1
|
Zhang Y, Amin K, Zhang Q, Yu Z, Jing W, Wang Z, Lyu B, Yu H. The application of dietary fibre as microcapsule wall material in food processing. Food Chem 2025; 463:141195. [PMID: 39276558 DOI: 10.1016/j.foodchem.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the food industry, functional ingredients derived from active substances of natural sources and microbiological resources are gaining acceptance and demand due to their beneficial health properties. However, the inherent instability of these constituents poses a challenge in utilizing their functional properties. Microencapsulation with dietary fibre as wall material technology offers a promising solution, providing convenient manipulability and effective safeguarding of encapsulated substances. This paper presents a comprehensive overview of the current state of research on dietary fibre-based microcapsules in food processing. It examines their functional attributes, the preparation technology, and their applications within the food industry. Furthermore, the constraints associated with industrial production are discussed, as well as potential future developments. This article offers researchers a reference point and a theoretical basis for the selection of innovative food ingredients, the high-value utilisation of dietary fibre, and the design of conservation strategies for functional substances in food production.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Qiang Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Ziyue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhaohui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| |
Collapse
|
2
|
Li Q, Zhu J, Liu S, Liu H, Zhang T, Ye T, Lou B, Liu F. QTL Mapping-Based Identification of Visceral White-Nodules Disease Resistance Genes in Larimichthys polyactis. Int J Mol Sci 2024; 25:10872. [PMID: 39456653 PMCID: PMC11507142 DOI: 10.3390/ijms252010872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Disease outbreaks in aquaculture have recently intensified. In particular, visceral white-nodules disease, caused by Pseudomonas plecoglossicida, has severely hindered the small yellow croaker (Larimichthys polyactis) aquaculture industry. However, research on this disease is limited. To address this gap, the present study employed a 100K SNP chip to genotype individuals from an F1 full-sib family, identify single nucleotide polymorphisms (SNPs), and construct a genetic linkage map for this species. A high-density genetic linkage map spanning a total length of 1395.72 cM with an average interval of 0.08 cM distributed across 24 linkage groups was obtained. Employing post-infection survival time as an indicator of disease resistance, 13 disease resistance-related quantitative trait loci (QTLs) were detected, and these regions included 169 genes. Functional enrichment analyses pinpointed 11 candidate disease resistance-related genes. RT-qPCR analysis revealed that the genes of chmp1a and arg1 are significantly differentially expressed in response to P. plecoglossicida infection in spleen and liver tissues, indicating their pivotal functions in disease resistance. In summary, in addition to successfully constructing a high-density genetic linkage map, this study reports the first QTL mapping for visceral white-nodules disease resistance. These results provide insight into the intricate molecular mechanisms underlying disease resistance in the small yellow croaker.
Collapse
Affiliation(s)
- Qian Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Jiajie Zhu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Sifang Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Haowen Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tianle Zhang
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Ting Ye
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Bao Lou
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Feng Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| |
Collapse
|
3
|
Liu J, Huang J, Jiang L, Lin J, Ge Y, Hu Y. Chitosan/polyvinyl alcohol food packaging incorporated with purple potato anthocyanins and nano-ZnO: Application on the preservation of hairtail (Trichiurus haumela) during chilled storage. Int J Biol Macromol 2024; 277:134435. [PMID: 39098679 DOI: 10.1016/j.ijbiomac.2024.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The objective of this work was to evaluate the potential application of chitosan/PVA food packaging films incorporating nano-ZnO and purple potato anthocyanins for preserving chilled hairtail pieces. The hairtail pieces were packaged with chitosan/PVA (CP) and chitosan/PVA/nano-ZnO/purple potato anthocyanins (CPZP), respectively, and Control named without any packaging. The changes in pH, total volatile basic nitrogen (TVB-N), total bacterial colony (TVC), thiobarbituric acid (TBA), color value, and sensory evaluation scores of hairtail pieces were periodically determined. Notably, pH, TVC, TVB-N and TBA values of CPZP group on day 15 were 11.67 %, 23.71 %, 80.73 %, and 35.07 %, respectively, lower than Control group. In addition, CPZP group also performed the best in color and sensory evaluation. These results indicated that CPZP, an active food packaging, could extend the shelf-life of hairtail at least 6 days. Overall, chitosan/PVA food films incorporated with nano-ZnO and purple potato anthocyanins (180 mg/100 mL) provides a potential application in food preservation.
Collapse
Affiliation(s)
- Jialin Liu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingliang Ge
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| |
Collapse
|
4
|
Jiao L, Li Y, Hu J, Zhao S, Zhang X, Benjakul S, Zhang B. Curcumin-loaded food-grade nano-silica hybrid material exhibiting improved photodynamic effect and its application for the preservation of small yellow croaker (Larimichthys polyactis). Food Res Int 2024; 188:114492. [PMID: 38823875 DOI: 10.1016/j.foodres.2024.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.
Collapse
Affiliation(s)
- Long Jiao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuwei Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiajie Hu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuyi Zhao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoye Zhang
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Rao S, Jia C, Lu X, Yu Y, Wang Z, Yang Z. Acid-Heat-Induced Fabrication of Nisin-Loaded Egg White Protein Nanoparticles: Enhanced Structural and Antibacterial Stability. Foods 2024; 13:1741. [PMID: 38890971 PMCID: PMC11172011 DOI: 10.3390/foods13111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.
Collapse
Affiliation(s)
- Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Caochen Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Xiangning Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Yisheng Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
6
|
Zhang X, Wang Y, Wang D, Tang J, Xu M. Synergistic stabilization of garlic essential oil nanoemulsions by carboxymethyl chitosan/Tween 80 and application for coating preservation of chilled fresh pork. Int J Biol Macromol 2024; 266:131370. [PMID: 38580027 DOI: 10.1016/j.ijbiomac.2024.131370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Garlic essential oil (GEO) is a potential natural antioxidant and antimicrobial agent for food preservation, but its intrinsic low water-solubility, high volatility and poor stability severely limit its application and promotion. In this work, we investigated the synergistic stabilization of the GEO-in-water nanoemulsion using carboxymethyl chitosan (CCS) and Tween 80 (TW 80). Additionally, the nanoemulsion was fabricated through high-pressure microfluidization and utilized for the coating-mediated preservation of chilled pork. The garlic essential oil nanoemulsion (GEON) with 3.0 % CCS and 3.0 % TW 80 exhibited more homogeneous droplet size (around 150 nm) and narrower size distribution, while maintained long-term stability with no significant change in size during 30 d storage. Compared with free GEO, the GEONs exhibited a higher scavenging capacity to DPPH and ABTS free radicals as well as higher inhibitory effects against Escherichia coli and Staphylococcus aureus, suggesting that the encapsulation of GEO in nanoemulsion considerably improved its antioxidant and antibacterial activities. Furthermore, the results of coating preservation experiments showed that the GEON coating effectively expanded the shelf-life of chilled fresh pork for approximately one week. Altogether, this study would guide the development of GEO-loaded nanoemulsions, and promote GEON as a promising alternative for coating preservation of chilled fresh meat.
Collapse
Affiliation(s)
- Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Ying Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Min Xu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
7
|
Hu X, Du X, Li M, Sun J, Li X, Pang X, Lu Y. Preparation and characterization of nisin-loaded chitosan nanoparticles functionalized with DNase I for the removal of Listeria monocytogenes biofilms. J Food Sci 2024; 89:2305-2315. [PMID: 38369953 DOI: 10.1111/1750-3841.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Listeria monocytogenes biofilms represent a continuous source of contamination, leading to serious food safety concerns and economic losses. This study aims to develop novel nisin-loaded chitosan nanoparticles (CSNPs) functionalized with DNase I and evaluate its antibiofilm activity against L. monocytogenes on food contact surfaces. Nisin-loaded CSNPs (CS-N) were first prepared by ionic cross-linking, and DNase I was covalently grafted on the surface (DNase-CS-N). The NPs were subsequently characterized by Zetasizer Nano, transmission electron microscopy, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). The antibiofilm activity of NPs was evaluated against L. monocytogenes on polyurethane (PU). The DNase-CS-N was fabricated and characterized with quality attributes (particle size-427.0 ± 15.1 nm, polydispersity [PDI]-0.114 ± 0.034, zeta potential-+52.5 ± 0.2 mV, encapsulation efficiency-46.5% ± 3.6%, DNase conjugate rate-70.4% ± 0.2). FT-IR and XRD verified the loading of nisin and binding of DNase I with chitosan. The DNase-CS-N caused a 3 log colony-forming unit (CFU)/cm2 reduction of L. monocytogenes biofilm cells, significantly higher than those in CSNPs (1.4 log), CS-N (1.8 log), and CS-N in combination with DNase I (2.2 log) treatment groups. In conclusion, nisin-loaded CSNPs functionalized with DNase I were successfully prepared and characterized with smooth surface and nearly spherical shape, high surface positive charge, and good stability, which is effective to eradicate L. monocytogenes biofilm cells on food contact surfaces, exhibiting great potential as antibiofilm agents in food industry. PRACTICAL APPLICATION: Listeria monocytogenes biofilms are a common safety hazard in food processing. In this study, novel nanoparticles were successfully constructed and are expected to be a promising antibiofilm agent in the food industry.
Collapse
Affiliation(s)
- Xin Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xueying Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Mingwei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
8
|
Mao JL, Fu JJ, Qi XE, Chen YW, Zhang B. Effect of theaflavins on the quality of large yellow croaker (Larimichthys crocea) during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37119403 DOI: 10.1002/jsfa.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Large yellow croaker (Larimichthys crocea) is an economical marine fish consumed in China. Theaflavins have antibacterial and antioxidant properties. However, there is a lack of research into their application in large yellow croakers during refrigerated storage. This study investigated the effect of theaflavins on the quality of large yellow croaker (Larimichthys crocea) during 12 days of storage at 4 °C. RESULTS The results showed that theaflavin treatment was able to inhibit microbial growth and reduce the production of total volatile basic nitrogen (TVB-N). Meanwhile, theaflavins were beneficial in reducing the unfolding of myofibrillar proteins, decreasing the degree of protein aggregation, and improving the stability of protein structure. The degree of protein oxidation was lower in a theaflavin-treated group compared with an untreated group. Theaflavin treatment effectively inhibited increases in acid value (AV), peroxide value (PV), and malonaldehyde (MDA) content. The effect of theaflavin was positively correlated with an increase in concentration under refrigeration conditions. This study therefore suggests that the use of theaflavins is a viable method for extending the period for which refrigerated large yellow croaker can be preserved. CONCLUSIONS Adding theaflavins to large yellow croaker can be an effective method for preserving quality during refrigerated storage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Long Mao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Xue-Er Qi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, People's Republic of China
| |
Collapse
|
9
|
Wu J, Song G, Huang R, Yan Y, Li Q, Guo X, Shi X, Tian Y, Wang J, Wang S. Fish gelatin films incorporated with cinnamaldehyde and its sulfobutyl ether-β-cyclodextrin inclusion complex and their application in fish preservation. Food Chem 2023; 418:135871. [PMID: 36958184 DOI: 10.1016/j.foodchem.2023.135871] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
For food preservation, the packaging film needs to have higher antibacterial activity in initial phase and keep longer activity. In this study, cinnamaldehyde (CA) and its sulfobutyl ether-β-cyclodextrin inclusion complex (CA/S) were used to fabricate fish gelatin antibacterial composite films. The addition enhanced the elongation at break and light barrier property of the films. Film forming solution incorporated with CA and CA/S presented the most excellent inhibition ratio against Pseudomonas aeruginosa, which was 98.43 ± 1.11% in initial period and still 82.97 ± 4.55% at 72 h. Further, the packaging solution of gelatin combined CA and CA/S effectively inhibited the growth of microorganisms during preservation of grass carp slices. Especially, the total volatile salt-based nitrogen (TVB-N) did not exceed 10 mg/100 g at the end of storage, indicating that the active coating could obviously extend the shelf life of fish muscle. This work provided a promising food packaging system with antimicrobial and environmentally friendly.
Collapse
Affiliation(s)
- Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| | - Gaojie Song
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Ruyang Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Yongyong Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Qingxiang Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Xiaoban Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Xiaodan Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Jianhua Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
10
|
Qiu L, Zhang M, Chitrakar B, Adhikari B, Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Impact of theaflavin soaking pretreatment on oxidative stabilities and physicochemical properties of semi-dried large yellow croaker (Pseudosciaena crocea) fillets during storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Lan W, Zhao X, Wang M, Xie J. Effects of chitosan and apple polyphenol coating on quality and microbial composition of large yellow croaker (Pseudosciaena crocea) during ice storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3099-3106. [PMID: 34778959 DOI: 10.1002/jsfa.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Large yellow croaker (Pseudosciaena crocea) has important commercial value because of its high nutritional value and delicious taste. However, large yellow croaker is readily affected by microorganisms during storage, which causes the corruption of muscle tissue. Both chitosan (CS) and apple polyphenols (APs) are bio-preservatives, which can effectively inhibit the growth of microorganisms and improve the quality of large yellow croaker. The effects of 10.0 and 20.0 g L-1 CS combined with 1.0 g L-1 AP coating on the quality and microbial composition of large yellow croaker during ice storage were investigated respectively. RESULTS CS + AP coating restrained the increase of total volatile basic nitrogen (TVB-N) and biogenic amines, slowed down the rise of K-value and retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the concentration of CS. Through the analysis of high-throughput sequencing (HTS), the microbial diversity was changed respectively. The proportion of Shewanella was significantly decreased by CS + AP coating treatment and Pseudomonas was the dominant microorganism in spoiled samples. Compared with the shelf-life of the control group (8 days), 20.0 g L-1 CS combined with 1.0 g L-1 AP coating treatment could extend the shelf-life of large yellow croaker for another 8 days. CONCLUSIONS CS combined with AP coating may be considered a promising method to delay the biochemical changes of ice stored large yellow croaker and extend its shelf life. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xinyu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
14
|
A Preliminary Study on the Effects of Taurine-Enriched Rotifers on the Growth and Survival of the Small Yellow Croaker Larimichthys polyactis Larvae. Animals (Basel) 2022; 12:ani12111403. [PMID: 35681867 PMCID: PMC9179329 DOI: 10.3390/ani12111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Rotifers may not meet the nutritional requirements of cultured marine fish species during seed production. Therefore, we evaluated the effect of feeding rotifers enriched with taurine on the growth performance and survival of the small yellow croaker Larimichtys polyactis larvae. The taurine content in the fish increased with the increase in the rotifer taurine levels. The growth and survival rates of the larvae fed taurine-enriched rotifers were higher than those fed control rotifers. Abstract The effect of feeding with taurine-enriched rotifers on larval growth and survival in the small yellow croaker Larimichthys polyactis was investigated. Rotifers, control (without taurine enrichment) or enriched with a commercial taurine supplement at two concentrations (400, and 800 mg/L), were used. The larvae (initial notochord length = 3.83 mm) were fed taurine-enriched rotifers in triplicate, from 3 days after hatching for 12 days. The average taurine contents of the rotifers were 0.31, 5.34, and 8.55 mg/g dry matter, respectively. The rotifers from all treatments had similar fatty acid composition. The growth and survival rates of the larvae fed rotifers enriched with 800 mg/L taurine supplementation were significantly higher than those of larvae fed rotifers without taurine enrichment (p = 0.005 and 0.002, respectively). The whole-body taurine content in the fish increased significantly with the increase in taurine level in the rotifers: 1.02, 3.48, and 4.11 mg/g in larvae fed control rotifers, and rotifers enriched with 400, and 800 mg/L taurine supplementation, respectively. The results of this study indicate that small yellow croaker larvae benefit from taurine concentrations above those typically reported in non-taurine-enriched rotifers.
Collapse
|
15
|
Lan W, Du J, Wang M, Xie J. Effects of chitosan coating on quality and protein characteristics of large yellow croaker (
Pseudosciaena crocea
) during ice storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jintao Du
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Meng Wang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
16
|
Sun Y, Lan W, Liu S, Guan Y, Zhu S, Xie J. Preparation of chitosan grafted caffeic acid coating and its effect on pompano (Trachinotus ovatus) preservation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2835-2845. [PMID: 34741318 DOI: 10.1002/jsfa.11624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The present study aimed to investigate the preservative effect of chitosan-caffeic acid grafts coating (CS-g-CA) on the quality and microbial characteristics of pompano (Trachinotus ovatus) during iced storage. CS-g-CA was prepared by a 1-(3-dimethylaminopropyl)-3-ethylcarbodiimidehydro/N-hydroxysuccinimide coupling reaction. The grafting of CS-g-CA was confirmed by UV-visible and Fourier-transform infrared spectra. Samples were treated with distilled water (control), chitosan (CS), caffeic acid (CA) and CS-g-CA for 10 min, respectively. Microbiological [total viable count (TVC), H2 S-producing bacteria count, Pseudomonas bacteria count], physicochemical indicators [water holding capacity (WHC), cooking loss, pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), texture profile analysis, free amino acids] and sensory evaluation were investigated during ice storage at 4 °C for up to 27 days. RESULTS The results showed that the antioxidant and antibacterial activities of CS could be improved by grafting CA onto CS. CS-g-CA coating could greatly slow down the speed of water loss and maintain WHC. Furthermore, CS-g-CA coating showed superior antibacterial activities by inhibiting the growth of TVC, delayed the decline of flavor amino acids and reduced sensory change. In addition, CS-g-CA coating reduced lipid oxidation and protein degradation as indicated by the decrease in TBA and TVB-N, possibly as a result of the addition of CA into CS membrane significantly improving the antioxidant activity of CS. CONCLUSION Compared with the control group, CS-g-CA coating had the optimal effect and could enhance the shelf-life of Trachinotus ovatus for at least another 9 days. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Shucheng Liu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Yuan Guan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shengyun Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
17
|
Rathod NB, Nirmal NP, Pagarkar A, Özogul F, Rocha JM. Antimicrobial Impacts of Microbial Metabolites on the Preservation of Fish and Fishery Products: A Review with Current Knowledge. Microorganisms 2022; 10:773. [PMID: 35456823 PMCID: PMC9028172 DOI: 10.3390/microorganisms10040773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial metabolites have proven effects to inhibit food spoilage microbiota, without any development of antimicrobial resistance. This review provides a recent literature update on the preservative action of metabolites derived from microorganisms on seafood. Fish and fishery products are regarded as a myriad of nutrition, while being highly prone to spoilage. Several proven controversies (antimicrobial resistance and health issues) related to the use of synthetic preservatives have caused an imminent problem. The demand for minimally processed and naturally preserved clean-label fish and fishery products is on rise. Metabolites derived from microorganisms have exhibited diverse preservation capacities on fish and fishery products' spoilage. Inclusions with other preservation techniques, such as hurdle technology, for the shelf-life extension of fish and fishery products are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Postharvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Raigad 402116, Maharashtra, India;
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Asif Pagarkar
- Marine Biological Research Station, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Ratnagiri 415612, Maharashtra, India;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
18
|
Khazaei Monfared Y, Mahmoudian M, Hoti G, Caldera F, López Nicolás JM, Zakeri-Milani P, Matencio A, Trotta F. Cyclodextrin-Based Nanosponges as Perse Antimicrobial Agents Increase the Activity of Natural Antimicrobial Peptide Nisin. Pharmaceutics 2022; 14:685. [PMID: 35336058 PMCID: PMC8950107 DOI: 10.3390/pharmaceutics14030685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
At present, antibiotic resistance is considered a real problem. Therefore, for decades scientists have been looking for novel strategies to treat bacterial infections. Nisin Z, an antimicrobial peptide (AMP), can be considered an option, but its usage is mainly limited by the poor stability and short duration of its antimicrobial activity. In this context, cyclodextrin (CD)-based nanosponges (NSs), synthesized using carbonyldiimidazole (CDI) and pyromellitic dianhydride (PMDA), were chosen for nisin Z loading. To determine the minimum inhibitory of nisin Z loaded on CD-NS formulations, agar well diffusion plates were used. Then, the bactericide concentrations of nisin Z loaded on CD-NS formulations were determined against Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria, using microdilution brain heart infusion (BHI) and tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The minimum and bactericide inhibitory values of the nisin complex with NSs were potentially decreased against both bacteria, compared with the nisin-free sample, while the nisin complex with β-CD showed lower antibacterial activity. The antimicrobial effect was also demonstrated by free NSs. Furthermore, the total viable counts (TVCs) antibacterial experiment indicated that the combination of nisin Z in both PMDA and CDI β-CD-based NSs, especially CDI, can provide a better conservative effect on cooked chicken meat. Generally, the present study outcomes suggest that the cross-linked β-CD-based NSs can present their own antimicrobial potency or serve as promising carriers to deliver and enhance the antibacterial action of nisin Z.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran;
| | - Gjylije Hoti
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - Fabrizio Caldera
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - José Manuel López Nicolás
- Unidad Docente de Biología, Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain;
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| | - Adrián Matencio
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| | - Francesco Trotta
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (G.H.); (F.C.)
| |
Collapse
|
19
|
Abarca RL, Medina J, Alvarado N, Ortiz PA, Carrillo López B. Biodegradable gelatin-based films with nisin and EDTA that inhibit Escherichia coli. PLoS One 2022; 17:e0264851. [PMID: 35271631 PMCID: PMC8912256 DOI: 10.1371/journal.pone.0264851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we developed gelatin-based films for active packaging with the ability to inhibit E. coli. We created these novel biodegradable gelatin-based films with a nisin-EDTA mix. FT-IR, TGA, and SEM analysis showed that nisin interacted with the gelatin by modifying its thermal stability and morphology. The use of nisin (2,500 IU/mL) with concentrations of Na-EDTA (1.052 M stock solution) distributed in the polymer matrix generated a significant decrease in the growth of E. coli when compared to the control. In freshly made films (t0), the growth of E. coli ATCC 25922 was reduced by approximately 3 logarithmic cycles. Two weeks after the films were made, a reduction in antimicrobial activity was observed in approximately 1, 1 and 3 logarithmic cycles of the films with 5%, 10% and 20% of the compound (nisin/Na-EDTA) distributed in the polymer matrix, respectively. This evidences an antimicrobial effect over time. Also, biodegradation tests showed that the films were completely degraded after 10 days. With all these results, an active and biodegradable packaging was successfully obtained to be potentially applied in perishable foods. These biodegradable, gelatin-based films are a versatile active packaging option. Further research on the barrier properties of these films is needed.
Collapse
Affiliation(s)
- Romina L. Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
- * E-mail:
| | - Javiera Medina
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Valdivia, Chile
| | - Nancy Alvarado
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Pablo A. Ortiz
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Bernardo Carrillo López
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Valdivia, Chile
| |
Collapse
|
20
|
Kazemzadeh S, Abed‐Elmdoust A, Mirvaghefi A, Hosseni S, Abdollahikhameneh H. Physicochemical evaluations of chitosan/nisin nanocapsulation and its synergistic effects in quality preservation in tilapia fish sausage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shirin Kazemzadeh
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | - Amirreza Abed‐Elmdoust
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | - Alireza Mirvaghefi
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | - Seyed Vali Hosseni
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | | |
Collapse
|
21
|
Zhang S, Luo L, Sun X, Ma A. Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12369-12384. [PMID: 34649436 DOI: 10.1021/acs.jafc.1c04020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable in vivo. Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
22
|
Delshadi R, Bahrami A, Assadpour E, Williams L, Jafari SM. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Rathod NB, Ranveer RC, Benjakul S, Kim SK, Pagarkar AU, Patange S, Ozogul F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr Rev Food Sci Food Saf 2021; 20:4182-4210. [PMID: 34146459 DOI: 10.1111/1541-4337.12787] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology Hanyang University Erica, Ansan-si, Gyeonggi-do, South Korea
| | - Asif Umar Pagarkar
- Marine Biological Research Station, (DBSKKV), Ratnagiri, Maharashtra, 415 612, India
| | - Surendra Patange
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey, 01330, Turkey
| |
Collapse
|
24
|
Liu J, Shao Y, Yuan C, Takaki K, Li Y, Ying Y, Hu Y. Eugenol-chitosan nanoemulsion as an edible coating: Its impact on physicochemical, microbiological and sensorial properties of hairtail (Trichiurus haumela) during storage at 4 °C. Int J Biol Macromol 2021; 183:2199-2204. [PMID: 34058208 DOI: 10.1016/j.ijbiomac.2021.05.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Effects of the eugenol-chitosan nanoemulsion as an edible coating on the quality of hairtail (Trichiurus haumela) during storage at 4 °C were evaluated. For all samples, such parameters as pH, thiobarbituric acid (TBA), total volatile basic nitrogen (TVB-N), water holding capacity (WHC), electrical conductivity (EC), total bacteria count (TVC) and sensory were examined periodically. The results demonstrated that eugenol-chitosan nanoemulsion coating showed better preservative effects than chitosan nanoemulsion alone. Therefore, a coating based on eugenol-chitosan nanoemulsion could be regarded as an effective food-grade biopreservative to maintain the quality of hairtail fish and prolong its shelf life during chilled storage.
Collapse
Affiliation(s)
- Jialin Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Ying Shao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Ueda 4-3-5, Morioka 020-8551, Japan
| | - Koichi Takaki
- Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551,Japan
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yubin Ying
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
25
|
Cen S, Fang Q, Tong L, Yang W, Zhang J, Lou Q, Huang T. Effects of chitosan-sodium alginate-nisin preservatives on the quality and spoilage microbiota of Penaeus vannamei shrimp during cold storage. Int J Food Microbiol 2021; 349:109227. [PMID: 34022613 DOI: 10.1016/j.ijfoodmicro.2021.109227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
The present work mainly investigated the effects of prepared chitosan‑sodium alginate-nisin (CS-SA-N) preservatives on the quality and bacterial phase of Penaeus vannamei shrimp during cold storage. Results showed that CS-SA-N preservatives treated samples had the lower pH, total volatile basic nitrogen (TVB-N), total viable count (TVC), and freeness (K) values than those of untreated ones during cold storage. The sensory evaluation results indicated that CS-SA-N preservatives treated shrimps had the higher comprehensive scores than those of untreated ones during whole storage. Microbial community of all samples was dominated by Proteobacteria. The initial predominant bacteria of fresh shrimps were Sphingomonas, Carnobacterium and Psychrobacter. Psychrobacter, Pseudomonas, and Shewanella, Acinetobacter and Vibrio were the predominant bacteria of untreated samples. CS-SA-N preservatives significantly decreased predominant microbial numbers by inhibiting the growth of Psychrobacter, Vibrio, Acinetobacter and Carnobacterium during cold storage. Therefore, the CS-SA-N preservatives could be used to prolong the shelf life of shrimp and guarantee its quality.
Collapse
Affiliation(s)
- Shijie Cen
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Qi Fang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Lu Tong
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Wenge Yang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China.
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China.
| |
Collapse
|
26
|
Šimat V, Čagalj M, Skroza D, Gardini F, Tabanelli G, Montanari C, Hassoun A, Ozogul F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:55-118. [PMID: 34311904 DOI: 10.1016/bs.afnr.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contribution of food in promotion of health has become of most importance. The challenges that lie before the global food supply chain, such as climate changes, food contamination, and antimicrobial resistance may compromise food safety at international scale. Compounds with strong antimicrobial and antioxidant activity can be extracted from different natural and sustainable sources and may contribute to extend the shelf life of meat and seafood products, enhance food safety and enrich foods with additional biologically active and functional ingredients. This chapter describes the use of bioprotective cultures, essential oils, plant extracts, seaweed extracts and grape pomace compounds in production of value-added meat and seafood products with improved shelf life and safety, following the requests from the market and consumers.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
27
|
Lan WQ, Liu L, Zhang NN, Huang X, Weng ZM, Xie J. Effects of ε-polylysine and rosemary extract on the quality of large yellow croaker (Pseudosciaena crocea) stored on ice at 4 ± 1°C. J Food Biochem 2020; 44:e13418. [PMID: 32776382 DOI: 10.1111/jfbc.13418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023]
Abstract
To evaluate the quality changes in large yellow croaker (Pseudosciaena crocea) with ε-polylysine and rosemary extract stored on ice at 4 ± 1°C. About 0.1% ε-polylysine (PL) and 0.2% rosemary extract (RE) were individually or in combination with each other were treated with samples. Samples treated with deionized water were regarded as control check (CK) group. Physicochemical (texture profile analysis (TPA), pH, total volatile basis nitrogen (TVB-N), thiobarbituric acid (TBA)), endogenous enzyme activity (cathepsin B and D), proteolytic degradation (Trichloroacetic Acid (TCA)-soluble peptides and Sodium Salt-polyacrylamide gel electrophoresis (SDS-PAGE)), microbiological (Total viable count (TVC), Shewanella bacteria count, Pseudomonas bacteria count, Psychrophilic bacteria count) and sensory evaluation were conducted during the whole storage. As a result, PL + RE could delay the increase in pH, TVB-N, TBA value, and improve the texture attributes compared with the CK group. In addition, PL + RE could inhibit cathepsin B and D activities, protein degradation, and microbial growth effectively. Moreover, the shelf life of samples could be prolonged at least 4 days when compared with the CK group according to the quality index method (QIM) and physicochemical assay, indicating that the PL + RE treatment could maintain the quality of large yellow croaker more effectively. PRACTICAL APPLICATIONS: The preservation of fish is becoming increasingly important in aquatic products. According to the fence theory, a combination of biopreservatives with different functions could be used to maintain the freshness synergistically. Furthermore, this research indicates that the combination of ε-polylysine and rosemary extract, a promising method for the preservation of aquatic products, could slow down the deterioration of large yellow croaker and prolong its shelf life.
Collapse
Affiliation(s)
- Wei-Qing Lan
- Shanghai Ocean University College of Food Science and Technology, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Lin Liu
- Shanghai Ocean University College of Food Science and Technology, Shanghai, China
| | - Nan-Nan Zhang
- Shanghai Ocean University College of Food Science and Technology, Shanghai, China
| | - Xia Huang
- Shanghai Ocean University College of Food Science and Technology, Shanghai, China
| | - Zhong-Ming Weng
- Shanghai Ocean University College of Food Science and Technology, Shanghai, China
| | - Jing Xie
- Shanghai Ocean University College of Food Science and Technology, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Long-Term Antibacterial Effect of Electrospun Polyvinyl Alcohol/Polyacrylate Sodium Nanofiber Containing Nisin-Loaded Nanoparticles. NANOMATERIALS 2020; 10:nano10091803. [PMID: 32927663 PMCID: PMC7559420 DOI: 10.3390/nano10091803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/26/2022]
Abstract
Response Surface Methodology (RSM) was used to assess the optimal conditions for a Water/Oil/Water (W/O/W) emulsion for encapsulated nisin (EN). Nano-encapsulated nisin had high encapsulation efficiencies (EE) (86.66 ± 1.59%), small particle size (320 ± 20 nm), and low polydispersity index (0.27). Biodegradable polyvinyl alcohol (PVA) and polyacrylate sodium (PAAS) were blended with EN and prepared by electrospinning. Scanning electron microscopy (SEM) revealed PVA/PAAS/EN nanofibers with good morphology, and that their EN activity and mechanical properties were enhanced. When the ultrasonication time was 15 min and 15% EN was added, the nanofibers had optimal mechanical, light transmittance, and barrier properties. Besides, the release behavior of nisin from the nanofibers fit the Korsemeyer–Peppas (KP) model, a maximum nisin release rate of 85.28 ± 2.38% was achieved over 16 days. At 4 °C, the growth of Escherichia coli and Staphylococcus aureus was inhibited for 16 days in nanofibers under different ultrasonic times. The application of the fiber in food packaging can effectively inhibit the activity of food microorganisms and prolong the shelf life of strawberries, displaying a great potential application for food preservation.
Collapse
|
29
|
Pirozzi A, Pataro G, Donsì F, Ferrari G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe application of edible coatings (EC) in combination with pulsed light (PL) treatments represents an emerging approach for extending the shelf life of highly perishable but high value-added products, such as fresh-cut fruits and vegetables. The surface of these products would benefit from the protective effects of ECs and the PL decontamination capability. This review describes in detail the fundamentals of both EC and PL, focusing on the food engineering principles in the formulation and application of EC and the delivery of efficient PL treatments and the technological aspects related to the food characterization following these treatments and discussing the implementation of the two technologies, individually or in combination. The advantages of the combination of EC and PL are extensively discussed emphasizing the potential benefits that may be derived from their combination when preserving perishable foods. The downsides of combining EC and PL are also presented, with specific reference to the potential EC degradation when exposed to PL treatments and the screening effect of PL transmittance through the coating layer. Finally, the potential applications of the combined treatments to food products are highlighted, comparatively presenting the treatment conditions and the product shelf-life improvement.
Collapse
|
30
|
Jin F, Ding R, Ding K, Han T, Chen X. Preparation of allyl isothiocyanate microencapsulation and its application in pork preservation. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang‐zhou Jin
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Rui‐xia Ding
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Ke Ding
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Tao Han
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Xiang‐ning Chen
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| |
Collapse
|
31
|
Perry SL, McClements DJ. Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules 2020; 25:E1161. [PMID: 32150848 PMCID: PMC7179163 DOI: 10.3390/molecules25051161] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
There are many areas in medicine and industry where it would be advantageous to orally deliver bioactive proteins and peptides (BPPs), including ACE inhibitors, antimicrobials, antioxidants, hormones, enzymes, and vaccines. A major challenge in this area is that many BPPs degrade during storage of the product or during passage through the human gut, thereby losing their activity. Moreover, many BPPs have undesirable taste profiles (such as bitterness or astringency), which makes them unpleasant to consume. These challenges can often be overcome by encapsulating them within colloidal particles that protect them from any adverse conditions in their environment, but then release them at the desired site-of-action, which may be inside the gut or body. This article begins with a discussion of BPP characteristics and the hurdles involved in their delivery. It then highlights the characteristics of colloidal particles that can be manipulated to create effective BPP-delivery systems, including particle composition, size, and interfacial properties. The factors impacting the functional performance of colloidal delivery systems are then highlighted, including their loading capacity, encapsulation efficiency, protective properties, retention/release properties, and stability. Different kinds of colloidal delivery systems suitable for encapsulation of BPPs are then reviewed, such as microemulsions, emulsions, solid lipid particles, liposomes, and microgels. Finally, some examples of the use of colloidal delivery systems for delivery of specific BPPs are given, including hormones, enzymes, vaccines, antimicrobials, and ACE inhibitors. An emphasis is on the development of food-grade colloidal delivery systems, which could be used in functional or medical food applications. The knowledge presented should facilitate the design of more effective vehicles for the oral delivery of bioactive proteins and peptides.
Collapse
Affiliation(s)
- Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
32
|
Kim BS, Oh BJ, Lee JH, Yoon YS, Lee HI. Effects of Various Drying Methods on Physicochemical Characteristics and Textural Features of Yellow Croaker ( Larimichthys Polyactis). Foods 2020; 9:E196. [PMID: 32075217 PMCID: PMC7073827 DOI: 10.3390/foods9020196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 12/02/2022] Open
Abstract
The physicochemical characteristics and textural properties of yellow croaker treated by hot air drying (HAD), low temperature vacuum drying (LVD), and freeze drying (FD) methods were studied. The dried fish by LVD had the lowest moisture content and highest protein. The volatile basic nitrogen values of dried fish by HAD, LVD, and FD were 66.27, 34.38, and 33.03 mg/100 g sample, respectively. The predominant amino acids of dried fish treated by LVD and FD were lysine, taurine, alanine, and glutamic acid, and the predominant ones by HAD were the remaining amino acids analyzed in this study, except lysine, taurine, alanine, and glutamic acid. By using the color parameters, the L* and b* values by LVD showed light brown and yellow colors of the fish. The textural properties of dried fish by LVD were softer and more chewable than those of HAD and FD. In the stereo-micrographs, the flesh of dried fish by LVD compared to others showed minimization of texture damage, resilient tissues, much fish oil, and were light brown in color. Taken together, these results suggest that LVD rather than HAD and FD provide good qualities of dried fish in terms of physicochemical characteristics and textural properties.
Collapse
Affiliation(s)
| | | | | | | | - Hae-In Lee
- Mokpo Marine Food-Industry Research Center, Mokpo 58621, Korea; (B.-S.K.); (B.-J.O.); (J.-H.L.); (Y.S.Y.)
| |
Collapse
|
33
|
Pan D, Hao L, Li J, Yi J, Kang Q, Liu X, Lu L, Lu J. An innovative method to enhance protease tolerance of nisin in endogenous proteases. J Dairy Sci 2020; 103:3038-3044. [PMID: 32037169 DOI: 10.3168/jds.2019-17396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022]
Abstract
Nisin, a natural peptide produced by Lactococcus lactis cultivation in milk whey, is widely used as a preservative in industrial production. However, nisin can be degraded by endogenous enzymes in foods. In this study, we investigated the antibacterial activity of nisin-soybean protein and nisin-egg white protein and compared them with that of free nisin in cantaloupe juice, which was used as a model of endogenous protease environment. Results showed that endogenous proteases in the model resulted in a loss of nisin activity, but combining nisin with protein (soybean or egg white) resulted in greater protection of its antimicrobial activity by inhibiting endogenous proteases. The microbial addition experiment (Staphylococcus aureus and Micrococcus luteus) and preservation experiment in the food model showed that the antibacterial activity of nisin combined with either of the 2 proteins was higher than that of nisin alone in an endogenous protease environment. In summary, soybean protein and egg white protein improved the protease tolerance of nisin, expanding the application scope of nisin in food.
Collapse
Affiliation(s)
- Dan Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Limin Hao
- The Quartermaster Research Institute of Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China
| | - Jingjing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Laizheng Lu
- Zhengzhou Mindtek Biological Co. Ltd., Zhengzhou, Henan, 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
34
|
Khemir M, Besbes N, Khemis IB, Di Bella C, Lo Monaco D, Sadok S. Determination of shelf-life of vacuum-packed sea bream (Sparus aurata) fillets using chitosan-microparticles-coating. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2019.1696893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meriam Khemir
- Laboratory of Blue Biotechnology & Aquatic Bioproducts (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de pêche, La Goulette, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University El Manar, Tunis, Tunisia
| | - Nadia Besbes
- Laboratory of Blue Biotechnology & Aquatic Bioproducts (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de pêche, La Goulette, Tunisia
| | - Ines Ben Khemis
- Laboratory of Aquaculture (LA), Institut National des Sciences et Technologies de la Mer (INSTM), Tunis, Tunisia
| | - Calogero Di Bella
- Area Sorveglianza epidemiologica, Istituto Zooprofilattico Sperimentale of Sicily” (IZS Sicily), Palermo, Italia
| | - Daniela Lo Monaco
- Area Sorveglianza epidemiologica, Istituto Zooprofilattico Sperimentale of Sicily” (IZS Sicily), Palermo, Italia
| | - Saloua Sadok
- Laboratory of Blue Biotechnology & Aquatic Bioproducts (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de pêche, La Goulette, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University El Manar, Tunis, Tunisia
| |
Collapse
|
35
|
Baptista RC, Horita CN, Sant'Ana AS. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res Int 2019; 127:108762. [PMID: 31882098 DOI: 10.1016/j.foodres.2019.108762] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Seafood is highly perishable, presenting a rapid loss of its quality soon after capture. Temperature is the critical parameter that impacts on seafood shelf-life reduction, allowing the growth of foodborne pathogens and spoilage microorganisms. In recent years, the search by additional methods of preserving seafood has increased, able to ensure quality and safety. Several natural preservatives have highlighted and gained considerable attention from the scientific community, consumers, industry, and health sectors as a method with broad action antimicrobial and generally economical. Natural preservatives, from different sources, have been widely studied, such as chitosan from animal sources, essential oils, and plant extracts from a plant source, lactic acid bacteria, and bacteriocins from microbiological sources and organic acid from different sources, all with great potential for use in seafood systems. This review focuses on the natural preservatives studied in seafood matrices, their forms of application, concentrations usually employed, their mechanisms of action, factors that interfere in their use and the synergistic effect of the interactions among the natural preservatives, with a focus for maintenance of quality and ensure of food safety.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Claudia N Horita
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
36
|
Mei J, Ma X, Xie J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019; 8:E490. [PMID: 31614926 PMCID: PMC6835557 DOI: 10.3390/foods8100490] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. However, consumer preferences for natural preservatives and concerns about the safety of synthetic preservatives have prompted the food industry to search natural preservatives. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities; however, their allergen risk should be paid attention. Moreover, some algae and mushroom species can also provide a potential source of new natural preservatives. Obviously, the natural preservatives could perform better in fish storage by combining with other hurdles such as non-thermal sterilization processing, modified atmosphere packaging, edible films and coatings.
Collapse
Affiliation(s)
- Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
37
|
Preparation of α-tocopherol-chitosan nanoparticles/chitosan/montmorillonite film and the antioxidant efficiency on sliced dry-cured ham. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Zheng X, He Y, Zhou H, Xiong C. Effects of Chitosan Oligosaccharide–Nisin Conjugates Formed by Maillard reaction on the preservation of
Collichthys niveatus. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaojie Zheng
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
- Wenzhou Academy of Agricultural Sciences Wenzhou PR China
| | - Yue He
- Wenzhou Academy of Agricultural Sciences Wenzhou PR China
| | - Huan Zhou
- Wenzhou Academy of Agricultural Sciences Wenzhou PR China
| | - Chunhua Xiong
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| |
Collapse
|
39
|
Li Y, Huang J, Yuan C, Ding T, Chen S, Hu Y. Developing a new spoilage potential algorithm and identifying spoilage volatiles in small yellow croaker (Larimichthys polyactis) under vacuum packaging condition. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chem 2019; 272:643-652. [DOI: 10.1016/j.foodchem.2018.08.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 01/23/2023]
|
41
|
Wu T, Ge Y, Li Y, Xiang Y, Jiang Y, Hu Y. Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. Int J Biol Macromol 2018; 120:1072-1079. [DOI: 10.1016/j.ijbiomac.2018.08.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/27/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
|
42
|
Li N, Mei J, Shen Y, Xie J. Quality improvement of half-smooth tongue sole (Cynoglossus Semilaevis) fillets by chitosan coatings containing rosmarinic acid during storage. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1518344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Na Li
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Shen
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
43
|
Preparation and properties of gum arabic cross-link binding nisin microparticles. Carbohydr Polym 2018; 197:608-613. [DOI: 10.1016/j.carbpol.2018.05.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 01/12/2023]
|
44
|
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol 2018; 9:1441. [PMID: 30013539 PMCID: PMC6036605 DOI: 10.3389/fmicb.2018.01441] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.
Collapse
Affiliation(s)
- Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Matthew P. McCusker
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Andreia Carvalho
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela A. Ferreira
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Niamh M. Mohan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Nuritas Limited, Dublin, Ireland
| | - Marta Martins
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
45
|
Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv Colloid Interface Sci 2018; 253:1-22. [PMID: 29478671 DOI: 10.1016/j.cis.2018.02.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022]
Abstract
There are many examples of bioactive proteins and peptides that would benefit from oral delivery through functional foods, supplements, or medical foods, including hormones, enzymes, antimicrobials, vaccines, and ACE inhibitors. However, many of these bioactive proteins are highly susceptible to denaturation, aggregation or hydrolysis within commercial products or inside the human gastrointestinal tract (GIT). Moreover, many bioactive proteins have poor absorption characteristics within the GIT. Colloidal systems, which contain nanoparticles or microparticles, can be designed to encapsulate, retain, protect, and deliver bioactive proteins. For instance, a bioactive protein may have to remain encapsulated and stable during storage and passage through the mouth and stomach, but then be released within the small intestine where it can be absorbed. This article reviews the application of food-grade colloidal systems for oral delivery of bioactive proteins, including microemulsions, emulsions, nanoemulsions, solid lipid nanoparticles, multiple emulsions, liposomes, and microgels. It also provides a critical assessment of the characteristics of colloidal particles that impact the effectiveness of protein delivery systems, such as particle composition, size, permeability, interfacial properties, and stability. This information should be useful for the rational design of medical foods, functional foods, and supplements for effective oral delivery of bioactive proteins.
Collapse
|
46
|
Evaluation of nisin-loaded chitosan-monomethyl fumaric acid nanoparticles as a direct food additive. Carbohydr Polym 2018; 184:100-107. [DOI: 10.1016/j.carbpol.2017.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 01/12/2023]
|