal technologies in the production of functional beverages from vegetable ingredients to preserve heat‐labile phytochemicals. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- J. Abraham Domínguez Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC, Carretera a la Victoria km 0.6Hermosillo Sonora 83304 Mexico
| | - Abraham Wall Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/nCiudad Juárez Chihuahua 32310 Mexico
| | - Cinthya A. Ruiz Pardo
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC, Carretera a la Victoria km 0.6Hermosillo Sonora 83304 Mexico
| | - Efigenia Montalvo González
- Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av Tecnológico No 2595, Lagos del CountryTepic Nayarit 63175 Mexico
| | - Gustavo A. González Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC, Carretera a la Victoria km 0.6Hermosillo Sonora 83304 Mexico
| |
Collapse
|
21
|
Liu HB, Li P, Sun C, Du XJ, Zhang Y, Wang S. Inhibitor-Assisted High-Pressure Inactivation of Bacteria in Skim Milk. J Food Sci 2017; 82:1672-1681. [DOI: 10.1111/1750-3841.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Hai-bin Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Ping Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Chang Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Xin-jun Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology & Business Univ. (BTBU); Beijing 100048 China
| |
Collapse
|
22
|
Guo Y, Li M, Han H, Cai J. Salmonella enterica serovar Choleraesuis on fresh-cut cucumber slices after reduction treatments. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Gayán E, Govers SK, Michiels CW, Aertsen A. Severely Heat Injured Survivors of E. coli O157:H7 ATCC 43888 Display Variable and Heterogeneous Stress Resistance Behavior. Front Microbiol 2016; 7:1845. [PMID: 27917163 PMCID: PMC5114269 DOI: 10.3389/fmicb.2016.01845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 12/02/2022] Open
Abstract
Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP) shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation.
Collapse
Affiliation(s)
- Elisa Gayán
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Sander K Govers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Chris W Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| |
Collapse
|
24
|
Fernández-Cruz ML, Martín-Cabrejas I, Pérez-Del Palacio J, Gaya P, Díaz-Navarro C, Navas JM, Medina M, Arqués JL. In vitro toxicity of reuterin, a potential food biopreservative. Food Chem Toxicol 2016; 96:155-9. [PMID: 27495826 DOI: 10.1016/j.fct.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/24/2022]
Abstract
Reuterin has a high potential as a food preservative due to both its chemical characteristics and its antimicrobial activity against food-borne pathogens and spoilage bacteria. However, there is a lack of information about its toxicity and its capacity to interfere with the metabolism of drugs by inhibiting cytochrome P450 (CYP) activity. The results of this study indicated that reuterin exhibited a moderate cytotoxicity in the human hepatoma cell line HepG2 according to assays measuring three different endpoints in the same set of cells. Reuterin was much less toxic than acrolein and only four times more toxic than diacetyl, a generally recognized as safe flavoring compound. In vitro experiments utilizing human liver microsomes showed that reuterin presents low possibility of displaying in vivo drug interactions by inhibition of CYP3A4, CYP2D6, and CYP2C9. Therefore, reuterin can be considered a promising food biopreservative, although additional toxicology research is needed before permission for use can be granted.
Collapse
Affiliation(s)
- María L Fernández-Cruz
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7, Madrid, Spain.
| | - Izaskun Martín-Cabrejas
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7, Madrid, Spain.
| | - José Pérez-Del Palacio
- Fundación Centro de Excelencia, Investigación de Medicamentos Innovadores de Andalucía (MEDINA), Parque Tecnológico Ciencias de la Salud, Granada, Spain.
| | - Pilar Gaya
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7, Madrid, Spain.
| | - Caridad Díaz-Navarro
- Fundación Centro de Excelencia, Investigación de Medicamentos Innovadores de Andalucía (MEDINA), Parque Tecnológico Ciencias de la Salud, Granada, Spain.
| | - José M Navas
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7, Madrid, Spain.
| | - Margarita Medina
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7, Madrid, Spain.
| | - Juan L Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7, Madrid, Spain.
| |
Collapse
|
25
|
Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology - A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Montiel R, Martín-Cabrejas I, Peirotén Á, Medina M. Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pressure treatments on the characteristics of cooked ham. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Montiel R, Martín-Cabrejas I, Medina M. Natural antimicrobials and high-pressure treatments on the inactivation of Salmonella Enteritidis and Escherichia coli O157:H7 in cold-smoked salmon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2573-2578. [PMID: 26268416 DOI: 10.1002/jsfa.7378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND High hydrostatic pressure (HHP) combined with reuterin and lactoperoxidase system (LPS) has exerted antimicrobial activity against Listeria monocytogenes in cold-smoked salmon at chilled temperatures. Therefore the purpose of this work was to evaluate the effect of HHP combined with reuterin, LPS and lactoferrin (LF) on the survival of Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli O157:H7 in cold-smoked salmon stored at 4 and 10 °C. RESULTS Salmonella Enteritidis and E. coli O157:H7 were reduced more than 3 log colony-forming units (CFU) g(-1) by the pressure treatment (450 MPa/5 min). LPS slightly diminished pathogen levels throughout storage, whereas no effect was recorded when reuterin or LF was added. The Salmonella population was below the detection limit (<1 log CFU g(-1) ) during the storage of HHP-treated smoked salmon at 4 and 10 °C. The antimicrobial activity of HHP against E. coli O157:H7 was increased when 450 MPa was applied in combination with LPS in cold-smoked salmon at 4 and 10 °C. CONCLUSION HHP at 450 MPa/5 min inactivated S. Enteritidis in cold-smoked salmon and in combination with LPS would be useful as a hurdle technology approach against E. coli O157:H7, even under mild temperature abuse conditions. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raquel Montiel
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| |
Collapse
|
28
|
de Alba M, Bravo D, Medina M. Inactivation of Listeria monocytogenes and Salmonella Enteritidis in dry-cured ham by combined treatments of high pressure and the lactoperoxidase system or lactoferrin. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|