1
|
Knap K, Kwiecień K, Ochońska D, Reczyńska-Kolman K, Pamuła E, Brzychczy-Włoch M. Synergistic effect of antibiotics, α-linolenic acid and solvent type against Staphylococcus aureus biofilm formation. Pharmacol Rep 2024:10.1007/s43440-024-00669-3. [PMID: 39466341 DOI: 10.1007/s43440-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND A promising approach to the treatment of bacterial infections involves inhibiting the quorum sensing (QS) mechanism to prevent the formation and growth of bacterial biofilm. While antibiotics are used to kill remaining bacteria, QS inhibitors (QSIs) allow for antibiotic doses to be reduced. This study focuses on evaluating the synergy between gentamicin sulphate (GEN), tobramycin (TOB), or azithromycin (AZM) with linolenic acid (LNA) against the formation of an early Staphylococcus aureus biofilm. METHODS Minimum biofilm inhibitory concentration (MBIC) was determined using the resazurin reduction assay for all antibiotics and LNA. The reduction of biofilm mass was assessed using the crystal violet (CV) assay. We have also evaluated the effect of dimethyl sulfoxide with TWEEN (DMSO_T) on early biofilm formation. Synergy was determined by metabolic activity assay and fractional biofilm inhibitory concentration (FBIC). RESULTS DMSO_T at a concentration of 1% enhanced early biofilm formation, but also decreased the doses of antibiotic needed to reduce the biofilm by up to 8 times. Adding LNA at a concentration of 32 µg/ml or 64 µg/ml allowed up to a 32-fold reduction of antibiotic doses for GEN and TOB and a 4-fold reduction for AZM. CONCLUSIONS LNA's use in combination with various antibiotics could reduce their doses and help fight drug-resistant bacteria in the biofilm.
Collapse
Affiliation(s)
- Karolina Knap
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Konrad Kwiecień
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Dorota Ochońska
- Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, ul. Św. Anny 12, Kraków, 31-121, Poland
| | - Katarzyna Reczyńska-Kolman
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland.
| | - Monika Brzychczy-Włoch
- Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, ul. Św. Anny 12, Kraków, 31-121, Poland.
| |
Collapse
|
2
|
El-Fakharany EM, Elsharkawy WB, El-Maradny YA, El-Gendi H. Moringa oleifera seed methanol extract with consolidated antimicrobial, antioxidant, anti-inflammatory, and anticancer activities. J Food Sci 2024; 89:5130-5149. [PMID: 38955793 DOI: 10.1111/1750-3841.17223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
The wide biological activity of the Moringa oleifera represents a potential opportunity for developing selective cancer treatment drugs. The bioactive phytochemicals in Moringa seed extract (MSE) indicated large numbers of phytochemicals (21 compounds) with dominant abundance for cycloisolongifolene, 8,9-dehydro-9-vinyl, and chamazulene accounting for 12.7% and 12.19% of the total detected compounds. The MSE showed a potent anticancer effect toward Caco-2, MDA, and HepG-2 cells with half-maximal inhibitory concentration (IC50) values of 9.15 ± 1.18, 4.85 ± 0.11, and 7.36 ± 0.22 µg/mL, respectively, with higher safety (≥31-folds) toward normal human cells (IC50 of 150.7 ± 11.11 µg/mL). It appears that MSE stimulates selective-dose-dependent cell shrinkage, and nuclear condensation in the tumor cells, which finally induces the apoptosis pathway to increase its anticancer action. Additionally, MSE showed a potent capability to stimulate cell cycle arrest in both main checkpoint phases (G0/G1 and G2/M) of cell population growth. The apoptotic death stimulation was confirmed through upregulation of tumor protein p53 (p53) and cyclin-dependent kinase inhibitor p21 (p21) expression by more than three- to sixfold and downregulation of B-cell lymphoma 2 expression (threefold) in MSE-treated cells compared to 5-fluorouracil (5-FU)-treated tumor cells. Furthermore, the MSE revealed strong anti-inflammatory activity with significant antioxidant activity by lowering nitric oxide levels and enhancing the superoxide dismutase activity. On the other hand, the MSE revealed broad-spectrum antibacterial activity in a dose-dependent manner against Staphylococcus aureus minimum inhibitory concentration (MIC of 1.25 mg/mL), followed by Salmonella typhimurium (MIC of 1.23 mg/mL), whereas Escherichia coli was the least sensitive to MSE activity (MIC of 22.5 mg/mL) with significant antibiofilm activity against sensitive pathogens.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
- Pharos University in Alexandria, Alexandria, Egypt
| | - Wafaa B Elsharkawy
- Physics Department, College of Science and Humanities Studies, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, Egypt
| |
Collapse
|
3
|
Er-Rahmani S, Errabiti B, Matencio A, Trotta F, Latrache H, Koraichi SI, Elabed S. Plant-derived bioactive compounds for the inhibition of biofilm formation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34859-34880. [PMID: 38744766 DOI: 10.1007/s11356-024-33532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Biofilm formation is a widespread phenomenon that impacts different fields, including the food industry, agriculture, health care and the environment. Accordingly, there is a serious need for new methods of managing the problem of biofilm formation. Natural products have historically been a rich source of varied compounds with a wide variety of biological functions, including antibiofilm agents. In this review, we critically highlight and discuss the recent progress in understanding the antibiofilm effects of several bioactive compounds isolated from different plants, and in elucidating the underlying mechanisms of action and the factors influencing their adhesion. The literature shows that bioactive compounds have promising antibiofilm potential against both Gram-negative and Gram-positive bacterial and fungal strains, via several mechanisms of action, such as suppressing the formation of the polymer matrix, limiting O2 consumption, inhibiting microbial DNA replication, decreasing hydrophobicity of cell surfaces and blocking the quorum sensing network. This antibiofilm activity is influenced by several environmental factors, such as nutritional cues, pH values, O2 availability and temperature. This review demonstrates that several bioactive compounds could mitigate the problem of biofilm production. However, toxicological assessment and pharmacokinetic investigations of these molecules are strongly required to validate their safety.
Collapse
Affiliation(s)
- Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Badr Errabiti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Adrián Matencio
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Hassan Latrache
- Laboratory of Bioprocesses and Bio-Interfaces, Faculty of Science and Technology, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco.
| |
Collapse
|
4
|
Bharathi D, Lee JH, Lee J. Enhancement of antimicrobial and antibiofilm activities of liposomal fatty acids. Colloids Surf B Biointerfaces 2024; 234:113698. [PMID: 38070368 DOI: 10.1016/j.colsurfb.2023.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024]
Abstract
Microbial biofilms are protected surface-attached communities of bacteria or fungi with high drug tolerance that typically cause persistent infections. Smart drug carriers are being explored as a promising platform of antimicrobials to address their recalcitrance to antibiotic agents and minimize the side effects of current therapies. In this study, soy lecithin liposomes loaded with lauric acid (LA) and myristoleic acid (MA) were formulated using an emulsification method, and their antibiofilm properties were evaluated. The physio-chemical properties of the most potent liposome were characterized using a zeta sizer, transmission electron microscopy (TEM), fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. TEM and zeta sizer analysis of the liposome revealed a homogeneous spherical structure with an average size of 159.2 nm and zeta potential of - 5.4 mV. The unilamellar liposomes loaded with LA at 0.1-0.5 µg/mL achieved obvious antibiofilm efficiency against Staphylococcus aureus and Candida albicans and their dual biofilms. Also, LA-loaded liposome formulation efficiently disrupted preformed biofilms of S. aureus and C. albicans. Furthermore, formulated liposomal LA (0.1 µg/mL) exhibited 100-fold increased dual biofilm inhibition compared to LA alone. The single biofilms and dual biofilm formation on polystyrene were reduced as determined by 3D-bright field and scanning electron microscopy. Zeta potential measurements exhibited neutralized surface charge of S. aureus, and the liposomes inhibited hyphae formation in C. albicans. These findings demonstrated that the LA-incorporated liposomes have great potential to become a new, effective, and good antibiofilm agent for treating S. aureus and C. albicans infections.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
6
|
Dou J, Ilina P, Cruz CD, Nurmi D, Vidarte PZ, Rissanen M, Tammela P, Vuorinen T. Willow Bark-Derived Material with Antibacterial and Antibiofilm Properties for Potential Wound Dressing Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16554-16567. [PMID: 37104679 PMCID: PMC10636761 DOI: 10.1021/acs.jafc.3c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Tree stems contain wood in addition to 10-20% bark, which remains one of the largest underutilized biomasses on earth. Unique macromolecules (like lignin, suberin, pectin, and tannin), extractives, and sclerenchyma fibers form the main part of the bark. Here, we perform detailed investigation of antibacterial and antibiofilm properties of bark-derived fiber bundles and discuss their potential application as wound dressing for treatment of infected chronic wounds. We show that the yarns containing at least 50% of willow bark fiber bundles significantly inhibit biofilm formation by wound-isolated Staphylococcus aureus strains. We then correlate antibacterial effects of the material to its chemical composition. Lignin plays the major role in antibacterial activity against planktonic bacteria [i.e., minimum inhibitory concentration (MIC) 1.25 mg/mL]. Acetone extract (unsaturated fatty acid-enriched) and tannin-like (dicarboxylic acid-enriched) substances inhibit both bacterial planktonic growth [MIC 1 and 3 mg/mL, respectively] and biofilm formation. The yarn lost its antibacterial activity once its surface lignin reached 20.1%, based on X-ray photoelectron spectroscopy. The proportion of fiber bundles at the fabricated yarn correlates positively with its surface lignin. Overall, this study paves the way to the use of bark-derived fiber bundles as a natural-based material for active (antibacterial and antibiofilm) wound dressings, upgrading this underappreciated bark residue from an energy source into high-value pharmaceutical use.
Collapse
Affiliation(s)
- Jinze Dou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Polina Ilina
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Cristina D. Cruz
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Denise Nurmi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Paula Zegarra Vidarte
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Marja Rissanen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Päivi Tammela
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tapani Vuorinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
7
|
Park I, Lee JH, Ma JY, Tan Y, Lee J. Antivirulence activities of retinoic acids against Staphylococcus aureus. Front Microbiol 2023; 14:1224085. [PMID: 37771707 PMCID: PMC10525321 DOI: 10.3389/fmicb.2023.1224085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Multidrug-resistant bacteria such as Staphylococcus aureus constitute a global health problem. Gram-positive S. aureus secretes various toxins associated with its pathogenesis, and its biofilm formation plays an important role in antibiotic tolerance and virulence. Hence, we investigated if the metabolites of vitamin A1 might diminish S. aureus biofilm formation and toxin production. Of the three retinoic acids examined, 13-cis-retinoic acid at 10 μg/mL significantly decreased S. aureus biofilm formation without affecting its planktonic cell growth (MIC >400 μg/mL) and also inhibited biofilm formation by Staphylococcus epidermidis (MIC >400 μg/mL), but less affected biofilm formation by a uropathogenic Escherichia coli strain, a Vibrio strain, or a fungal Candida strain. Notably, 13-cis-retinoic acid and all-trans-retinoic acid significantly inhibited the hemolytic activity and staphyloxanthin production by S. aureus. Furthermore, transcriptional analysis disclosed that 13-cis-retinoic acid repressed the expressions of virulence- and biofilm-related genes, such as the two-component arlRS system, α-hemolysin hla, nuclease (nuc1 and nuc2), and psmα (phenol soluble modulins α) in S. aureus. In addition, plant and nematode toxicity assays showed that 13-cis-retinoic acid was only mildly toxic at concentrations many folds higher than its effective antibiofilm concentrations. These findings suggest that metabolites of vitamin A1, particularly 13-cis-retinoic acid, might be useful for suppressing biofilm formation and the virulence characteristics of S. aureus.
Collapse
Affiliation(s)
- Inji Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin Yeul Ma
- Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
8
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Oliveira AMD, Anjos Szczerepa MMD, Bronharo Tognim MC, Abreu Filho BAD, Cardozo-Filho L, Gomes RG, Bergamasco R. Moringa oleifera seed oil extracted by pressurized n-propane and its effect against Staphylococcus aureus biofilms. ENVIRONMENTAL TECHNOLOGY 2023; 44:1083-1098. [PMID: 34704544 DOI: 10.1080/09593330.2021.1994653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus is often associated worldwide with foodborne illnesses, and the elimination of biofilms formed by this bacterium from industrial surfaces is very challenging. To date, there have been few attempts to investigate plant oils obtained by recent green technologies, applied against biofilms on usual surfaces of the food industry and bacteria isolated from such environment. Therefore, this study evaluated the activity of Moringa oleifera seed oil (MOSO), extracted with pressurized n-propane, against standard and environmental S. aureus biofilms. Additionally, a genotypic and phenotypic study of the environmental S. aureus was proposed. It was found that this bacterium was a MSSA (methicillin-sensitive S. aureus), a carrier of icaA and icaD genes that has strong adhesion (OD550=1.86 ± 0.19) during biofilm formation. The use of pressurized n-propane as a solvent was efficient in obtaining MOSO, achieving a yield of 60.9%. Gas chromatography analyses revealed the presence of a rich source of fatty acids in MOSO, mainly oleic acid (62.47%), behenic acid (10.5%) and palmitic acid (7.32%). On polystyrene surface, MOSO at 0.5% and 1% showed inhibitory and bactericidal activity, respectively, against S. aureus biofilms. MOSO at 1% allowed a maximum reduction of 2.38 log UFC/cm² of S. aureus biofilms formed on PVC (polyvinyl chloride) surface. Scanning electron microscopy showed disturbances on the surface of S. aureus after exposure to MOSO. These unprecedented findings suggest that MOSO extracted with pressurized n-propane is potentially capable of inhibiting biofilms of different S. aureus strains, thus, contributing to microbiological safety during food processing.
Collapse
Affiliation(s)
| | | | | | | | - Lúcio Cardozo-Filho
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| |
Collapse
|
10
|
Hamion G, Aucher W, Tardif C, Miranda J, Rouger C, Imbert C, Girardot M. Valorization of Invasive Plant Extracts against the Bispecies Biofilm Staphylococcus aureus- Candida albicans by a Bioguided Molecular Networking Screening. Antibiotics (Basel) 2022; 11:antibiotics11111595. [PMID: 36421241 PMCID: PMC9686625 DOI: 10.3390/antibiotics11111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Invasive plants efficiently colonize non-native territories, suggesting a great production of bioactive metabolites which could be effective antibiofilm weapons. Our study aimed to look for original molecules able to inhibit bispecies biofilm formed by S. aureus and C. albicans. Extracts from five invasive macrophytes (Ludwigia peploides, Ludwigia grandiflora, Myriophyllum aquaticum, Lagarosiphon major and Egeria densa) were prepared and tested in vitro against 24 h old bispecies biofilms using a crystal violet staining (CVS) assay. The activities of the extracts reducing the biofilm total biomass by 50% or more were comparatively analyzed against each microbial species forming the biofilm by flow cytometry (FCM) and scanning electron microscopy. Extracts active against both species were fractionated. Obtained fractions were analyzed by UHPLC-MS/MS and evaluated by the CVS assay. Chemical and biological data were combined into a bioactivity-based molecular networking (BBMN) to identify active compounds. The aerial stem extract of L. grandiflora showed the highest antibiofilm activity (>50% inhibition at 50 µg∙mL−1). The biological, chemical and BBMN investigations of its fractions highlighted nine ions correlated with the antibiofilm activity. The most correlated compound, identified as betulinic acid (BA), inhibited bispecies biofilms regardless of the three tested couples of strains (ATCC strains: >40% inhibition, clinical isolates: ≈27% inhibition), confirming its antibiofilm interest.
Collapse
Affiliation(s)
- Guillaume Hamion
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
- Correspondence:
| | - Willy Aucher
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Charles Tardif
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Julie Miranda
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Caroline Rouger
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Christine Imbert
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Marion Girardot
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| |
Collapse
|
11
|
Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids. Microbiol Spectr 2022; 10:e0133022. [PMID: 35647620 PMCID: PMC9241682 DOI: 10.1128/spectrum.01330-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that secretes several toxins associated with the pathogenesis of sepsis and pneumonia. Its antibiotic resistance is notorious, and its biofilms play a critical role in antibiotic tolerance. We hypothesized fatty acids might inhibit S. aureus biofilm formation and the expressions of its virulence factors. Initially, the antibiofilm activities of 27 fatty acids against a methicillin-sensitive S. aureus strain were investigated. Of the fatty acids tested, three C18 unsaturated fatty acids, that is, petroselinic, vaccenic, and oleic acids at 100 μg/mL, inhibited S. aureus biofilm formation by more than 65% without affecting its planktonic cell growth (MICs were all > 400 μg/mL). Notably, petroselinic acid significantly inhibited biofilm formation of two methicillin-resistant S. aureus strains and two methicillin-sensitive S. aureus strains. In addition, petroselinic acid significantly suppressed the production of three virulence factors, namely, staphyloxanthin, lipase, and α-hemolysin. Transcriptional analysis showed that petroselinic acid repressed the gene expressions of quorum sensing regulator agrA, effector of quorum sensing RNAIII, α-hemolysin hla, nucleases nuc1 and nuc2, and the virulence regulator saeR. Furthermore, petroselinic acid dose-dependently inhibited S. aureus biofilm formation on abiotic surfaces and porcine skin. These findings suggest that fatty acids, particularly petroselinic acid, are potentially useful for controlling biofilm formation by S. aureus. IMPORTANCE Fatty acids with a long carbon chain have recently attracted attention because of their antibiofilm activities against microbes. Here, we report the antibiofilm activities of 27 fatty acids against S. aureus. Of the fatty acids tested, three C18 unsaturated fatty acids (petroselinic, vaccenic, and oleic acids) significantly inhibited biofilm formation by S. aureus. Furthermore, petroselinic acid inhibited the production of several virulence factors in S. aureus. The study also reveals that the action mechanism of petroselinic acid involves repression of quorum-sensing-related and virulence regulator genes. These findings show that natural and nontoxic petroselinic acid has potential use as a treatment for S. aureus infections, including infections by methicillin-resistant S. aureus strains, and in food processing facilities.
Collapse
|
12
|
Ben Amor ML, Zeghdi S, Laouini SE, Bouafia A, Meneceur S. pH reaction effect on biosynthesis of CuO/Cu 2O nanoparticles by Moringa oleifera leaves extracts for antioxidant activities. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2077376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammed Larbi Ben Amor
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued, Algeria
- Laboratoire de biotechnologie biomatériaux et matériaux condensés, faculté de la technologie, Université Echahid Hammam Lakhdar El Oued, El-Oued, Algérie
| | - Saad Zeghdi
- Laboratory of recovery and promotion of Saharan resources, University Kasdi Merbah, Ouargla, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued, Algeria
- Laboratoire de biotechnologie biomatériaux et matériaux condensés, faculté de la technologie, Université Echahid Hammam Lakhdar El Oued, El-Oued, Algérie
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued, Algeria
- Laboratoire de biotechnologie biomatériaux et matériaux condensés, faculté de la technologie, Université Echahid Hammam Lakhdar El Oued, El-Oued, Algérie
| | - Souhaila Meneceur
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued, Algeria
- Laboratoire de biotechnologie biomatériaux et matériaux condensés, faculté de la technologie, Université Echahid Hammam Lakhdar El Oued, El-Oued, Algérie
| |
Collapse
|
13
|
Park S, Lee JH, Kim YG, Hu L, Lee J. Fatty Acids as Aminoglycoside Antibiotic Adjuvants Against Staphylococcus aureus. Front Microbiol 2022; 13:876932. [PMID: 35633672 PMCID: PMC9133387 DOI: 10.3389/fmicb.2022.876932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Fatty acids have diverse functions in the vast majority of cells. At high doses, they act as antimicrobials while, at low doses, they exhibit antibiofilm and antivirulence activities. In this study, the synergistic antibacterial and antibiofilm activities of 30 fatty acids and 11 antibiotics were investigated against methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains. Of the 15 saturated and 15 unsaturated fatty acids examined, 16 enhanced the antibacterial activity of tobramycin. Combinatorial treatment with myristoleic acid (the most active) at 10 μg/ml and tobramycin at 10 μg/ml decreased cell survival by >4 log as compared with tobramycin treatment alone. Notably, aminoglycoside antibiotics, such as tobramycin, kanamycin, gentamicin, and streptomycin exhibited antimicrobial synergy with myristoleic acid. Co-treatment with myristoleic acid and antibiotics markedly decreased biofilm formation. Interestingly, co-treatment with tobramycin and myristoleic acid induced a reduction in S. aureus cell size. These results suggest that fatty acids, particularly myristoleic acid, can be used as aminoglycoside antibiotic adjuvants against recalcitrant S. aureus infections.
Collapse
Affiliation(s)
- Sunyoung Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Liangbin Hu
- School of Food & Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Jintae Lee,
| |
Collapse
|
14
|
Scala V, Salustri M, Loreti S, Pucci N, Cacciotti A, Tatulli G, Scortichini M, Reverberi M. Mass Spectrometry-Based Targeted Lipidomics and Supervised Machine Learning Algorithms in Detecting Disease, Cultivar, and Treatment Biomarkers in Xylella fastidiosa subsp. pauca-Infected Olive Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:833245. [PMID: 35528940 PMCID: PMC9072861 DOI: 10.3389/fpls.2022.833245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In 2013, Xylella fastidiosa (Xf) was detected for the first time in Apulia and, subsequently, recognized as the causal agent of the olive quick decline syndrome (OQDS). To contain the disease, the olive germplasm was evaluated for resistance to Xf, identifying cultivars with different susceptibility to the pathogen. Regarding this, the resistant cultivar Leccino has generally a lower bacterial titer compared with the susceptible cultivar Ogliarola salentina. Among biomolecules, lipids could have a pivotal role in the interaction of Xf with its host. In the grapevine Pierce's disease, fatty acid molecules, the diffusible signaling factors (DSFs), act as regulators of Xf lifestyle and are crucial for its virulence. Other lipid compounds derived from fatty acid oxidation, namely, oxylipins, can affect, in vitro, biofilm formation in Xf subsp. pauca (Xfp) strain De Donno, that is, the strain causing OQDS. In this study, we combined high-performance liquid chromatography-mass spectrometry-MS-based targeted lipidomics with supervised learning algorithms (random forest, support vector machine, and neural networks) to classify olive tree samples from Salento. The dataset included samples from either OQDS-positive or OQDS-negative olive trees belonging either to cultivar Ogliarola salentina or Leccino treated or not with the zinc-copper-citric acid biocomplex Dentamet®. We built classifiers using the relative differences in lipid species able to discriminate olive tree samples, namely, (1) infected and non-infected, (2) belonging to different cultivars, and (3) treated or untreated with Dentamet®. Lipid entities emerging as predictors of the thesis are free fatty acids (C16:1, C18:1, C18:2, C18:3); the LOX-derived oxylipins 9- and 13-HPOD/TrE; the DOX-derived oxylipin 10-HPOME; and diacylglyceride DAG36:4(18:1/18:3).
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Manuel Salustri
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Andrea Cacciotti
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Inés Molina RD, Campos-Silva R, Díaz MA, Macedo AJ, Blázquez MA, Alberto MR, Arena ME. Inhibition of bacterial virulence factors of foodborne pathogens by paprika (Capsicum annuum L.) extracts. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kim Y, Lee J, Park S, Kim S, Lee J. Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microb Biotechnol 2022; 15:590-602. [PMID: 34156757 PMCID: PMC8867970 DOI: 10.1111/1751-7915.13864] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022] Open
Abstract
Biofilms are communities of bacteria, fungi or yeasts that form on diverse biotic or abiotic surfaces, and play important roles in pathogenesis and drug resistance. A generic saw palmetto oil inhibited biofilm formation by Staphylococcus aureus, Escherichia coli O157:H7 and fungal Candida albicans without affecting their planktonic cell growth. Two main components of the oil, lauric acid and myristic acid, are responsible for this antibiofilm activity. Their antibiofilm activities were observed in dual-species biofilms as well as three-species biofilms of S. aureus, E. coli O157:H7 and C. albicans. Transcriptomic analysis showed that lauric acid and myristic acid repressed the expressions of haemolysin genes (hla and hld) in S. aureus, several biofilm-related genes (csgAB, fimH and flhD) in E. coli and hypha cell wall gene HWP1 in C. albicans, which supported biofilm inhibition. Also, saw palmetto oil, lauric acid and myristic acid reduced virulence of three microbes in a nematode infection model and exhibited minimal cytotoxicity. Furthermore, combinatorial treatment of fatty acids and antibiotics showed synergistic antibacterial efficacy against S. aureus and E. coli O157:H7. These results demonstrate that saw palmetto oil and its main fatty acids might be useful for controlling bacterial infections as well as multispecies biofilms.
Collapse
Affiliation(s)
- Yong‐Guy Kim
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Jin‐Hyung Lee
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Sunyoung Park
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Sanghun Kim
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| | - Jintae Lee
- School of Chemical EngineeringYeungnam University280 Daehak‐RoGyeongsanKorea
| |
Collapse
|
17
|
Thymus zygis Essential Oil: Phytochemical Characterization, Bioactivity Evaluation and Synergistic Effect with Antibiotics against Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11020146. [PMID: 35203749 PMCID: PMC8868214 DOI: 10.3390/antibiotics11020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a nosocomial bacterium causing different infectious diseases, ranging from skin and soft-tissue infections to more serious and life-threatening infections such as sepsis, meningitis and endocarditis, which may be exacerbated by antibiotic resistance. Plant products may be seen as an alternative as antibacterial agents, namely, against S. aureus. Thus, the aim of this work was to characterize the chemical composition and evaluate the bioactive properties of the T. zygis essential oil (EO), with a focus on antimicrobial activity against S. aureus. Gas chromatography coupled with mass spectrometry was used to assess the chemical composition of the T. zygis EO, and the antioxidant activity was evaluated using the DPPH method and β-carotene-bleaching assay. The antimicrobial activity against S. aureus strains, the interaction with different antibiotics and the attenuation of this bacterium’s virulence were evaluated. The T. zygis EO showed antioxidant activity acting through two different mechanisms and antibacterial activity against S. aureus, with antibiofilm and antihaemolytic properties. This EO also demonstrated synergistic or additive interactions in combination with ampicillin, ciprofloxacin or vancomycin against S. aureus strains and, in some cases, changed the antibiotic-resistance phenotype from resistant to susceptible. Therefore, the present work demonstrates the good bioactive properties of the EO of T. zygis, mainly the antimicrobial activity against S. aureus, revealing its potential to be used as an antibacterial agent.
Collapse
|
18
|
Kim YG, Lee JH, Lee J. Antibiofilm activities of fatty acids including myristoleic acid against Cutibacterium acnes via reduced cell hydrophobicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153710. [PMID: 34461422 DOI: 10.1016/j.phymed.2021.153710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cutibacterium acnes is a major colonizer and inhabitant of human skin and contributes to the pathogenesis of acne vulgaris. C. acnes either alone or with Staphylococcus aureus, which also inhabits skin, readily forms biofilms that are often tolerant of conventional antibiotics and the host immune system. It was hypothesized that the amphiphilic nature of some fatty acids (FAs) inhibit C. acnes or mixed biofilm formation. PURPOSE The antibacterial and antibiofilm activities of 24 saturated and unsaturated FAs were investigated against C. acnes as well as a mixture of the bacteria C. acnes and S. aureus. METHODS Anti-biofilm assays, antimicrobial assays, confocal laser scanning microscopy, scanning electron microscopy, extracellular polymeric substance production, and microbial adherence to hydrocarbon assay were utilized to elucidate how active FAs influence biofilm development. RESULTS Seventeen FAs at 20 µg/ml inhibited C. acnes biofilm formation by 60-99%. The minimum inhibitory concentrations (MICs) of 20 FAs were ≥ 500 µg/ml but 4 medium-chain FAs had MICs in a range 15 to 200 µg/ml. Interestingly, myristoleic acid inhibited biofilm formation at 1 μg/ml. Myristoleic acid also inhibited the formation of S. aureus and mixed C. acnes/S. aureus biofilms. FAs reduced C. acnes hydrophobicity and we found this was generally correlated with their antibiofilm forming efficacies. Transcriptional analyses showed that myristoleic acid modulates the expression of several biofilm-related genes such as lipase, hyaluronate lyase, and virulence-related genes. CONCLUSION This study shows myristoleic acid and other FAs inhibit biofilm formation by C. acnes and mixed biofilm formation by C. acnes and S. aureus. Hence, myristoleic acid might be useful for treating or preventing acne and C. acnes associated diseases.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
19
|
Hu XM, Zhang J, Ding WY, Liang X, Wan R, Dobretsov S, Yang JL. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. BIOFOULING 2021; 37:911-921. [PMID: 34620016 DOI: 10.1080/08927014.2021.1981882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanism underlying modulation of metamorphosis of the bivalve Mytilus coruscus by bacteria remains unclear. Here, the functional role of the thioesterase gene tesA of the bacterium Pseudoalteromonas marina in larval metamorphosis was examined. The aim was to determine whether inactivation of the tesA gene altered the biofilm-inducing capacity, bacterial cell motility, biopolymers, or the intracellular c-di-GMP levels. Complete inactivation of tesA increased the c-di-GMP content in P. marina, accompanied by a reduced fatty acid content, weaker motility, upregulation of bacterial aggregation, and biofilm formation. The metamorphosis rate of mussel larvae on ΔtesA biofilms was reduced by ∼ 80% compared with those settling on wild-type P. marina. Exogenous addition of a mixture of extracted fatty acids from P. marina into the ΔtesA biofilms promoted the biofilm-inducing capacity. This study suggests that the bacterial thioesterase gene tesA altered the fatty acid composition of ΔtesA P. marina biofilms (BF) through regulation of its c-di-GMP, subsequently impacting mussel metamorphosis.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Junbo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
| | - Wen-Yang Ding
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Rong Wan
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
- Zhoushan Branch of National Engineering Research Center for Oceanic Fisheries, Zhoushan, PR China
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| |
Collapse
|
20
|
Cui H, Li H, Li C, Abdel-Samie MA, Lin L. Inhibition effect of moringa oil on the cheese preservation and its impact on the viability, virulence and genes expression of Listeria monocytogenes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Laurel extracts inhibit Quorum sensing, virulence factors and biofilm of foodborne pathogens. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Yuyama KT, Rohde M, Molinari G, Stadler M, Abraham WR. Unsaturated Fatty Acids Control Biofilm Formation of Staphylococcus aureus and Other Gram-Positive Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9110788. [PMID: 33171584 PMCID: PMC7695168 DOI: 10.3390/antibiotics9110788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Infections involving biofilms are difficult to treat due to increased resistances against antibiotics and the immune system. Hence, there is an urgent demand for novel drugs against biofilm infections. During our search for novel biofilm inhibitors from fungi, we isolated linoleic acid from the ascomycete Hypoxylon fragiforme which showed biofilm inhibition of several bacteria at sub-MIC concentrations. Many fatty acids possess antimicrobial activities, but their minimum inhibitory concentrations (MIC) are high and reports on biofilm interferences are scarce. We demonstrated that not only linoleic acid but several unsaturated long-chain fatty acids inhibited biofilms at sub-MIC concentrations. The antibiofilm activity exerted by long-chain fatty acids was mainly against Gram-positive bacteria, especially against Staphylococcus aureus. Micrographs of treated S. aureus biofilms revealed a reduction in the extracellular polymeric substances, pointing to a possible mode of action of fatty acids on S. aureus biofilms. The fatty acids had a strong species specificity. Poly-unsaturated fatty acids had higher activities than saturated ones, but no obvious rule could be found for the optimal length and desaturation for maximal activity. As free fatty acids are non-toxic and ubiquitous in food, they may offer a novel tool, especially in combination with antibiotics, for the control of biofilm infections.
Collapse
Affiliation(s)
- Kamila Tomoko Yuyama
- Chemical Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (M.R.); (G.M.)
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (M.R.); (G.M.)
| | - Marc Stadler
- Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Wolf-Rainer Abraham
- Chemical Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
- Department of Bioinformatics and Biochemistry, Technische Universität Carolo-Wilhelmina zu Braunschweig, BRICS—Braunschweig Integrated Centre of Systems Biology, Rebenring 56, D-38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
23
|
Martínez-Sánchez A, López-Cañavate ME, Guirao-Martínez J, Roca MJ, Aguayo E. Aloe vera Flowers, a Byproduct with Great Potential and Wide Application, Depending on Maturity Stage. Foods 2020; 9:foods9111542. [PMID: 33114533 PMCID: PMC7693977 DOI: 10.3390/foods9111542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023] Open
Abstract
Flowers of Aloe vera are a byproduct providing a valuable source of bioactive compounds with different functions for health benefits. The characterization in amino acids, organic acids, sugars, trigonelline, volatiles compounds, fatty acids, total phenolic, carotenoids, vitamin C content, and antioxidant capacity of Aloe flowers (Aloe barbadensis Miller) has been studied at three maturity stages (I: immature; II: mature; III: mature, with flowers buds opened). Immature flowers presented the highest content in phenyl alanine, tyrosine, citric acid, trigonelline, carotenoids, retinol activity equivalent, vitamin C, and total phenolic and antioxidant capacity. As the flower develops, the content of these compounds decreases. Aloe vera flowers presented an important content in fatty acids, and the principal concentration was identified in polyunsaturated unsaturated fatty acids (PUFAs) as α-linolenic acid, and linoleic acid, with a ratio close to one. The main saturated fatty acid was palmitic acid, followed by stearic acid. Maturity stage III showed the lowest fatty acid content. The bioactive compounds found in Aloe vera flowers have potential applications in the cosmetic, pharmaceutical, nutraceutical, and food industries. Depending on the compound of interest, it could be worthwhile harvesting flowers at maturity stage I, thereby reducing the energy consumption of flowers from the plant and thus favoring plant development. This is an example of a circular economy for Aloe vera producers, generating economic and business opportunities and thus providing environmental and social benefits.
Collapse
Affiliation(s)
- Ascensión Martínez-Sánchez
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (A.M.-S.); (M.E.L.-C.); (J.G.-M.)
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), UPCT, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
| | - María Elena López-Cañavate
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (A.M.-S.); (M.E.L.-C.); (J.G.-M.)
| | - Josefa Guirao-Martínez
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (A.M.-S.); (M.E.L.-C.); (J.G.-M.)
| | - María José Roca
- Servicio de Apoyo a la Investigación Tecnológica (Support Service for Technological Research), UPCT, Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Encarna Aguayo
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (A.M.-S.); (M.E.L.-C.); (J.G.-M.)
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), UPCT, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
- Correspondence: ; Tel.: +34-968-325750
| |
Collapse
|
24
|
Kumar P, Lee JH, Beyenal H, Lee J. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends Microbiol 2020; 28:753-768. [DOI: 10.1016/j.tim.2020.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
|
25
|
Song HS, Choi TR, Han YH, Park YL, Park JY, Yang SY, Bhatia SK, Gurav R, Kim YG, Kim JS, Joo HS, Yang YH. Increased resistance of a methicillin-resistant Staphylococcus aureus Δagr mutant with modified control in fatty acid metabolism. AMB Express 2020; 10:64. [PMID: 32266584 PMCID: PMC7138893 DOI: 10.1186/s13568-020-01000-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/28/2020] [Indexed: 02/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are distinct from general Staphylococcus strains with respect to the composition of the membrane, ability to form a thicker biofilm, and, importantly, ability to modify the target of antibiotics to evade their activity. The agr gene is an accessory global regulator of gram-positive bacteria that governs virulence or resistant mechanisms and therefore an important target for the control of resistant strains. However, the mechanism by which agr impacts resistance to β-lactam antibiotics remains unclear. In the present study, we found the Δagr mutant strain having higher resistance to high concentrations of β-lactam antibiotics such as oxacillin and ampicillin. To determine the influence of variation in the microenvironment of cells between the parental and mutant strains, fatty acid analysis of the supernatant, total lipids, and phospholipid fatty acids were compared. The Δagr mutant strain tended to produce fewer fatty acids and retained lower amounts of C16, C18 fatty acids in the supernatant. Phospholipid analysis showed a dramatic increase in the hydrophobic longer-chain fatty acids in the membrane. To target membrane, we applied several surfactants and found that sorbitan monolaurate (Span20) had a synergistic effect with oxacillin by decreasing biofilm formation and growth. These findings indicate that agr deletion allows for MRSA to resist antibiotics via several changes including constant expression of mecA, fatty acid metabolism, and biofilm thickening.
Collapse
|
26
|
Bacteriophages Promote Metabolic Changes in Bacteria Biofilm. Microorganisms 2020; 8:microorganisms8040480. [PMID: 32231093 DOI: 10.3390/microorganisms8040480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriophages, and, together with eicosanoic acid (C20:0), can destroy the biofilm structure. Here, we demonstrate the efficacy of the combined use of phage, HA and C20:0 against Xanthomonas campestris pv campestris (Xcc) biofilm. We used nuclear magnetic resonance (NMR)-based metabolomics to investigate the molecular determinants related to the lytic action, aiming at identifying the metabolic pathways dysregulated by phage treatment. Furthermore, we identified specific markers (amino acids, lactate and galactomannan) which are involved in the control of biofilm stability. Our data show that Xccφ1, alone or in combination with HA and C20:0, interferes with the metabolic pathways involved in biofilm formation. The approach described here might be extended to other biofilm-producing bacteria.
Collapse
|
27
|
Norlina R, Norashikin MN, Loh SH, Aziz A, Cha TS. Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1. Appl Biochem Biotechnol 2020; 191:1653-1669. [PMID: 32198601 DOI: 10.1007/s12010-020-03312-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) has been known to exist in a microalgal system and serves as one of the chemical stimuli in various biological pathways. Nonetheless, the involvement of ABA in fatty acid biosynthesis, particularly at the transcription level in microalgae is poorly understood. The objective of this study was to determine the effects of exogenous ABA on growth, total oil content, fatty acid composition, and the expression level of beta ketoacyl-ACP synthase I (KAS I) and omega-3 fatty acid desaturase (ω-3 FAD) genes in Chlorella vulgaris UMT-M1. ABA was applied to early stationary C. vulgaris cultures at concentrations of 0, 10, 20, and 80 μM for 48 h. The results showed that ABA significantly increased biomass production and total oil content. The increment of palmitic (C16:0) and stearic (C18:0) acids was coupled by decrement in linoleic (C18:2) and α-linolenic (C18:3n3) acids. Both KAS I and ω-3 FAD gene expression were downregulated, which was negatively correlated to saturated fatty acid (SFAs), but positively correlated to polyunsaturated fatty acid (PUFA) accumulations. Further analysis of both KAS I and ω-3 FAD promoters revealed the presence of multiple ABA-responsive elements (ABREs) in addition to other phytohormone-responsive elements. However, the role of these phytohormone-responsive elements in regulating KAS I and ω-3 FAD gene expression still remains elusive. This revelation might suggest that phytohormone-responsive gene regulation in C. vulgaris and microalgae as a whole might diverge from higher plants which deserve further scientific research to elucidate its functional roles.
Collapse
Affiliation(s)
- Ramlee Norlina
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Md Nor Norashikin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Saw Hong Loh
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Ahmad Aziz
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
28
|
Kim YG, Lee JH, Park JG, Lee J. Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. BIOFOULING 2020; 36:126-137. [PMID: 32093497 DOI: 10.1080/08927014.2020.1730333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Microbial biofilms are associated with persistent infections because of their high tolerance to antimicrobial agents and host defenses. The effects of centipede oil from Scolopendra subspinipes mutilans and its main components were investigated to identify non-toxic biofilm inhibitors. Centipede oil and linoleic acid at 20 µg ml-1 markedly inhibited biofilm formation by two fluconazole-resistant Candida albicans strains and three Staphylococcus aureus strains without affecting their planktonic cell growth. Also, both centipede oil and linoleic acid inhibited hyphal growth and cell aggregation by C. albicans. In addition, centipede oil and linoleic acid showed anti-biofilm activities against mixed C. albicans and S. aureus biofilms. Transcriptomic analysis showed that centipede oil and linoleic acid downregulated the expressions of several hypha/biofilm-related genes in C. albicans and α-hemolysin in S. aureus. Furthermore, both compounds effectively reduced C. albicans virulence in a nematode infection model with minimal toxicity.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
29
|
Wang C, He L, Xing Y, Zhou W, Yang F, Chen X, Zhang Q. Fermentation quality and microbial community of alfalfa and stylo silage mixed with Moringa oleifera leaves. BIORESOURCE TECHNOLOGY 2019; 284:240-247. [PMID: 30947138 DOI: 10.1016/j.biortech.2019.03.129] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The silage quality of alfalfa and stylo without or with 25%, 50% Moringa oleifera leaves (MOL) was investigated, and microbial community after ensiling was analysed. Results showed that the silage samples with MOL have lower butyric acid (0.50 vs 1.20, 0.60 vs 14.5 g/kg dry matter (DM) in alfalfa and stylo silage, respectively), ammonia-N (152 vs 262, 109 vs 180 g/kg total N) content and DM loss (7.71% vs 14.6%, 6.49% vs 18.9%). The addition of MOL also influenced the bacterial community distribution. The relative abundance of Enterobacter decreased from 58.6% to 30.5%, 17.4% to 9.1% in alfalfa and stylo silage when 50% MOL was added. Clostridium decreased from 23.5% to 0.2% in stylo silage, whereas Lactobacillus abundance increased from 30.4% to 49.9%, 41.8% to 86.0% in alfalfa and stylo silage, respectively. In conclusion, mixing with MOL could be a feasible way to improve the quality of alfalfa and stylo silage.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Yaqi Xing
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Fuyu Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
30
|
Belo YN, Al-Hamimi S, Chimuka L, Turner C. Ultrahigh-pressure supercritical fluid extraction and chromatography of Moringa oleifera and Moringa peregrina seed lipids. Anal Bioanal Chem 2019; 411:3685-3693. [PMID: 31053955 PMCID: PMC6571088 DOI: 10.1007/s00216-019-01850-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
Abstract
An ultrahigh-pressure supercritical fluid extraction method was optimized and applied to extract seed oil lipids from two moringa species, namely Moringa oleifera (MO) and Moringa peregrina (MP). A full-factorial design was used to investigate the direct and interaction influence of pressure and temperature in the range of 40 to 80 MPa and 40 to 70 °C, respectively, on the extracted amount of oil from crushed seeds. The results revealed that pressure has a significant positive influence on the extracted amount of oil. The best extraction condition using neat CO2 was found at 80 MPa and 57 °C, yielding 396 ± 23 and 529 ± 26 mg oil per gram of seeds for MO and MP, respectively. An extraction kinetics study revealed a mainly solubility-controlled extraction of oil, and 28 g of CO2 was required to extract 400 mg of oil per gram of seeds of MO using the developed method. Addition of ethanol to the sample prior to the extraction increased the proportion of extractable polar lipids as well as the total amount of extracted oil. The developed method increased the extracted amount of oil twofold compared to a reference method based on solvent sonication. The obtained oil consisted mainly of glycerolipids, sterol esters, and phospholipids. Phospholipids, campesterol, and stigmasterol ester concentrations were found to be higher in MO while cholesterol ester was more abundant in MP.
Collapse
Affiliation(s)
- Yannick Nuapia Belo
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Said Al-Hamimi
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Charlotta Turner
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100, Lund, Sweden.
| |
Collapse
|
31
|
Bae WY, Kim HY, Kim KT, Paik HD. Inhibitory effects of Inula britannica extract fermented by Lactobacillus plantarum KCCM 11613P on coagulase activity and growth of Staphylococcus aureus including methicillin-resistant strains. J Food Biochem 2019; 43:e12785. [PMID: 31353594 DOI: 10.1111/jfbc.12785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the antimicrobial efficacy of fermented Inula britannica extract (FIBE) against Staphylococcus aureus strains including methicillin-resistant S. aureus (MRSA). I. britannica extract was fermented by Lactobacillus plantarum KCCM 11613P, and the pathogenicity of S. aureus strains was determined via assessment of coagulase, DNase, and hemolytic activities. Epicatechin concentration increased from 4.38 to 6.05 μg/mg during fermentation (p < 0.01). FIBE treatment inhibited coagulase release from S. aureus to levels below the inhibitory concentration. FIBE promoted the release of intracellular nucleic acids and N-phenyl-1-naphthylamine absorption. In three S. aureus strains, damaged cells exhibited 21.58, 16.79, and 17.65% decreases in membrane potential induced by cell membrane depolarization, respectively (p < 0.05). Upon FIBE treatment in culture, the minimum inhibitory concentration of FIBE exerted a bacteriostatic effect. In conclusion, FIBE possesses antimicrobial properties, including inhibition of virulence factors, damage to cell membranes, and inhibition of bacterial growth. PRACTICAL APPLICATIONS: Methicillin-resistant Staphylococcus aureus (MRSA) is a serious concern in hospitals because of its known antibiotic resistance. Vancomycin and tigecycline are used for treating MRSA, but the appearance of vancomycin-intermediate and multidrug-resistant strains of these bacteria has created a demand for new antimicrobial agents. This study demonstrates the effective application of Inula britannica and fermentation technology for developing natural antimicrobial agents against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Hyeong-Yeop Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea.,Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
32
|
Kim YG, Lee JH, Raorane CJ, Oh ST, Park JG, Lee J. Herring Oil and Omega Fatty Acids Inhibit Staphylococcus aureus Biofilm Formation and Virulence. Front Microbiol 2018; 9:1241. [PMID: 29963020 PMCID: PMC6014104 DOI: 10.3389/fmicb.2018.01241] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/23/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics and biofilms play a critical role in antibiotic tolerance. S. aureus is also capable of secreting several exotoxins associated with the pathogenesis of sepsis and pneumonia. Thus, the objectives of the study were to examine S. aureus biofilm formation in vitro, and the effects of herring oil and its main components, omega fatty acids [cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid (EPA)], on virulence factor production and transcriptional changes in S. aureus. Herring oil decreased biofilm formation by two S. aureus strains. GC-MS analysis revealed the presence of several polyunsaturated fatty acids in herring oil, and of these, two omega-3 fatty acids, DHA and EPA, significantly inhibited S. aureus biofilm formation. In addition, herring oil, DHA, and EPA at 20 μg/ml significantly decreased the hemolytic effect of S. aureus on human red blood cells, and when pre-treated to S. aureus, the bacterium was more easily killed by human whole blood. Transcriptional analysis showed that herring oil, DHA, and EPA repressed the expression of the α-hemolysin hla gene. Furthermore, in a Caenorhabditis elegans nematode model, all three prolonged nematode survival in the presence of S. aureus. These findings suggest that herring oil, DHA, and EPA are potentially useful for controlling persistent S. aureus infection.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Chaitany J Raorane
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Seong T Oh
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jae G Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
33
|
Alegbeleye OO. How Functional Is Moringa oleifera? A Review of Its Nutritive, Medicinal, and Socioeconomic Potential. Food Nutr Bull 2017; 39:149-170. [DOI: 10.1177/0379572117749814] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moringa oleifera is an important tropical food plant that seems to have great nutritional, therapeutic, industrial, agricultural, and socioeconomic value. Dietary consumption of its parts and preparations is encouraged by several organizations, health food enthusiasts, and other specialists as a strategy of personal health preservation and self-medication in the treatment of various diseases. Studies extoling its ability to mitigate various degenerative ailments now exist in both the scientific and the popular literature. At face value, and considering the volume of reports available, much of this enthusiasm seems to be indeed justified. However, it is imperative to distinguish rigorous scientific evidence from anecdote. To achieve this, relevant experimental and review articles were sought and read critically to identify recent patterns and trends on this subject matter. Studies on the medicinal and functional properties of M. oleifera are available from various parts of the world, especially developing regions. Attempts have been made to parse the contemporary scientific data available supporting the claims regarding the phytochemical, nutritive, medicinal, environmental, agricultural, and socioeconomic capabilities of this plant. Studies reviewed provide compelling, albeit preliminary experimental evidence of therapeutic potential of the plant. It is important that M. oleifera products and preparations be properly chemically characterized and standardized before being administered.
Collapse
|