1
|
Hassan HF, Zgheib K, Iskandar CF, Chalak A, Alwan N, Abiad MG. Exposure to mycotoxins from the consumption of corn-based breakfast cereals in the United Arab Emirates. Sci Rep 2024; 14:25761. [PMID: 39468151 PMCID: PMC11519516 DOI: 10.1038/s41598-024-74529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Corn-based breakfast cereals, known as cornflakes, have become a common breakfast choice worldwide, recognized for their convenience and versatility. However, mycotoxins can contaminate these products, adversely affecting human health. This study assessed the occurrence of major mycotoxins (AFB1, OTA, DON, ZEA, and FUM) in cornflake stock-keeping units (SKUs) marketed in the United Arab Emirates (UAE). It also evaluated the effect of different independent variables (country of origin, temperature on the production day, storage time, presence of chocolate, bran, and nut ingredients) and estimated the exposure levels of the UAE population to these mycotoxins and the associated risk factors. Seventy-six distinct cornflake SKUs were identified through a market screening and tested for mycotoxins using the Enzyme-Linked Immunosorbent Assay (ELISA) technique. AFB1, OTA, ZEA, FUM, and DON were detected in 23.7, 48.7, 27.6, 9.2 and 88.2% of the samples, respectively. The mean concentrations among positive samples were 2.0, 1.0, 10.14, 584.9, and 90.6 μg/kg, respectively. Except for AFB1, the average mycotoxin levels in samples were below the established limits by the European Union (EU). Among positive samples, none exceeded the US FDA limits for all mycotoxins, and only one exceeded the CODEX limit for FUM. On the other hand, four (5.3%), one (1.3%), one (1.3%), and one (1.3%) SKU exceeded EU limits for AFB1, OTA, FUM, and ZEA, respectively. The country of origin (developing vs. developed countries) exhibited a significant effect on AFB1 presence (p < 0.0001). Furthermore, higher temperature on the production day was associated with significantly higher AFB1 occurrence (p = 0.009). Moreover, the presence of chocolate ingredient had a borderline significant effect on AFB1 (p = 0.05) and a significant effect on OTA (p = 0.002), with higher percentages observed in SKUs containing chocolate. However, no significant effects were found for storage time or the presence of bran and nut ingredients in the cornflakes. On the other hand, the HQ values were below 1 for all mycotoxins, indicating low risk. MoE values exceeded 10,000 among regular cornflake consumers, except for FUM, suggesting minimal risk. Liver cancer risk was 0.0032 cases per 100,000 people per year. Weekly OTA exposure was 0.133 ng/kg BW, below PTWI (Provisional Tolerable Weekly Intake).
Collapse
Affiliation(s)
- Hussein F Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Karen Zgheib
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Christelle F Iskandar
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ali Chalak
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Nisreen Alwan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
| | - Mohamad G Abiad
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
- Laboratories for the Environment, Agriculture, and Food (LEAF), Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
2
|
Ciaccheri L, De Girolamo A, Cervellieri S, Lippolis V, Mencaglia AA, Pascale M, Mignani AG. Low-Cost Pocket Fluorometer and Chemometric Tools for Green and Rapid Screening of Deoxynivalenol in Durum Wheat Bran. Molecules 2023; 28:7808. [PMID: 38067538 PMCID: PMC10708224 DOI: 10.3390/molecules28237808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cereal crops are frequently contaminated by deoxynivalenol (DON), a harmful type of mycotoxin produced by several Fusarium species fungi. The early detection of mycotoxin contamination is crucial for ensuring safety and quality of food and feed products, for preventing health risks and for avoiding economic losses because of product rejection or costly mycotoxin removal. A LED-based pocket-size fluorometer is presented that allows a rapid and low-cost screening of DON-contaminated durum wheat bran samples, without using chemicals or product handling. Forty-two samples with DON contamination in the 40-1650 µg/kg range were considered. A chemometric processing of spectroscopic data allowed distinguishing of samples based on their DON content using a cut-off level set at 400 µg/kg DON. Although much lower than the EU limit of 750 µg/kg for wheat bran, this cut-off limit was considered useful whether accepting the sample as safe or implying further inspection by means of more accurate but also more expensive standard analytical techniques. Chemometric data processing using Principal Component Analysis and Quadratic Discriminant Analysis demonstrated a classification rate of 79% in cross-validation. To the best of our knowledge, this is the first time that a pocket-size fluorometer was used for DON screening of wheat bran.
Collapse
Affiliation(s)
- Leonardo Ciaccheri
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Annalisa De Girolamo
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Salvatore Cervellieri
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Vincenzo Lippolis
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Andrea Azelio Mencaglia
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Michelangelo Pascale
- CNR—Istituto di Scienze dell’Alimentazione (ISA), Via Roma, 64, 83100 Avellino, Italy;
| | - Anna Grazia Mignani
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| |
Collapse
|
3
|
Gómez M, Casado A, Caro I. Assessing the Effect of Flour (White or Whole-Grain) and Process (Direct or Par-Baked) on the Mycotoxin Content of Bread in Spain. Foods 2023; 12:4240. [PMID: 38231598 DOI: 10.3390/foods12234240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Bread is the staple food in many parts of the world. Like other foods, bread can contain mycotoxins resulting from microbial development throughout the supply chain (from field to table). In this study, baguette-style bread from small artisanal bakeries (direct) and supermarkets (par-baked loaves made by large companies) in Castile and Leon (Spain) was analyzed. Both white and whole-grain breads were collected from all retail outlets. The mycotoxins analyzed included deoxynivalenol (DON), ochratoxin (OTA), and aflatoxin B1 and B2 (AFB1, AFB2). All of the bread samples studied had mycotoxin levels below the maximum limits established by legislation. The presence of DON was higher than that of OTA, and AFB1 and AFB2 could not be quantified. Industrial breads had higher levels of DON and OTA (only in the whole-grain breads) compared to artisanal breads. However, no significant differences were found between white and industrial breads beyond those mentioned above. These results demonstrate that the established control chains ensure low mycotoxin content in bread of this type.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34071 Palencia, Spain
| | - Andrea Casado
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34071 Palencia, Spain
- Food Science and Nutrition, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Irma Caro
- Food Science and Nutrition, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
4
|
Qi Y, Yang Y, Hassane Hamadou A, Li B, Xu B. Gentle debranning as a technology to reduce microbial and deoxynivalenol levels in common wheat (Triticum aestivum L.) and its application in milling industry. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Ciasca B, De Saeger S, De Boevre M, Reichel M, Pascale M, Logrieco AF, Lattanzio VMT. Mycotoxin Analysis of Grain via Dust Sampling: Review, Recent Advances and the Way Forward: The Contribution of the MycoKey Project. Toxins (Basel) 2022; 14:toxins14060381. [PMID: 35737042 PMCID: PMC9227346 DOI: 10.3390/toxins14060381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
The sampling protocols for the official control of the levels of mycotoxins in foodstuffs are very costly and time-consuming. More efforts are needed to implement alternative sampling plans able to support official control, or to adapt the current ones. The aim of the research carried out within the European Horizon 2020 MycoKey project was to evaluate the applicability at industrial scale of the dust sampling approach to detect multiple mycotoxins in grains. To this end, two trials were performed on an EU industrial site: (i) control of the unloading of wheat from train wagons; (ii) control of the unloading of wheat from trucks. In line with previous studies, the MycoKey results indicated that dust sampling and mycotoxin analysis represent a fitness for purpose approach for non–destructive and rapid identification of wheat commodities compliant to the maximum permitted levels. Based on reviewed and newly generated results, this article discusses potential applications and limits of the dust sampling methodology, identifying future research needs.
Collapse
Affiliation(s)
- Biancamaria Ciasca
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via Amendola, 122/O, 70126 Bari, Italy; (A.F.L.); (V.M.T.L.)
- Correspondence:
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (S.D.S.); (M.D.B.)
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (S.D.S.); (M.D.B.)
| | - Mareike Reichel
- Eurofins WEJ Contaminants, Neuländer Kamp, 1, D-21079 Hamburg, Germany;
| | - Michelangelo Pascale
- Institute of Food Sciences (ISA), National Research Council of Italy (CNR), Via Roma, 64, 83100 Avellino, Italy;
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via Amendola, 122/O, 70126 Bari, Italy; (A.F.L.); (V.M.T.L.)
| | - Veronica M. T. Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via Amendola, 122/O, 70126 Bari, Italy; (A.F.L.); (V.M.T.L.)
| |
Collapse
|
6
|
Hoffmans Y, Schaarschmidt S, Fauhl-Hassek C, van der Fels-Klerx H. Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins (Basel) 2022; 14:301. [PMID: 35622548 PMCID: PMC9143035 DOI: 10.3390/toxins14050301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are naturally present in cereal-based feed materials; however, due to adverse effects on animal health, their presence in derived animal feed should be minimized. A systematic literature search was conducted to obtain an overview of all factors from harvest onwards influencing the presence and concentration of mycotoxins in cereal-based feeds. The feed production processes covered included the harvest time, post-harvest practices (drying, cleaning, storage), and processing (milling, mixing with mycotoxin binders, extrusion cooking, ensiling). Delayed harvest supports the production of multiple mycotoxins. The way feed materials are dried after harvest influences the concentration of mycotoxins therein. Applying fungicides on the feed materials after harvest as well as cleaning and sorting can lower the concentration of mycotoxins. During milling, mycotoxins might be redistributed in cereal feed materials and fractions thereof. It is important to know which parts of the cereals are used for feed production and whether or not mycotoxins predominantly accumulate in these fractions. For feed production, mostly the milling fractions with outer parts of cereals, such as bran and shorts, are used, in which mycotoxins concentrate during processing. Wet-milling of grains can lower the mycotoxin content in these parts of the grain. However, this is typically accompanied by translocation of mycotoxins to the liquid fractions, which might be added to by-products used as feed. Mycotoxin binders can be added during mixing of feed materials. Although binders do not remove mycotoxins from the feed, the mycotoxins become less bioavailable to the animal and, in the case of food-producing animals, to the consumer, lowering the adverse effects of mycotoxins. The effect of extruding cereal feed materials is dependent on several factors, but in principle, mycotoxin contents are decreased after extrusion cooking. The results on ensiling are not uniform; however, most of the data show that mycotoxin production is supported during ensiling when oxygen can enter this process. Overall, the results of the literature review suggest that factors preventing mycotoxin production have greater impact than factors lowering the mycotoxin contents already present in feed materials.
Collapse
Affiliation(s)
- Yvette Hoffmans
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands;
| | - Sara Schaarschmidt
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | - Carsten Fauhl-Hassek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | | |
Collapse
|
7
|
Rivera J, Pulivarthi MK, Shivaprasad DP, Phebus R, Aldrich CG, Siliveru K. Significance of wheat milling operations on the distribution of
Escherichia coli
bacterium into milling fractions. Cereal Chem 2022. [DOI: 10.1002/cche.10554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jared Rivera
- Department of Grain Science and Industry Kansas State University Manhattan KS USA 66506
| | | | - DP Shivaprasad
- Department of Grain Science and Industry Kansas State University Manhattan KS USA 66506
| | - Randall Phebus
- Food Science Institute Kansas State University Manhattan KS USA 66506
| | - Charles G. Aldrich
- Department of Grain Science and Industry Kansas State University Manhattan KS USA 66506
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry Kansas State University Manhattan KS USA 66506
| |
Collapse
|
8
|
The effect of technological processes on contamination with B-class trichothecenes and quality of spring wheat products from grain harvested at different times. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:788-802. [PMID: 35323092 DOI: 10.1080/19440049.2022.2036823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the effect of technological processes on deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) concentrations and quality of spring wheat products from grain harvested at different times. In this study, 408 samples were analysed for DON, 3-ADON and 15-ADON contamination by the HPLC method with UV detection. Delays in harvesting due to cool and rainy weather conditions resulted in increased DON, 3-ADON and 15-ADON levels. The highest DON concentrations were determined in bran. Higher DON concentrations in the bran indicate the protective function of the grain hull. On the other hand, the highest levels of minerals have been found in bran and whole grain flours, highlighting the importance of consuming these milling fractions as a mineral source with sustained health benefits. Our results showed that DON is stable at 170 °C, and high DON levels in whole-meal flour and white flour could not be converted or decomposed during baking. The levels of 3-ADON and 15-ADON in whole-meal flour bread and white flour bread were significantly reduced but not completely removed. The levels of DON and its derivatives 3-ADON and 15-ADON were significantly reduced in starch and gluten produced from contaminated whole meal flour; however, the washing process did not completely eliminate these toxic compounds. The concentrations of mycotoxins in starch and gluten remained relatively high. Negative correlation was found in highly contaminated samples between DON and bread baking properties. Also, inverse relationship was found between high mycotoxin concentrations and mineral element content in white flour.
Collapse
|
9
|
Abdel-Aal ES, Miah K. Kinetics of deoxynivalenol flux in wheat kernels steeped in different solutions for improved food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
WANG J, GU Y, ZHANG Y, CHEN S, LI L, LIAO Z, SHAN X, HE L, CHEN J. Toxigenic potential analysis and fumigation treatment of three Fusarium spp. strains isolated from Fusarium head blight of wheat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.53822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jin WANG
- Guangxi Medical University, China; Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Yuxi GU
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Yuchong ZHANG
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Shuai CHEN
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Li LI
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Zilong LIAO
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Xiaoxue SHAN
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | | | - Jinying CHEN
- Guangxi Medical University, China; Sinograin Chengdu Storage Research Institute Co. Ltd., China
| |
Collapse
|
11
|
Reducing deoxynivalenol content in wheat by a combination of gravity separation and milling and characterization of the flours produced. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, Battilani P, Logrieco AF. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins (Basel) 2021; 13:725. [PMID: 34679018 PMCID: PMC8541216 DOI: 10.3390/toxins13100725] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.
Collapse
Affiliation(s)
- John F. Leslie
- Throckmorton Plant Sciences Center, Department of Plant Pathology, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA;
| | - Antonio Moretti
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| | - Ákos Mesterházy
- Cereal Research Non-Profit Ltd., Alsókikötő sor 9, H-6726 Szeged, Hungary;
| | - Maarten Ameye
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Kris Audenaert
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico 06600, DF, Mexico;
| | | | - Sofía N. Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), 5800 Río Cuarto, Córdoba, Argentina;
| | - Emerson M. Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa 1000, Ethiopia;
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy;
| | - Antonio F. Logrieco
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| |
Collapse
|
13
|
Shabana YM, Rashad YM, Ghoneem KM, Arafat NS, Aseel DG, Qi A, Richard B, Fitt BDL. Biodiversity of Pathogenic and Toxigenic Seed-Borne Mycoflora of Wheat in Egypt and Their Correlations with Weather Variables. BIOLOGY 2021; 10:1025. [PMID: 34681125 PMCID: PMC8533347 DOI: 10.3390/biology10101025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
Surveillance investigations for pathogenic and toxigenic fungi are important to refine our understanding of their epidemiology and help in predicting their outbreaks. During 2019, 198 samples of wheat grains were collected from 25 wheat-growing governorates in Egypt to detect and identify seed-borne mycoflora in vitro. Forty-four fungal species belonging to 20 genera were identified. Molecular data for these fungi were analyzed to construct a phylogenetic tree. Occurrence and biodiversity indicators were calculated. Two prevalent pathogens (average incidence > 40%) were Alternaria alternata and Cladosporium spp. Ustilago tritici was present in only seven of the 25 governorates, and less abundant than Tilletia tritici, the causal agent of stinking smut. Sinai governorate recorded the greatest species diversity, while the greatest species richness was in Qena and Sohag governorates. Canonical correspondence analysis of data for 20 fungal genera with temperature, relative humidity, precipitation, wind speed or solar radiation revealed that relative humidity was the most influential weather variable. It showed that occurrence and distribution of the 20 genera corresponded well with three out of four Egyptian climatic regions: Mediterranean, semi-arid, and arid. Knowing pathogen occurrence and distribution in Egypt is the first step to developing future disease management strategies to limit yield losses and improve food security. Despite this study being conducted on the wheat-growing areas in Egypt, our findings are useful for other wheat-growing countries that share the same climatic conditions. The correlation between a given fungus and the climatic variables can be useful in other ecosystems.
Collapse
Affiliation(s)
- Yasser M. Shabana
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; (Y.M.S.); (N.S.A.)
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt;
| | - Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Nehal S. Arafat
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; (Y.M.S.); (N.S.A.)
| | - Dalia G. Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt;
| | - Aiming Qi
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (A.Q.); (B.R.); (B.D.L.F.)
| | - Benjamin Richard
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (A.Q.); (B.R.); (B.D.L.F.)
| | - Bruce D. L. Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (A.Q.); (B.R.); (B.D.L.F.)
| |
Collapse
|
14
|
Hole A, Rud I, Sahlstrøm S, Ivanova L, Eriksen G, Divon H. Heat-induced reduction of deoxynivalenol and its modified forms during flaking and cooking of oat. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) and its modified forms deoxynivalenol-3-glucoside (DON-3G) and 3-acetyl-deoxynivalenol (3-ADON) are common contaminants in Norwegian oats. In order to provide more information about the fate of these mycotoxins during oat processing, the levels of DON, DON-3G, 3-ADON and the sum of them (total DON) were determined using LC-HRMS/MS at different processing steps. Oat groat was softened by either steaming or conditioning, rolled into flakes of two thicknesses, and subsequently cooked to produce flake porridges. Flour of oat groat (untreated or kilned) was cooked to flour porridges. The flaking process had major effect on the mycotoxin levels in resulting flakes, with significant impact for type of softening regime, but not for flake size. Steam-softening caused the largest reduction of DON, DON-3G and total DON in flakes, retaining 41, 60 and 46%, respectively, compared to oat groat. In contrast, 3-ADON in flakes was most reduced by conditioning, to 29% of the levels in oat groat. Cooking to porridge from flakes did not result in any additional mycotoxin reduction, though significant impact of flake size was shown in the final porridges, with highest reduction of total DON in the porridges originating from steamed thick flakes. Cooking porridge from untreated oat flour gave significant reduction in mycotoxin levels, however not for kilned oat flour which had already undergone reduction during kilning. In conclusion, the study shows that processes involving heat-treatment, i.e. kilning, steaming or cooking, efficiently reduced total DON in oats during flaking and porridge cooking, and reduction is dependent on previous processing steps.
Collapse
Affiliation(s)
- A.S. Hole
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - I. Rud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - S. Sahlstrøm
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - L. Ivanova
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| | - G.S. Eriksen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| | - H.H. Divon
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| |
Collapse
|
15
|
Tyska D, Mallmann A, Gressler LT, Mallmann CA. Near-infrared spectroscopy as a tool for rapid screening of deoxynivalenol in wheat flour and its applicability in the industry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1958-1968. [PMID: 34334116 DOI: 10.1080/19440049.2021.1954699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to evaluate the applicability and efficiency of Near-Infrared Spectroscopy (NIR) by using dispersive NIR and Fourier Transform NIR to analyse 267 samples of Brazilian wheat flour contaminated with deoxynivalenol (DON). For this, Partial Least-squares Discriminant Analysis (PLS-DA) and Principal Component Analysis-Linear Discriminant Analysis (PC-LDA) were used as discriminatory methods. Next, the samples were classified according to the maximum tolerated limits (MTL) for DON in Brazil, 750 μg kg-1, and two groups were established for the calibration set: category A (≤450 μg kg-1), non-contaminated or below the MTL; and category B (>450 μg kg-1), contaminated or above the MTL. Validation samples through PLS-DA showed correct classification rates in the range of 85-87.5% and presented a 10-15% error; for PC-LDA, the hit rate was over 85% with an error of 10-15%. The present findings demonstrate that NIR is an excellent alternative method to classify wheat flour samples according to DON content.
Collapse
Affiliation(s)
- Denize Tyska
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria (UFSM), Laboratory of Mycotoxicological Analyses (LAMIC), Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | - Carlos Augusto Mallmann
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria (UFSM), Laboratory of Mycotoxicological Analyses (LAMIC), Santa Maria, Rio Grande Do Sul, Brazil
| |
Collapse
|
16
|
Shwaiki LN, Lynch KM, Arendt EK. Future of antimicrobial peptides derived from plants in food application – A focus on synthetic peptides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Annunziata L, Schirone M, Visciano P, Campana G, De Massis MR, Migliorati G. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in organic wheat flour under different storage conditions. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Loredana Annunziata
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Via R. Balzarini 1 Teramo64100Italy
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Via R. Balzarini 1 Teramo64100Italy
| | - Guido Campana
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| | - Maria Rosaria De Massis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| |
Collapse
|
18
|
Magallanes López AM, Ohm JB, Manthey FA, Rao J, Simsek S. Gluten extraction from deoxynivalenol contaminated wheat by wet milling. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Topi D, Babič J, Pavšič-Vrtač K, Tavčar-Kalcher G, Jakovac-Strajn B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules 2020; 26:E172. [PMID: 33396539 PMCID: PMC7796429 DOI: 10.3390/molecules26010172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
In this study, ten Fusarium toxins were analysed in wheat and maize commodities from Albania. In total, 71 samples of wheat and 45 samples of maize were collected from different producing regions. The analytical procedure consisted of a simple one-step sample extraction followed by the determination of toxins using liquid chromatography coupled with tandem mass spectrometry. Fusarium toxins were found in 23% of the analysed wheat samples and in 78% of maize samples. In maize samples, most often fumonisins B1 (FB1) and B2 (FB2) were found. They were present in 76% of samples. They were detected in all positive samples except in one with concentrations ranging from 59.9 to 16,970 μg/kg. The sum of FB1 and FB2 exceeded the EU maximum permitted level (4000 μg/kg) in 31% of maize samples. In wheat samples, the only detected Fusarium mycotoxin was deoxynivalenol (DON), present in 23% of samples. In one sample with the concentration of 1916 μg/kg, the EU maximum permitted level (1250 μg/kg) was exceeded. This is the first report on the presence of Fusarium toxins in wheat and maize grains cultivated in Albania.
Collapse
Affiliation(s)
- Dritan Topi
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Boulevard Zogu 1, 25, 1016 Tirana, Albania
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Katarina Pavšič-Vrtač
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Gabrijela Tavčar-Kalcher
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| | - Breda Jakovac-Strajn
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (D.T.); (J.B.); (K.P.-V.); (B.J.-S.)
| |
Collapse
|
20
|
Duan Y, Lu F, Zhou Z, Zhao H, Zhang J, Mao Y, Li M, Wang J, Zhou M. Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122908. [PMID: 32512449 DOI: 10.1016/j.jhazmat.2020.122908] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Quinone outside inhibitors (QoIs) are currently extensively used agricultural fungicides. However, the application of QoIs in controlling Fusarium graminearum was rarely reported. No information is available on pharmacological characteristics of QoIs against F. graminearum, as well as their effects on DON biosynthesis. Here, we found that six QoIs exhibited an excellent fungicidal activity against F. graminearum based on mycelial growth and spore germination. ATP production assay further confirmed that QoIs decreased ATP production via inhibiting mitochondrial respiration, which contributes their fungicidal activity. Unfortunately, QoIs can stimulate DON production and up-regulate the expression of Tri5 and Tri6 genes. Additionally, acetyl-CoA, the basic precursor of DON biosynthesis, significantly increased as affected by QoIs, furtherly indicating that QoIs indeed enhance DON biosynthesis. We also found that QoIs can accelerate the formation of toxisomes and enhance the fluorescence signals of Tri-GFP labeled toxisomes, which may be due to the effect of QoIs on toxisome-related endoplasmic reticulum-remodeling. In addition, QoIs could disrupt the homeostasis of mitochondrial dynamics, resulting in the fragmented mitochondria. Finally, the simulated inoculation assay with wheat grains further verified that QoIs can stimulate DON production relative to wheat grain weight, especially relative to mycelial biomass.
Collapse
Affiliation(s)
- Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Lu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zehua Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huahua Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Meixia Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Gómez M, Gutkoski LC, Bravo‐Núñez Á. Understanding whole‐wheat flour and its effect in breads: A review. Compr Rev Food Sci Food Saf 2020; 19:3241-3265. [DOI: 10.1111/1541-4337.12625] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| | - Luiz C. Gutkoski
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos Universidade de Passo Fundo Passo Fundo RS Brazil
| | - Ángela Bravo‐Núñez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| |
Collapse
|
22
|
Wan J, Chen B, Rao J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr Rev Food Sci Food Saf 2020; 19:928-953. [PMID: 33331688 DOI: 10.1111/1541-4337.12546] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022]
Abstract
Mycotoxins contamination in cereal-based food is ubiquitous according to systematic review of the scientific documentation of worldwide mycotoxin contamination in cereal and their products between 2008 and 2018, thus representing food safety issue especially in developing tropical countries. Food processing plays a vital role to prevent mycotoxin contamination in food. Therefore, it is with great urgency to develop strategies to inhibit fungi growth and mycotoxin production during food processing. This review begins by discussing physicochemical properties of five most common mycotoxins (aflatoxins, fumonisins, ochratoxins, deoxynivalenol, and zearalenone) found in cereal grains, regulation for mycotoxins in food, and their potential negative impact on human health. The fate of mycotoxins during major cereal-based food processing including milling, breadmaking, extrusion, malting, and brewing was then summarized. In the end, traditional mitigation strategies including physical and chemical and potential application of biocontrol agent and essential oil nanoemulsions that can be applied during food processing were discussed. It indicated that no single method is currently available to completely prevent mycotoxin contamination in cereal foods.
Collapse
Affiliation(s)
- Jing Wan
- Department of Plant Sciences, North Dakota State University, Fargo, ND.,School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
23
|
Pietsch C. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Res 2020; 36:41-62. [PMID: 31346981 PMCID: PMC6971146 DOI: 10.1007/s12550-019-00368-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Mycotoxins are difficult to monitor continuously, and a tool to assess the risk would help to judge if there is a particular risk due to the inclusion of certain feed ingredients. For this, the toxin contents of 97 commercial fish feeds have been estimated, and the most prominent toxins in fish feed are calculated to be deoxynivalenol, zearalenone, fumonisins and enniatins. These pose a risk to fish well-being, as can be calculated by the Bayesian models for determining the critical concentrations 5% (CC5) for the different toxins. Besides fishmeal, wheat, soybean products and corn are regularly used as fish feed ingredients. The calculated scenarios show that fish are at high risk of toxin contamination if feed ingredients of low quality are chosen for feed production. Due to this, specific maximum allowable levels for several mycotoxins in fish feeds should be established.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, 8820, Wädenswil, Switzerland.
| |
Collapse
|
24
|
|
25
|
Changes in masked forms of deoxynivalenol and their co-occurrence with culmorin in cereal-based products: A systematic review and meta-analysis. Food Chem 2019; 294:587-596. [PMID: 31126504 DOI: 10.1016/j.foodchem.2019.05.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/26/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
This study was aimed to evaluate the fate of D3G, 3-ADON, and 15-ADON during various processing steps (milling, fermentation, baking and cooking with water) of different cereal-based products, as well as the co-occurrence of culmorin (CUL) and its derivatives (15-Hydroxy-CUL and 5-Hydroxy-CUL. Some databases such as Science Direct, PubMed, Scopus, and Embase were screened to collect the relevant published papers between January 1983 to October 2018, and 23 articles with 319 data were included. The baking resulted in reductions in the concentration of all types of investigated masked mycotoxins, i.e., 15-ADON (-25%) > 3-ADON (-15%) > D3G (-6%). Also, rank order of CUL and its derivatives based on occurrence was CUL (70%) > 15-Hydroxy-CUL (47%) > 5-Hydroxy-CUL (15%) and their rank based on their concentration was 5-Hydroxy-CUL (99.21 µg/kg) > CUL (48.84 µg/kg) > 15-Hydroxy-CUL (9.39 µg/kg) > Hydroxy -CUL (0.06 µg/kg) > 12-Hydroxy-CUL (0.05 µg/kg) > 14-Hydroxy-CUL (0.01 µg/kg).
Collapse
|
26
|
Magallanes López AM, Manthey FA, Simsek S. Wet milling technique applied to deoxynivalenol‐contaminated wheat dry‐milled fractions. Cereal Chem 2019. [DOI: 10.1002/cche.10148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Senay Simsek
- Plant Sciences North Dakota State University Fargo North Dakota
| |
Collapse
|
27
|
Kochiieru Y, Mankeviciene A, Janaviciene S, Jonaviciene A, Ceseviciene J. The influence of milling and sifting processes on deoxynivalenol distribution in whole-wheat flour and its products. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Milling and sifting of grain are important processes that affect mycotoxin distribution in the chain of grain products. The level of deoxynivalenol (DON) in white flour cannot be reduced by sifting because it is concentrated within a specific white flour fraction. The objective of this study was to investigate the influence of milling and sifting processes on the reduction of DON contamination in whole-wheat flour and in the chain of spring wheat products (grain – bran – white flour – white flour fractions) from artificially and naturally (2016) and naturally (2017) infected grain samples. The current study showed that the distribution of DON in the grain products (whole-wheat flour – bran – white flour) depends on the weather conditions of the season and grain contamination level. This was particularly evident in the naturally contaminated grain in 2017. The highest DON concentrations were determined in bran. Higher DON concentrations in the bran from the naturally infected grain indicate the protective function of the grain hull, which provides partial protection for grain embryo against higher contamination. With a delay in harvesting, which resulted in increased DON concentrations, bran remained the most contaminated product; however, this was not true for the products from artificially infected grain. The DON level in bran was not significantly different at P<0.05 from that in whole-wheat flour from artificially infected grain, it indicates that after inoculation, bran had biochemical compounds capable of significantly diminishing trichothecene production. It was investigated that DON levels were concentrated in white flour fractions 160 and 112 μm from naturally infected grains and in white flour fraction (residues) from artificially and naturally infected grains harvested later. The results obtained in this study could be further used for developing novel strategies aimed at limiting mycotoxin contamination in food and feed.
Collapse
Affiliation(s)
- Y. Kochiieru
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai distr., Lithuania
| | - A. Mankeviciene
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai distr., Lithuania
| | - S. Janaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai distr., Lithuania
| | - A. Jonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai distr., Lithuania
| | - J. Ceseviciene
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai distr., Lithuania
| |
Collapse
|
28
|
De Girolamo A, Cervellieri S, Cortese M, Porricelli ACR, Pascale M, Longobardi F, von Holst C, Ciaccheri L, Lippolis V. Fourier transform near-infrared and mid-infrared spectroscopy as efficient tools for rapid screening of deoxynivalenol contamination in wheat bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1946-1953. [PMID: 30270446 DOI: 10.1002/jsfa.9392] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Deoxynivalenol (DON) is the most common Fusarium mycotoxin occurring in wheat and wheat-derived products, with several adverse and toxic effects in animals and humans. Although bran fractions produced by milling wheat have numerous health benefits, cereal bran is the part of the grain with the highest concentration of DON, thus representing a risk for consumers. Increased efforts have been made to develop analytical methods suitable for rapid DON screening. RESULTS The applicability of Fourier transform near-infrared (FTNIR), or mid-infrared (FTMIR) spectroscopy, and their combination for rapid analysis of DON in wheat bran, was investigated for the classification of samples into compliant and non-compliant groups regarding the EU legal limit of 750 µg kg-1 . Partial least squares-discriminant analysis (PLS-DA) and principal component-linear discriminant analysis (PC-LDA) were employed as classification techniques using a cutoff value of 400 µg kg-1 DON to distinguish the two classes. Depending on the classification model, overall discrimination rates were from 87% to 91% for FTNIR and from 86% to 87% for the FTMIR spectral range. The FTNIR spectroscopy gave the highest overall classification rate of wheat bran samples, with no false compliant samples and 18% false noncompliant samples when the PC-LDA classification model was applied. The combination of the two spectral ranges did not provide a substantial improvement in classification results in comparison with FTNIR. CONCLUSIONS Fourier transform near-infrared spectroscopy in combination with classification models was an efficient tool to screen many DON-contaminated wheat bran samples and assess their compliance with EU regulations. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Marina Cortese
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | | | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Francesco Longobardi
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
| | | | - Leonardo Ciaccheri
- Institute of Applied Physics 'Nello Carrara' (IFAC), CNR-National Research Council of Italy, Sesto Fiorentino, Italy
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| |
Collapse
|
29
|
Li J, Duan Y, Bian C, Pan X, Yao C, Wang J, Zhou M. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:152-160. [PMID: 30744889 DOI: 10.1016/j.pestbp.2018.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Validamycin, known to interfere with fungal energy metabolism by inhibiting trehalase, has been extensively used to control plant diseases caused by Rhizoctonia spp. However, the effect of validamycin on controlling Fusarium graminearum has not been previously reported. In this study, when applied to F. graminearum in vitro, validamycin inhibited the synthesis of deoxynivalenol (DON), which is a mycotoxin and virulence factor, by decreasing trehalase activity and the production of glucose and pyruvate, which are precursors of DON biosynthesis. Because FgNTH encodes the main trehalase in F. graminearum, these effects were nullified in the FgNTH deletion mutant ΔFgNTH but restored in the complemented strain ΔFgNTHC. In addition, validamycin also increased the expression of pathogenesis-related genes (PRs) PR1, PR2, and PR5 in wheat, inducing resistance responses of wheat against F. graminearum. Therefore, validamycin exhibits dual efficacies on controlling Fusarium head blight (FHB) caused by F. graminearum: inhibition of DON biosynthesis and induction of host resistance. In addition, field trials further confirmed that validamycin increased FHB control and reduced DON contamination in grain. Control of FHB and DON contamination by validamycin increased when the antibiotic was applied with the triazole fungicide metconazole. Overall, this study is a successful case from foundational research to applied research, providing useful information for wheat protection programs against toxigenic fungi responsible for FHB and the consequent mycotoxin accumulation in grains.
Collapse
Affiliation(s)
- Jing Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Chuanhong Bian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengjie Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
30
|
Krnjaja V, Stanković S, Obradović A, Petrović T, Mandić V, Bijelić Z, Božić M. Trichothecene Genotypes of Fusarium graminearum Populations Isolated from Winter Wheat Crops in Serbia. Toxins (Basel) 2018; 10:E460. [PMID: 30413020 PMCID: PMC6265763 DOI: 10.3390/toxins10110460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Fusarium graminearum as the main causal agent of Fusarium head blight (FHB) and its ability to produce trichothecenes was investigated by molecular techniques. A total of 37 strains isolated from the wheat, harvested in Serbia in 2005, 2008 and 2015, and previously designated by morphological observation as F. graminearum, were used for trichothecene genotypes characterization. The strains were identified using the species-specific primer set FG16R/FG16F while genotypic characterization was done using specific TRI13 and TRI3 sequences of the trichothecene gene clusters. The PCR assays identified all strains as species of F. graminearum sensu stricto with the DON/15-ADON genotype. The quantification of the mycotoxin (DON) was performed using the biochemical assay. The high levels of DON (>20,000 µg kg-1) were recorded in all of the strains from 2005, four strains from 2008 and two strains from 2015. Weather data of the investigated seasons, showed that the optimal temperature, frequent rains and high relative humidity (RH) was very favourable for the development of F. graminearum, affecting the DON biosynthesis.
Collapse
Affiliation(s)
- Vesna Krnjaja
- Institute for Animal Husbandry, Autoput 16, 11080 Belgrade-Zemun, Serbia.
| | - Slavica Stanković
- Maize Research Institute "Zemun Polje", Slobodana Bajića 1, 11185 Belgrade, Serbia.
| | - Ana Obradović
- Maize Research Institute "Zemun Polje", Slobodana Bajića 1, 11185 Belgrade, Serbia.
| | - Tanja Petrović
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 16, 11080 Belgrade-Zemun, Serbia.
| | - Violeta Mandić
- Institute for Animal Husbandry, Autoput 16, 11080 Belgrade-Zemun, Serbia.
| | - Zorica Bijelić
- Institute for Animal Husbandry, Autoput 16, 11080 Belgrade-Zemun, Serbia.
| | - Manja Božić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
31
|
Lippolis V, Cervellieri S, Damascelli A, Pascale M, Di Gioia A, Longobardi F, De Girolamo A. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4955-4962. [PMID: 29577312 DOI: 10.1002/jsfa.9028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Deoxynivalenol (DON) is a mycotoxin, mainly produced by Fusarium sp., most frequently occurring in cereals and cereal-based products. Wheat bran refers to the outer layers of the kernel, which has a high risk of damage due to chemical hazards, including mycotoxins. Rapid methods for DON detection in wheat bran are required. RESULTS A rapid screening method using an electronic nose (e-nose), based on metal oxide semiconductor sensors, has been developed to distinguish wheat bran samples with different levels of DON contamination. A total of 470 naturally contaminated wheat bran samples were analyzed by e-nose analysis. Wheat bran samples were divided in two contamination classes: class A ([DON] ≤ 400 µg kg-1 , 225 samples) and class B ([DON] > 400 µg kg-1 , 245 samples). Discriminant function analysis (DFA) classified wheat bran samples with good mean recognizability in terms of both calibration (92%) and validation (89%). A pattern of 17 volatile compounds of wheat bran samples that were associated (positively or negatively) with DON content was also characterized by HS-SPME/GC-MS. CONCLUSIONS These results indicate that the e-nose method could be a useful tool for high-throughput screening of DON-contaminated wheat bran samples for their classification as acceptable / rejectable at contamination levels close to the EU maximum limit for DON, reducing the number of samples to be analyzed with a confirmatory method. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Anna Damascelli
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Annalisa Di Gioia
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Bari, Italy
| | | | - Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| |
Collapse
|
32
|
|
33
|
Shanakhat H, Sorrentino A, Raiola A, Romano A, Masi P, Cavella S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4003-4013. [PMID: 29412472 DOI: 10.1002/jsfa.8933] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Mycotoxins are secondary metabolites produced by moulds in food that are considered a substantial issue in the context of food safety, due to their acute and chronic toxic effects on animals and humans. Therefore, new accurate methods for their identification and quantification are constantly developed in order to increase the performance of extraction, improve the accuracy of identification and reduce the limit of detection. At the same time, several industrial practices have shown the ability to reduce the level of mycotoxin contamination in food. In particular, a decrease in the amount of mycotoxins could result from standard processes naturally used for food processing or by procedures strategically introduced during processing, with the specific aim of reducing the amount of mycotoxins. In this review, the current methods adopted for accurate analyses of mycotoxins in cereals (aflatoxins, ochratoxins, trichothecenes, fumonisins) are discussed. In addition, both conventional and innovative strategies adopted to obtain safer finished products from common cereals intended for human consumption will be explored and analysed. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hina Shanakhat
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Sorrentino
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Assunta Raiola
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Paolo Masi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Silvana Cavella
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
34
|
Tibola CS, de Miranda MZ, Paiva FF, Fernandes JMC, Guarienti EM, Nicolau M. Effect of breadmaking process on mycotoxin content in white and whole wheat breads. Cereal Chem 2018. [DOI: 10.1002/cche.10079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Flávia Fernandes Paiva
- Department of Agroindustrial Science and Technology; Federal University of Pelotas; Capão do Leão RS Brazil
| | | | | | | |
Collapse
|
35
|
Impact of pre-harvest rainfall on the distribution of fusarium mycotoxins in wheat mill fractions. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Schaarschmidt S, Fauhl-Hassek C. The Fate of Mycotoxins During the Processing of Wheat for Human Consumption. Compr Rev Food Sci Food Saf 2018; 17:556-593. [PMID: 33350125 DOI: 10.1111/1541-4337.12338] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
Abstract
Mycotoxins are a potential health threat in cereals including wheat. In the European Union (EU), mycotoxin maximum levels are laid down for cereal raw materials and final food products. For wheat and wheat-based products, the EU maximum levels apply to deoxynivalenol (DON), zearalenone, aflatoxins, and ochratoxin A. This review provides a comprehensive overview on the different mycotoxins and their legal limits and on how processing of wheat can affect such contaminants, from raw material to highly processed final products, based on relevant scientific studies published in the literature. The potential compliance with EU maximum levels is discussed. Of the four mycotoxins regulated in wheat-based foods in the EU, most data are available for DON, whereas aflatoxins were rarely studied in the processing of wheat. Furthermore, available data on the effect of processing are outlined for mycotoxins not regulated by EU law-including modified and emerging mycotoxins-and which cover DON derivatives (DON-3-glucoside, mono-acetyl-DONs, norDONs, deepoxy-DON), nivalenol, T-2 and HT-2 toxins, enniatins, beauvericin, moniliformin, and fumonisins. The processing steps addressed in this review cover primary processing (premilling and milling operations) and secondary processing procedures (such as fermentation and thermal treatments). A special focus is on the production of baked goods, and processing factors for DON in wheat bread production were estimated. For wheat milling products derived from the endosperm and for white bread, compliance with legal requirements seems to be mostly achievable when applying good practices. In the case of wholemeal products, bran-enriched products, or high-cereal low-moisture bakery products, this appears to be challenging and improved technology and/or selection of high-quality raw materials would be required.
Collapse
Affiliation(s)
- Sara Schaarschmidt
- Dept. Safety in the Food Chain, German Federal Inst. for Risk Assessment (BfR), Max-Dohrn-St. 8-10, D-10589 Berlin, Germany
| | - Carsten Fauhl-Hassek
- Dept. Safety in the Food Chain, German Federal Inst. for Risk Assessment (BfR), Max-Dohrn-St. 8-10, D-10589 Berlin, Germany
| |
Collapse
|
37
|
|
38
|
Silva MV, Pante GC, Romoli JCZ, de Souza APM, Rocha GHOD, Ferreira FD, Feijó ALR, Moscardi SMP, de Paula KR, Bando E, Nerilo SB, Machinski M. Occurrence and risk assessment of population exposed to deoxynivalenol in foods derived from wheat flour in Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:546-554. [PMID: 29210608 DOI: 10.1080/19440049.2017.1411613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Deoxynivalenol (DON) is the most important of the trichothecenes in terms of amounts and occurrence in wheat. This compound was shown to be associated with a glomerulonephropathy involving an increase of immunoglobulin A in humans. This study assessed the occurrence of DON in wheat flour and the exposure of Brazilian teenagers, adults and elderly to this mycotoxin due to intake of wheat flour-based products. DON extraction in wheat flour was carried out by solid phase extraction and the quantification was performed by ultra-high proficiency liquid chromatography with diode-array detection. A total of 77.9% of all samples were positive for DON, with concentrations ranging from 73.50 to 2794.63 µg kg-1. The intake was calculated for the average and 90th percentile of the contamination levels of DON in foods based-wheat for teenagers, adults and elderly in Brazil, and compared with the provisional maximum tolerable daily intakes (PMTDI). Females of all age groups were exposed to DON at higher levels when compared to males in regard of consumption of breads and pastas. Teenagers were the main consumers of foods derived from wheat flour, with maximum probable daily intakes of 1.28 and 1.20 µg kg-1 b.w. day-1 for females and males, respectively. This population is at an increased risk of exposure to DON due to consumption of wheat flour-based foods in Brazil.
Collapse
Affiliation(s)
- Milena Veronezi Silva
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| | - Giseli Cristina Pante
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| | | | | | - Gustavo Henrique Oliveira da Rocha
- b Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, Laboratory of Experimental Toxicology , University of São Paulo , São Paulo , Brazil
| | - Flavio Dias Ferreira
- c Academic Department of Food , Technological Federal University of Parana , Medianeira , Brazil
| | | | | | - Karina Ruaro de Paula
- e State Department of Health of Parana (SESA-PR) , Food Sanitary Surveillance , Paraná State Government, Curitiba , Brazil
| | - Erika Bando
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| | | | - Miguel Machinski
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| |
Collapse
|
39
|
Rocha DFDL, Oliveira MDS, Furlong EB, Junges A, Paroul N, Valduga E, Backes GT, Zeni J, Cansian RL. Evaluation of the TLC quantification method and occurrence of deoxynivalenol in wheat flour of southern Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:2220-2229. [PMID: 28786343 DOI: 10.1080/19440049.2017.1364872] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The study evaluated a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method for use with a TLC quantification procedure for deoxynivalenol (DON). It also surveyed DON occurrence in wheat flour from the southern region of Brazil. Forty-eight wheat flour samples were analysed, divided into 2 different harvest lots, each consisting of 24 different brands. The detection and quantification limits of the method were 30 and 100 ng of DON on the TLC plate. The various concentrations of DON presented high linearity (R2 = 0.99). A negative matrix effect (-28%) of the wheat flour was verified, with suppression of the chromatographic signal of DON, and 80.2-105.4% recovery. The TLC method was reliable for DON evaluation, with a coefficient of variation of less than 10%. High-performance liquid chromatography of lot 2 samples confirmed the presence of DON in all samples identified DON-positive by the TLC technique. Of the 48 wheat flour samples in lots 1 and 2 analysed by TLC, 33.3 and 45.8% of the samples respectively were above the Brazilian legislation limit. Correlations were observed between the water activity and DON content, and between the fungal count and moisture content of the wheat flours.
Collapse
Affiliation(s)
- Denise Felippin de Lima Rocha
- a Department of Food Technologyb Department of Chemistry and Foodc Department of Food Engineering , IFFarroupilha Campus Santo Augusto , Santo Augusto , Brazil
| | - Melissa Dos Santos Oliveira
- a Department of Food Technologyb Department of Chemistry and Foodc Department of Food Engineering , IFFarroupilha Campus Santo Augusto , Santo Augusto , Brazil
| | - Eliana Badiale Furlong
- b Department of Chemistry and Food , Universidade Federal de Rio Grande (FURG) , Rio Grande , Brazil
| | - Alexander Junges
- c Department of Food Engineering , Universidade Regional Integrada do Alto Uruguai e das Missões (URI-Erechim) , Erechim , Brazil
| | - Natalia Paroul
- c Department of Food Engineering , Universidade Regional Integrada do Alto Uruguai e das Missões (URI-Erechim) , Erechim , Brazil
| | - Eunice Valduga
- c Department of Food Engineering , Universidade Regional Integrada do Alto Uruguai e das Missões (URI-Erechim) , Erechim , Brazil
| | - Geciane Toniazzo Backes
- c Department of Food Engineering , Universidade Regional Integrada do Alto Uruguai e das Missões (URI-Erechim) , Erechim , Brazil
| | - Jamile Zeni
- c Department of Food Engineering , Universidade Regional Integrada do Alto Uruguai e das Missões (URI-Erechim) , Erechim , Brazil
| | - Rogério Luis Cansian
- c Department of Food Engineering , Universidade Regional Integrada do Alto Uruguai e das Missões (URI-Erechim) , Erechim , Brazil
| |
Collapse
|
40
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
41
|
Stanciu O, Juan C, Miere D, Loghin F, Mañes J. Occurrence and co-occurrence of Fusarium mycotoxins in wheat grains and wheat flour from Romania. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Juan C, Berrada H, Mañes J, Oueslati S. Multi-mycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake. Food Chem Toxicol 2017; 103:148-156. [PMID: 28249780 DOI: 10.1016/j.fct.2017.02.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
A study on raw barley and derived products (barley soup and beers) was carried out to determine the natural presence of twenty-four mycotoxins by both liquid chromatography and gas chromatography coupled to tandem mass spectrometry (MS/MS). The developed multi-mycotoxin procedure was based on both SLE and QuEChERS extraction steps. 66% of analyzed samples presented mycotoxin contamination and only one sample, which was soup of barley (6 ng/g), exceeded the maximum level (ML) established by EU for OTA (5 ng/g). Raw barley was the most contaminated matrix (62%), which concentrations ranged from 1.70 to 287.13 ng/g) and type of detected mycotoxins (DON, 15AcDON, NEO, NIV, HT2, FB1, OTA, ENA, ENA1, ENB and ENB1). DON was the most detected mycotoxin with an incidence of 56%, 29% and 23% in beer, soup of barley and barley, respectively. However, the highest levels detected were for ENA, in raw barley with 287 ng/g. In beer and soup of barley samples, the mycotoxins with highest level were 15AcDON (15.6 ng/g) and ENB1 (55.1 ng/g), respectively. Furthermore, 80% of positive soup of barley samples showed co-occurrence. No toxicological concern was associated to mycotoxins exposure for consumers.
Collapse
Affiliation(s)
- C Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot-Valencia, Spain.
| | - H Berrada
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot-Valencia, Spain
| | - J Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot-Valencia, Spain
| | - S Oueslati
- Laboratoire Matériaux, Molécules et applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, BP 51 La Marsa 2070, Tunisia; Regional Field Crop Research Center of Beja (CRRGC), Route Tunis Km 5, 9000 Béja, Tunisia
| |
Collapse
|
43
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins (Basel) 2017; 9:E19. [PMID: 28067768 PMCID: PMC5308251 DOI: 10.3390/toxins9010019] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/01/2023] Open
Abstract
Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium. These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Department of Food Science and Technology, College of Applied Food Science and Tourism, Michael Okpara University of Agriculture, Umuahia-Ikot Ekpene Road, Umudike, Umuahia PMB 7267, Abia State, Nigeria.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Olusegun Oladimeji Atanda
- Department of Biological Sciences, McPherson University, KM 96 Lagos-Ibadan Expressway, 110117 Seriki Sotayo, Ogun State, Nigeria.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
44
|
Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016; 32:179-205. [PMID: 27554261 PMCID: PMC5063913 DOI: 10.1007/s12550-016-0257-7] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
Collapse
Affiliation(s)
- Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse6, 37077, Göttingen, Germany
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122, Parma, Italy
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Johan De Meester
- Cargill R&D Center Europe, Havenstraat 84, B-1800, Vilvoorde, Belgium
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, Germany (retired), University of Kaiserslautern, P.O.Box 3049, 67653, Kaiserslautern, Germany
| | - Irène Perrin
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Isabelle P Oswald
- INRA, UMR 1331 ToxAlim, Research Center in Food Toxicology, 180 chemin de Tournefeuille, BP93173, 31027, Toulouse, France
- Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Winterkoning 7, 34353 RN, Nieuwegein, The Netherlands
| | - Alessandro Chiodini
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Tobias Recker
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Pierre Dussort
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| |
Collapse
|
45
|
Bordini JG, Ono MA, Garcia GT, Fazani VHM, Vizoni É, Rodrigues KCB, Hirooka EY, Ono EYS. Impact of industrial dry-milling on fumonisin redistribution in non-transgenic corn in Brazil. Food Chem 2016; 220:438-443. [PMID: 27855923 DOI: 10.1016/j.foodchem.2016.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to evaluate the fate of fumonisins B1 (FB1) and B2 (FB2) during industrial dry-milling in two lots from 2014 (n=120) and 2015 (n=120) of non-transgenic corn and their fractions (germ, pericarp, endosperm, cornmeal and grits), collected from one of the major Brazilian milling industries. Fumonisins were concentrated in the germ and pericarp at a rate of 322% and 188% (lot 1) and 311% and 263% (lot 2), respectively. In the endosperm, cornmeal and grits fumonisin levels decreased from 60 to 95%. Fumonisin levels in cornmeal and grits were below the maximum limit tolerated by the European Commission. Therefore, corn industrial dry-milling can contribute to reducing fumonisin levels in corn products intended for human consumption.
Collapse
Affiliation(s)
- Jaqueline Gozzi Bordini
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10.011, Zip Code 86057-970 Londrina, Paraná, Brazil
| | - Mario Augusto Ono
- State University of Londrina, Department of Pathological Sciences, P.O. Box 10.011, Zip Code 86057-970 Londrina, Paraná, Brazil
| | | | - Victor Hugo Meconi Fazani
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10.011, Zip Code 86057-970 Londrina, Paraná, Brazil
| | - Édio Vizoni
- State University of Londrina, Department of Applied Mathematics, P.O. Box 10.011, Zip Code 86057-970 Londrina, Paraná, Brazil
| | | | - Elisa Yoko Hirooka
- State University of Londrina, Department of Food Science and Technology, P.O. Box 10.011, Zip Code 86057-970 Londrina, Paraná, Brazil
| | - Elisabete Yurie Sataque Ono
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10.011, Zip Code 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
46
|
Trombete F, Porto Y, Freitas-Silva O, Pereira R, Direito G, Saldanha T, Fraga M. Efficacy of Ozone Treatment on Mycotoxins and Fungal Reduction in Artificially Contaminated Soft Wheat Grains. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12927] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- F.M. Trombete
- Postgraduate Program in Food Science and Technology; Federal Rural University of Rio de Janeiro; Rio de Janeiro 23851-970 Brazil
| | - Y.D. Porto
- Postgraduate Program in Food Science and Technology; Federal Rural University of Rio de Janeiro; Rio de Janeiro 23851-970 Brazil
| | - O. Freitas-Silva
- Brazilian Agricultural Research Corporation; Food Technology, Avenida das Americas; Rio de Janeiro Brazil
| | - R.V. Pereira
- Undergraduate student in Food Engineering; Federal Rural University of Rio de Janeiro; Rio de Janeiro Brazil
| | - G.M. Direito
- Department of Microbiology and Immunology Veterinary; Federal Rural University of Rio de Janeiro; Rio de Janeiro Brazil
| | - T. Saldanha
- Department of Food Technology; Federal Rural University of Rio de Janeiro; Rio de Janeiro Brazil
| | - M.E. Fraga
- Department of Microbiology and Immunology Veterinary; Federal Rural University of Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
47
|
Reinholds I, Juodeikiene G, Bartkiene E, Zadeike D, Bartkevics V, Krungleviciute V, Cernauskas D, Cižeikiene D. Evaluation of ozonation as a method for mycotoxins degradation in malting wheat grains. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of ozone (O3) gas on reducing the contamination with Fusarium mycotoxins in malting wheat grains was investigated. Ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) and Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap-HRMS) were used to determine mycotoxins in wheat grains before and 40 to 130 min after the exposure to 20 mg/l O3. Pearson’s analysis (R2=0.96-0.98) showed a good correlation between the performance efficiency of both mass spectrometry quantification techniques. The concentrations of determined mycotoxins (zearalenone (ZEA): 19.5-459 µg/kg, deoxynivalenol (DON): 3,370-4,620 µg/kg, T-2 toxin: 19.5-35.4 µg/kg, and HT-2 toxin: 258-819 µg/kg) decreased notably, depending on the duration of contact with ozone. A notable elimination of ZEA, HT-2, and T-2 in wheat grain was observed: the content of these compounds was reduced on average by 58.6, 64.6, and 62%, respectively, already after 40 min of ozonation. The effect was less pronounced in the case of DON, for which the average degradation rate reached the maximum of only 25% after 130 min exposure. We conclude that ozonation for up to 130 min was effective for reducing the content of most mycotoxins determined in this study, except for DON, in contaminated grains to concentrations below the acceptable maximum levels in wheat in accordance to the EU regulations.
Collapse
Affiliation(s)
- I. Reinholds
- Institute of the Food Safety, Animal Health and Environment ‘BIOR’, Lejupes Street 3, 1076 Riga, Latvia
| | - G. Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Road 19, 50254 Kaunas, Lithuania
| | - E. Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Street 18, 47181 Kaunas, Lithuania
| | - D. Zadeike
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Road 19, 50254 Kaunas, Lithuania
| | - V. Bartkevics
- Institute of the Food Safety, Animal Health and Environment ‘BIOR’, Lejupes Street 3, 1076 Riga, Latvia
| | - V. Krungleviciute
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Street 18, 47181 Kaunas, Lithuania
| | - D. Cernauskas
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Road 19, 50254 Kaunas, Lithuania
| | - D. Cižeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Road 19, 50254 Kaunas, Lithuania
| |
Collapse
|
48
|
Savi GD, Piacentini KC, Tibola CS, Santos K, Sousa Maria G, Scussel VM. Deoxynivalenol in the wheat milling process and wheat-based products and daily intake estimates for the Southern Brazilian population. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Pinotti L, Ottoboni M, Giromini C, Dell'Orto V, Cheli F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins (Basel) 2016; 8:45. [PMID: 26891326 PMCID: PMC4773798 DOI: 10.3390/toxins8020045] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins represent a risk to the feed supply chain with an impact on economies and international trade. A high percentage of feed samples have been reported to be contaminated with more than one mycotoxin. In most cases, the concentrations were low enough to ensure compliance with the European Union (EU) guidance values or maximum admitted levels. However, mycotoxin co-contamination might still exert adverse effects on animals due to additive/synergistic interactions. Studies on the fate of mycotoxins during cereal processing, such as milling, production of ethanol fuels, and beer brewing, have shown that mycotoxins are concentrated into fractions that are commonly used as animal feed. Published data show a high variability in mycotoxin repartitioning, mainly due to the type of mycotoxins, the level and extent of fungal contamination, and a failure to understand the complexity of food processing technologies. Precise knowledge of mycotoxin repartitioning during technological processes is critical and may provide a sound technical basis for feed managers to conform to legislation requirements and reduce the risk of severe adverse market and trade repercussions. Regular, economical and straightforward feed testing is critical to reach a quick and accurate diagnosis of feed quality. The use of rapid methods represents a future challenge.
Collapse
Affiliation(s)
- Luciano Pinotti
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste, 2, 20134 Milan, Italy.
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste, 2, 20134 Milan, Italy.
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste, 2, 20134 Milan, Italy.
| | - Vittorio Dell'Orto
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste, 2, 20134 Milan, Italy.
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste, 2, 20134 Milan, Italy.
| |
Collapse
|
50
|
Tibola CS, Fernandes JMC, Guarienti EM. Effect of cleaning, sorting and milling processes in wheat mycotoxin content. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.07.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|