1
|
Johne R, Scholz J, Falkenhagen A. Heat stability of foodborne viruses - Findings, methodological challenges and current developments. Int J Food Microbiol 2024; 413:110582. [PMID: 38290272 DOI: 10.1016/j.ijfoodmicro.2024.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Heat treatment of food represents an important measure to prevent pathogen transmission. Thus far, evaluation of heat treatment processes is mainly based on data from bacteria. However, foodborne viruses have gained increasing attention during the last decades. Here, the published literature on heat stability and inactivation of human norovirus (NoV), hepatitis A virus (HAV) and hepatitis E virus (HEV) was reviewed. Data for surrogate viruses were not included. As stability assessment for foodborne viruses is often hampered by missing infectivity assays, an overview of applied methods is also presented. For NoV, molecular capsid integrity assays were mainly applied, but data from initial studies utilizing novel intestinal enteroid or zebrafish larvae assays are available now. However, these methods are still limited in applicability and sensitivity. For HAV, sufficient cell culture-based inactivation data are available, but almost exclusively for one single strain, thus limiting interpretation of the data for the wide range of field strains. For HEV, data are now available from studies using pig inoculation or cell culture. The results of the reviewed studies generally indicate that NoV, HAV and HEV possess a high heat stability. Heating at 70-72 °C for 2 min significantly reduces infectious titers, but often does not result in a >4 log10 decrease. However, heat stability greatly varied dependent on virus strain, matrix and heating regime. In addition, the applied method largely influenced the result, e.g. capsid integrity assays tend to result in higher measured stabilities than cell culture approaches. It can be concluded that the investigated foodborne viruses show a high heat stability, but can be inactivated by application of appropriate heating protocols. For HAV, suggestions for safe time/temperature combinations for specific foods can be derived from the published studies, with the limitation that they are mostly based on one strain only. Although significant improvement of infectivity assays for NoV and HEV have been made during the last years, further method development regarding sensitivity, robustness and broader applicability is important to generate more reliable heat inactivation data for these foodborne viruses in future.
Collapse
Affiliation(s)
- Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Johannes Scholz
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alexander Falkenhagen
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Monnot M, Ollivier J, Taligrot H, Garry P, Cordier C, Stravakakis C, Le Guyader FS, Moulin P. Retention of Virus Versus Surrogate, by Ultrafiltration in Seawater: Case Study of Norovirus Versus Tulane. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:14-24. [PMID: 38184502 DOI: 10.1007/s12560-023-09574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
In the field of chemical engineering and water treatment, the study of viruses, included surrogates, is well documented. Often, surrogates are used to study viruses and their behavior because they can be produced in larger quantities in safer conditions and are easier to handle. In fact, surrogates allow studying microorganisms which are non-infectious to humans but share some properties similar to pathogenic viruses: structure, composition, morphology, and size. Human noroviruses, recognized as the leading cause of epidemics and sporadic cases of gastroenteritis across all age groups, may be mimicked by the Tulane virus. The objectives of this work were to study (i) the ultrafiltration of Tulane virus and norovirus to validate that Tulane virus can be used as a surrogate for norovirus in water treatment process and (ii) the retention of norovirus and the surrogate as a function of water quality to better understand the use of the latter pathogenic viruses. Ultrafiltration tests showed significant logarithmic reduction values (LRV) in viral RNA: around 2.5 for global LRV (i.e., based on the initial and permeate average concentrations) and between 2 and 6 for average LRV (i.e., retention rate considering the increase of viral concentration in the retentate), both for norovirus and the surrogate Tulane virus. Higher reduction rates (from 2 to 6 log genome copies) are obtained for higher initial concentrations (from 101 to 107 genome copies per mL) due to virus aggregation in membrane lumen. Tulane virus appears to be a good surrogate for norovirus retention by membrane processes.
Collapse
Affiliation(s)
- M Monnot
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France
| | - J Ollivier
- Ifremer - U. Microbiologie, Aliment, Santé et Environnement (LSEM/RBE), Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes, Cedex 3, France
| | - H Taligrot
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France
| | - P Garry
- Ifremer - U. Microbiologie, Aliment, Santé et Environnement (LSEM/RBE), Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes, Cedex 3, France
| | - C Cordier
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France
| | - C Stravakakis
- Ifremer - EMMA Plateforme Expérimentale Mollusques Marins Atlantique, 85230, Bouin, France
| | - F S Le Guyader
- Ifremer - U. Microbiologie, Aliment, Santé et Environnement (LSEM/RBE), Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes, Cedex 3, France
| | - P Moulin
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France.
| |
Collapse
|
3
|
Wales SQ, Pandiscia A, Kulka M, Sanchez G, Randazzo W. Challenges for estimating human norovirus infectivity by viability RT-qPCR as compared to replication in human intestinal enteroids. Int J Food Microbiol 2024; 411:110507. [PMID: 38043474 DOI: 10.1016/j.ijfoodmicro.2023.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Viability RT-qPCR, a molecular detection method combining viability marker pre-treatment with RT-qPCR, has been proposed to infer infectivity of viruses which is particularly relevant for non-culturable viruses or sophisticated cell culture systems. Being human noroviruses (HuNoV) most frequently associated with foodborne outbreaks, this study compared different viability techniques and infectivity in human intestinal enteroids (HIE) to ultimately determine whether the molecular approaches could serve as rapid assays to predict HuNoV inactivation in high-risk food. To this end, the performance of three viability RT-qPCR assays with different intercalating markers ((Viability PCR Crosslinker Kit (CL), propidium monoazide (PMAxx™), and platinum chloride (PtCl4)) in estimating survival of HuNoV exposed to thermal and high pressure (HPP) treatments was compared to replication tested in the HIE cell culture model. A nearly full-length genomic molecular assay coupled with PMAxx™ to infer HuNoV thermal inactivation was also assessed. The experimental design included HuNoV genogroup I.3 [P13], GII.4 Sydney [P16], GII.6 [P7], along with Tulane virus (TV) serving as surrogate. Finally, viability RT-qPCR was tested in HPP-treated strawberry puree, selected as a food matrix with high viral contamination risk. PMAxx™ and CL performed evenly, while PtCl4 affected HuNoV infectivity. Taking all experimental data together, viability RT-qPCR was demonstrated to be an improved method over direct RT-qPCR to estimate viral inactivation at extreme thermal (95 °C) and HPP (450 MPa) exposures, but not under milder conditions as amplification signals were detected. Despite its complexity and limitations, the HIE demonstrated a more robust model than viability RT-qPCR to assess HuNoV infectivity.
Collapse
Affiliation(s)
- Samantha Q Wales
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain; Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, Bari, Valenzano 70010, Italy
| | - Michael Kulka
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Gloria Sanchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain.
| |
Collapse
|
4
|
Yeak KYC, Dank A, den Besten HMW, Zwietering MH. A web-based microbiological hazard identification tool for infant foods. Food Res Int 2024; 178:113940. [PMID: 38309868 DOI: 10.1016/j.foodres.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
An integrated approach to identify and assess Microbiological Hazards (MHs) and mitigate risks in infant food chains is crucial to ensure safe foods for infants and young children. A systematic procedure was developed to identify MHs in specific infant foods. This includes five major steps: 1) relevant hazard-food pairing, 2) process inactivation efficiency, 3) recontamination possibility after processing, 4) MHs growth opportunity, and 5) MHs-food association level. These steps were integrated into an online tool called the Microbiological Hazards IDentification (MiID) decision support system (DSS), targeting food companies, governmental agencies and academia users, and is accessible at https://foodmicrobiologywur.shinyapps.io/Microbial_hazards_ID/. The MiID DSS was validated in four case studies, focussing on infant formula, fruit puree, cereal-based meals, and fresh fruits, each representing distinct products and processing characteristics. The results obtained through the application of the MiID DSS, compared with identification by food safety experts, consistently identified the top MHs in these food products. This process affirms its effectiveness in systematic hazard identification. The introduction of the MiID DSS helps to structure the first steps in HACCP (hazard analysis) and in risk assessment (hazard identification) to follow a structured and well-documented procedure, balancing the risk of overlooking relevant MHs or including too many irrelevant MHs. It is a valuable addition to risk analysis/assessment in infant food chains and has the potential for future extension. This includes the incorporation of newly acquired data related to infant foods via a semi-publicly hosted platform, or it can be adapted for hazard identification in general food products using a similar framework.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alexander Dank
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
6
|
Raymond P, Paul S, Guy RA. Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates. Foods 2023; 12:foods12040826. [PMID: 36832901 PMCID: PMC9957022 DOI: 10.3390/foods12040826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Human norovirus (HuNoV) is the leading pathogen responsible for food-borne illnesses. However, both infectious and non-infectious HuNoV can be detected by RT-qPCR. This study evaluated the efficiency of different capsid integrity treatments coupled with RT-qPCR or a long-range viral RNA (long RT-qPCR) detection to reduce the recovery rates of heat inactivated noroviruses and fragmented RNA. The three capsid treatments evaluated (RNase, the intercalating agent PMAxx and PtCl4) reduced the recovery of heat inactivated HuNoV and murine norovirus (MNV) spiked on lettuce, when combined with the ISO 15216-1:2017 extraction protocols. However, PtCl4 also reduced non-heat-treated noroviruses recovery as estimated by RT-qPCR. The PMAxx and RNase treatments had a similar effect on MNV only. The most efficient approaches, the RNase and PMAxx treatments, reduced the heat-inactivated HuNoV recovery rates estimated using RT-qPCR by 2 and >3 log, respectively. The long RT-qPCR detection approach also reduced the recovery rates of heat inactivated HuNoV and MNV by 1.0 and 0.5 log, respectively. Since the long-range viral RNA amplification could be applied to verify or confirm RT-qPCR results, it also provides some advantages by reducing the risk of false positive HuNoV results.
Collapse
Affiliation(s)
- Philippe Raymond
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
- Correspondence:
| | - Sylvianne Paul
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
| | - Rebecca A. Guy
- National Microbiology Laboratory, Division of Enteric Diseases, Public Health Agency of Canada (PHAC), Guelph, ON N1G 3W4, Canada
| |
Collapse
|
7
|
Estimation of Bacteriophage MS2 Inactivation Parameters During Microwave Heating of Frozen Strawberries. J Food Prot 2023; 86:100032. [PMID: 36916576 DOI: 10.1016/j.jfp.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Frozen berries have been repeatedly linked to acute gastroenteritis caused by norovirus, the most common cause of foodborne illness in the United States. Many guidelines recommend that frozen berries be microwaved for at least 2 min, but it is unclear if this thermal treatment is effective at inactivating norovirus. The objective of this study was to model the effect of microwave heating at varying power levels on the survival of bacteriophage MS2, a norovirus surrogate, when inoculated onto frozen strawberries. Bacteriophage MS2 was inoculated onto the surface of frozen strawberries with a starting concentration of approximately 10 log PFU/g. Samples (either 3 or 5 whole strawberries) were heated in a 1300-Watt domestic research microwave oven (frequency of 2450 MHz) at power levels of 30, 50, 70, and 100% (full power), for times ranging from 15 to 300 s to determine inactivation. Temperatures at berry surfaces were monitored during heating using fiberoptic thermometry. All experiments were conducted in triplicate. The primary model for thermal inactivation was a log-linear model of logN vs. time. The secondary model was for a D-value decreasing linearly with temperature and an added term that was path-dependent on the thermal history. Parameters in the model were estimated using dynamic temperature history at the surface of the berry, via nonlinear regression using all data simultaneously. The root mean square error was ∼0.5 PFU/g out of a total 6-log reduction. Log reductions of 1.1 ± 0.4, 1.5 ± 0.5, 3.1 ± 0.1, and 3.8 ± 0.2 log PFU/g were observed for 30, 50, 70, and 100% microwave power levels when three berries were heated for 60 s. D-values were 21.4 ± 1.95 s and 10.6 ± 1.1 s at 10 and 60°C, respectively. This work demonstrates an approach to estimate inactivation parameters for viruses from dynamic temperature data during microwave heating. These findings will be useful in predicting the safety effect of microwave heating of berries in the home or food service.
Collapse
|
8
|
Transfer of MS2 bacteriophage from surfaces to raspberry and pitanga fruits and virus survival in response to sanitization, frozen storage and preservation technologies. Food Microbiol 2022; 104:103995. [DOI: 10.1016/j.fm.2022.103995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
|
9
|
Ezzatpanah H, Gómez‐López VM, Koutchma T, Lavafpour F, Moerman F, Mohammadi M, Raheem D. New food safety challenges of viral contamination from a global perspective: Conventional, emerging, and novel methods of viral control. Compr Rev Food Sci Food Saf 2022; 21:904-941. [DOI: 10.1111/1541-4337.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Tatiana Koutchma
- Guelph Research and Development Center Agriculture and Agri‐Food Canada Guelph Ontario Canada
| | | | - Frank Moerman
- Department of Chemistry Catholic University of Leuven ‐ KU Leuven Leuven Belgium
| | | | - Dele Raheem
- Arctic Centre (NIEM) University of Lapland Rovaniemi Finland
| |
Collapse
|
10
|
Tan MTH, Xue L, Wang D, Eshaghi Gorji M, Li Y, Gong Z, Li D. The globally re-emerging norovirus GII.2 manifests higher heat resistance than norovirus GII.4 and Tulane virus. J Appl Microbiol 2021; 132:2441-2449. [PMID: 34821445 DOI: 10.1111/jam.15379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
AIMS To compare the heat stability of two globally prevalent human norovirus (HuNoV) strains (GII.2[P16] and GII.4[P16]) and a commonly used HuNoV surrogate, Tulane virus (TV). METHODS AND RESULTS With the use of a newly developed zebrafish larvae platform, we measured the change of infectivity of HuNoV GII.2[P16] and GII.4[P16] toward mild heat treatment at 55°C for 5 min. TV was tested with the same experimental design. As a result, the virus infectivity measurement clearly indicated the higher heat resistance of HuNoV GII.2[P16] (no reduction) than GII.4[P16] (>0.8-log TCID50 ml-1 reduction) and TV (2.5-log TCID50 ml-1 reduction). Further exploration revealed higher virus structural stability of HuNoV GII.2 than GII.4 strains by the use of different clinical samples with different evaluation methods. CONCLUSION The inactivation data generated from the surrogate virus TV cannot be used directly to describe the inactivation of HuNoV. The phylogenetic classification of HuNoVs may correlate with the virus stability and/or circulation dynamics. SIGNIFICANCE AND IMPACT OF THE STUDY This study is expected to serve as an important reference when revisiting the numerous previous data evaluating HuNoV inactivation conditions in foods with the use of TV as the cultivable surrogate or with genuine HuNoV but using molecular methods. The higher resistance of NoV GII.2 strains than GII.4 strains toward inactivation treatment supplies a possible explanation for the global re-emerging of NoV GII.2 epidemic in recent years.
Collapse
Affiliation(s)
- Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Liang Xue
- Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mohamad Eshaghi Gorji
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Jama-Kmiecik A, Sarowska J, Wojnicz D, Choroszy-Król I, Frej-Mądrzak M. Natural Products and Their Potential Anti-HAV Activity. Pathogens 2021; 10:1095. [PMID: 34578128 PMCID: PMC8469781 DOI: 10.3390/pathogens10091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The role of purified natural products in the prevention and treatment of countless diseases of bacterial, fungal, and viral origin cannot be overestimated. New antiviral drugs have been obtained from natural sources and transformed into preparations for prophylactic and therapeutic purposes. Flavonoids, polyphenols, saponins, proanthocyanins, polysaccharides, organic acids, proteins, polypeptides, and essential oils derived from plants, animals, or microorganisms can control and combat foodborne viral infections, including hepatitis A. The components of essential oils are characterized by numerous therapeutic and antioxidant properties and exhibit a broad spectrum of antimicrobial and antiviral activity. Due to these properties, they can be used to preserve meat, fruit, vegetables, and their products. Over the past two decades, much effort has been made to identify natural products, mostly of plant origin, to combat foodborne viruses. Natural plant extracts have several potential uses, not limited to increasing the safety of food products and improving their quality, but also as natural antiviral agents.
Collapse
Affiliation(s)
- Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Medical Biology and Parasitology, Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland;
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| |
Collapse
|
12
|
Falcó I, Díaz-Reolid A, Randazzo W, Sánchez G. Green tea extract assisted low-temperature pasteurization to inactivate enteric viruses in juices. Int J Food Microbiol 2020; 334:108809. [PMID: 32799118 DOI: 10.1016/j.ijfoodmicro.2020.108809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
The current popularity of minimally processed foods is an opportunity for natural antimicrobial agents to be combined with mild heat treatments to act synergistically in reducing viral foodborne pathogens. Viral inactivation by heat-treatments (at 25, 40, 50 and 63 °C for 30 min) combined with aged green tea extract (aged-GTE) was initially evaluated in phosphate buffered saline (PBS) against murine norovirus (MNV-1) and hepatitis A virus (HAV) by cell culture, and against human norovirus by in situ capture RT-qPCR. The combination of aged-GTE and heat treatment at 50 °C for 30 min exerted strong antiviral activity, reducing by more than 5 log MNV-1 infectivity in PBS. Heating at 40 °C for 30 min reduced the binding of norovirus to porcine gastric mucine (PGM) to 41.5% and the addition of aged-GTE further decreased the binding to 4.7%. Additionally, the reduction of MNV-1 and HAV infectivity was investigated in two different types of juices exposed to mild heat treatments alone, and combined with aged-GTE. The addition of aged-GTE increased to more than 4 log the inactivation of MNV-1 in juices exposed to 50 °C for 30 min. However, this synergistic effect of aged-GTE combined with heat treatments was not observed for HAV in any of the juices. Aged-GTE, then, could be considered as an additional control measure to improve the food safety of mild heat pasteurized juices.
Collapse
Affiliation(s)
- Irene Falcó
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
13
|
Chen J, Wu X, Sánchez G, Randazzo W. Viability RT-qPCR to detect potentially infectious enteric viruses on heat-processed berries. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Kamarasu P, Hsu HY, Moore MD. Research Progress in Viral Inactivation Utilizing Human Norovirus Surrogates. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|