1
|
Yu K, Yang L, Zhang N, Wang S, Song H, Liu H. Superabsorbent, antibacterial, and antioxidant nanocellulose aerogels: Preparation, characterization, and application in beef preservation. Food Chem 2025; 466:142251. [PMID: 39615360 DOI: 10.1016/j.foodchem.2024.142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/29/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Herein, we prepared a new aerogel-based preservation pad using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), whey protein isolate (WPI), and cinnamon essential oil (CEO) as raw materials. The physicochemicals of the aerogel preservation pads were studied, and their effects on beef preservation were evaluated. The results showed that the aerogel monomers were crosslinked by hydrogen, ester bonds, and electrostatic interactions in the aerogels, and there were three-dimensional pores in the aerogels. Meanwhile, SHNC/PVA/WPI/CEO-3 (aerogel prepared using 2 g of SHNC) exhibited excellent mechanical properties (elongation: 251 %; tensile strength: 33.97 MPa) and super-high absorption performance. Additionally, the aerogel displayed excellent antioxidant and antibacterial properties (83.74 %). The preservation experiment showed that, at 4 °C, the aerogel preservation pad inhibited the growth and reproduction of bacteria on the surface of beef, inhibited lipid oxidation, effectively preserved the color of beef, and extended the shelf life of beef from 4 to 12 days.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - Hong Song
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
2
|
Wang N, Zheng D, He J, Liu X, Liu T. Preparation and characterization of a thymol nanoemulsion-loaded multifunctional sustained-release corn straw cellulose nanocrystal/acetylated starch-based aerogel and its application in chilled meat preservation. Carbohydr Polym 2025; 348:122758. [PMID: 39562054 DOI: 10.1016/j.carbpol.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 09/14/2024] [Indexed: 11/21/2024]
Abstract
Chilled meat is prone to microbial contamination during storage, resulting in a shortened shelf life. This study developed multifunctional biodegradable aerogel with water absorption, antibacterial, and sustained release properties as a preservation pad for meat, using corn straw cellulose nanocrystals (CSCNCs) and acetylated starch (AS) as the structural skeleton and thymol (TMO) nanoemulsions as antimicrobials. The effects of different mass ratios of CSCNCs/AS on the morphology, structure, physical properties, and release behavior of aerogels were systematically analyzed. Additionally, their antibacterial properties, biocompatibility, and biodegradability were investigated. The results showed that the aerogels with CSCNC/AS mass ratio of 1:5 had a tailored structure for loading TMO nanoemulsions, as well as excellent water absorption, mechanical properties, and thermal stability. Due to strong hydrogen bonding and a porous structure, the TMO in the aerogels was continuously and uniformly released into high-water-activity and fatty food simulants, mainly controlled by Fickian diffusion. Furthermore, it exhibited superior antibacterial properties and biocompatibility. The application of aerogels for chilled beef preservation extended the shelf life from 8 days to approximately 12 days, which was superior to commercially available preservation pads. Notably, the aerogels exhibited superior biodegradability in soil. Therefore, the prepared aerogel preservation pads showed great potential in preserving chilled meat.
Collapse
Affiliation(s)
- Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-effeciency Utilization of By-products of Jilin Province, Changchun 130118, China
| | - Dongyang Zheng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Jialu He
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Xiaolong Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China.
| |
Collapse
|
3
|
Yang L, Chen S, Ma N, Chen W, Zhang Z, Zhang H. Effect of gelatin edible coating with Aronia melanocarpa pomace polyphenols on the cold storage of chilled pork. Meat Sci 2025; 219:109677. [PMID: 39357111 DOI: 10.1016/j.meatsci.2024.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
In this research, the Aronia melanocarpa pomace polyphenols (AMPPs) were extracted and purified. The purified AMPPs contained the most abundant chlorogenic acid (CGA) at 36.91 mg/100 mg, followed by chrysin at 8.61 mg/100 mg. At a concentration of 60 μg/mL, the purified AMPPs exhibited stronger scavenging activity against: DPPH radical, hydroxyl radical, ABTS∙+, and also showed greater Fe3+ reducing activity than the VC control group. To solve the problem of easy spoilage of chilled meat during storage, gelatin edible coatings containing Aronia melanocarpa pomace polyphenols, referred to as G/AMPPs, were investigated for their effect on the chilled storage of pork. At a 1:1 volume ratio of 1 % polyphenol solution to 3 % gelatin solution, the G/AMPPs coating effectively curbed pH, TVB-N, TVC, drip loss, and b* value increases in chilled pork, while delaying declines in hardness, adhesion, a* value and L* value; The TVB-N content and TVC values demonstrated that the G/AMPPs coating significantly extended the shelf life of chilled pork by up to 15 days. The results showed that G/AMPPs had good preservative, antibacterial and antioxidant effects on chilled pork and thus development of G/AMPPs based coating shows appeared to offer promise for meat preservation.
Collapse
Affiliation(s)
- Liu Yang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Sheng Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Ning Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Wenwen Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zhenyuan Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyuan Zhang
- Chemistry College, Baicheng Nomal University, Baicheng 137000, China.
| |
Collapse
|
4
|
Günal-Köroğlu D, Yılmaz H, Gultekin Subasi B, Capanoglu E. Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products. Food Res Int 2025; 200:115378. [PMID: 39779159 DOI: 10.1016/j.foodres.2024.115378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear. This review comprehensively explores the impact of various preservation techniques, including high hydrostatic pressure (HHP), irradiation (IR), and modified atmosphere packaging (MAP), on protein oxidation during chilled or frozen storage of meat products. While these techniques have shown promising results in extending shelf-life, their effects on protein oxidation are dose-dependent and must be carefully controlled to maintain product quality. Preservation techniques involving the use of phenolic additives have demonstrated synergistic effects in mitigating protein oxidation during storage. Notably, natural phenolic additives have shown comparable efficacy compared to artificial antioxidants. Additionally, incorporating phenolic additives into bio-edible films has shown promise in combating protein oxidation.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Türkiye.
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| |
Collapse
|
5
|
Ebrahimi F, Habibi N, Hosseini M. Nano-Coating Loaded With Leaf and Flowers of Pelargonium graveolens Plant Extract Stabilized With Fenugreek Seed Gum and Soy Protein Isolate in Increasing the Shelf Life of Mutton Fillet. Food Sci Nutr 2025; 13:e4618. [PMID: 39803259 PMCID: PMC11717032 DOI: 10.1002/fsn3.4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, the extract of leaf and flower of Pelargonium graveolens was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.97 mg GAE g DM-1, 31.93 mg QE g DM-1, and 9.08 mg QEE g DM-1) than leaf extract (10.69%, 67.46 mg GAE g DM-1, 23.04 mg QE g DM-1, and 11.34 mg QEE g DM-1). Both extracts demonstrated antioxidant properties in tests involving the scavenging of DPPH radicals and the ferric reduction assay. Extracts exhibited antimicrobial properties. MIC of flower extract against Staphylococcus aureus and Escherichia coli were 2500 and 5000, while MBC of leaf extract were 15,000, and 20,000 ppm, respectively. The concentration of 2000 ppm of extracts was encapsulated in fenugreek seed gum (FSG) and soy protein isolate (SPI) produced by the emulsification method. All nano-coatings exhibited a nanometric size range between 172.75 to 255.21 nm, and encapsulation efficiency higher than 80.0% (80.82% to 89.59%). The application of nano-coatings significantly reduced microbial counts and delayed lipid oxidation in mutton meat during 12 days of cold storage at 4°C, enhancing meat quality and extending shelf life. The inclusion of bioactive compounds like polyphenols in the coatings contributed to antimicrobial and antioxidant effects, decreasing pH levels and preventing spoilage. The findings indicated that the combination of edible FSG and SPI as wall materials with 2000 ppm of P. graveolens extract demonstrated efficacy in implementation bacterial growth and lipid oxidation in fresh mutton meat.
Collapse
Affiliation(s)
- Farzad Ebrahimi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Nader Habibi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Veterinary ScienceIlam UniversityIlamIran
| |
Collapse
|
6
|
Kusuma HS, Sabita A, Putri NA, Azliza N, Illiyanasafa N, Darmokoesoemo H, Amenaghawon AN, Kurniawan TA. Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100225. [PMID: 39497731 PMCID: PMC11532435 DOI: 10.1016/j.fochms.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Atna Sabita
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Najla Anira Putri
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nadhira Azliza
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | | | | |
Collapse
|
7
|
Li L, Li X, McClements DJ, Jin Z, Ji H, Qiu C. Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39722469 DOI: 10.1080/10408398.2024.2439040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
There is growing concern about the potential risks posed by synthetic additives in industrial products, such as foods, cosmetics, agrochemicals, and personal care products. Many plant-derived essential oils (EOs) have been shown to exhibit excellent antibacterial, antifungal, antiviral, and antioxidant activities, and may therefore be used as natural preservatives in these applications. However, most EOs have relatively low water solubility and are prone to chemical degradation during storage. The degradation products of EOs can be toxic and may not be able to fully exert their biological activity, which limits their application. Typically, these challenges can be overcome by encapsulating the essential oil in an appropriate colloid delivery system. This article begins by reviewing the sources, extraction, and activity mechanisms of EOs, and then highlights plant-based encapsulation technologies that can be used to enhance their efficacy. Finally, the potential applications of plant essential oil encapsulation system are discussed.
Collapse
Affiliation(s)
- Lecheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Merenkova S, Zinina O. Effect of Bioactive Packaging Materials Based on Sodium Alginate and Protein Hydrolysates on the Quality and Safety of Refrigerated Chicken Meat. Polymers (Basel) 2024; 16:3430. [PMID: 39684175 DOI: 10.3390/polym16233430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The purpose of this study was to evaluate the potential of alginate-based packaging materials with the incorporation of protein hydrolysates to improve the safety and quality of chicken meat during storage. Physicochemical parameters, microbiological indicators, and color characteristics of chicken meat packaged in bioactive films were determined. We observed a significant increase in moisture content for samples in polyethylene films (by 10.5%) and decrease for the samples in alginate-based films by 5.3%. The highest mass losses were found for the sample without packaging material (20.4%) and for the samples wrapped in alginate films (15.9-17.9%). When packing meat samples by immersion method, a gradual decrease in weight was found (up to 9.1%). On the 7th day of storage, the pH value of the control sample reached 6.55, while for the samples in bioactive alginate-based materials pH level was 6.0-6.15. The most pronounced oxidative processes were observed in the control meat sample (5.1 mmol (12O2)/kg). The application of bioactive alginate-based films led to a significant reduction in fatty peroxide value by 56.2%. The total microbial count in the meat samples packaged in bioactive films was 3.5-5 times lower than in the control sample. Chicken meat wrapped in alginate-based films with protein hydrolysates maintains more stable color characteristics, the lightness index (L) decreased to 37.5, and the redness index (b) increased to 3.4 on the 7th day of storage.
Collapse
Affiliation(s)
- Svetlana Merenkova
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Oksana Zinina
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| |
Collapse
|
9
|
Pan J, Li C, Liu J, Jiao Z, Zhang Q, Lv Z, Yang W, Chen D, Liu H. Polysaccharide-Based Packaging Coatings and Films with Phenolic Compounds in Preservation of Fruits and Vegetables-A Review. Foods 2024; 13:3896. [PMID: 39682968 DOI: 10.3390/foods13233896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Considerable interest has emerged in developing biodegradable food packaging materials derived from polysaccharides. Phenolic compounds serve as natural bioactive substances with a range of functional properties. Various phenolic compounds have been incorporated into polysaccharide-based films and coatings for food packaging, thereby enhancing product shelf life by mitigating quality degradation due to oxidation and microbial growth. This review offers a comprehensive overview of the current state of polysaccharide-based active films and coatings enriched with phenolic compounds for preserving fruits and vegetables. The different approaches for the addition of phenols to polysaccharides-based packaging materials are discussed. The modifications in film properties resulting from incorporating polyphenols are systematically characterized. Then, the application of these composite materials as protectants and intelligent packaging in fruit and vegetables preservation is highlighted. In future, several points, such as the preservative mechanism, safety evaluation, and combination with other techniques along the whole supply chain could be considered to design polyphenol-polysaccharides packaging more in line with actual production needs.
Collapse
Affiliation(s)
- Junkun Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengheng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiechao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhonggao Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhenzhen Lv
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenbo Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dalei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| |
Collapse
|
10
|
Hu Y, Xu L, Sun H, Wu W, Wang Y, Lu L, Zeng T, Sheng L, Cai Z. Water-in-oil-in-water (W/O/W) emulsions with antioxidant and bacteriostatic capabilities: A preliminary exploration of food preservation films. Int J Biol Macromol 2024; 283:137657. [PMID: 39561832 DOI: 10.1016/j.ijbiomac.2024.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The development of stable water-in-oil-in-water (W/O/W) emulsions for edible preservation coatings and films, utilizing their properties, deserves scientific attention. In this study, oregano essential oil and D‑sodium erythorbate were simultaneously loaded into W/O/W emulsions, and the homogenization conditions of the W/O/W emulsions were optimized. The structure and interactions of gum Arabic (GA) and whey protein isolate (WPI) as the outer phase were analyzed. Stable W1/O/W2 emulsions with excellent antimicrobial and antioxidant activities could be produced under the conditions of GA: WPI at 1:1 and W2: W1/O at 5:5. The diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azinobis-(3-ethylbenzenthiazoline-6-sulphonic acid) (ABTS) radical scavenging rates were 86.35 % and 89.35 %, and the inhibition zone diameters for S. aureus and E. coli were 14.03 ± 0.42 mm and 14.17 ± 0.70 mm, respectively. Finally, the W1/O/W2 emulsions were successfully applied to prepare chitosan-based films. This study has the potential to promote the application of W/O/W emulsions in food preservation, emphasizing the need for advancements for real-world adaptability.
Collapse
Affiliation(s)
- Yue Hu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ligen Xu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Haoyang Sun
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Wu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Wang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
11
|
Dikmetas DN, Yenipazar H, Can Karaca A. Recent advances in encapsulation of resveratrol for enhanced delivery. Food Chem 2024; 460:140475. [PMID: 39047495 DOI: 10.1016/j.foodchem.2024.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| |
Collapse
|
12
|
Ma Y, Yang X, Zhu Z, Huang T, Huang J, Huang M. Study on the stability, functional activity and preservation effect of oregano essential oil Pickering emulsion with different proportions of chicken bone gelatin/bacterial cellulose during storage. Int J Biol Macromol 2024; 282:137309. [PMID: 39515717 DOI: 10.1016/j.ijbiomac.2024.137309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
In this study, chicken bone gelatin (CBG) was extracted as a new substitute for traditional pig bone gelatin, and bacterial cellulose (BC) was used as the compound to prepare Oregano essential oil (OEO) Pickering emulsion. To explore a protein/polysaccharide emulsion system that can effectively prolong the functional activity of OEO during storage. The results indicated that the variation in CBG and BC content significantly influenced the physicochemical properties of the emulsions. The optimal formulation of OEO Pickering emulsion, prepared with a CBG-BC ratio of 6:2 (v/v), exhibited superior characteristics including appearance, encapsulation efficiency, and stability during preservation. After 7 d of storage at 4 °C, the rheological properties remained stable, with no significant differences observed in antioxidant and antibacterial activities. It was verified in the beef fresh-keeping experiment that the shelf life of beef samples in the 6-2-2 treatment group was 6 d longer than that in the control group and 3 d longer than that in the pure OEO group. This experiment enhanced the utilization of poultry by-products and provided a valuable reference for exploring suitable protein-polysaccharide systems embedding active substances for food preservation.
Collapse
Affiliation(s)
- Yanlan Ma
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyi Yang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zongshuai Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua Lan Street, Xinxiang 453003, PR China
| | - Tianran Huang
- Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co. Ltd., Nanjing, Jiangsu 211200, PR China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Kavrut E, Sezer Ç, Alwazeer D. A bibliometric analysis: what do we know about edible coatings? JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2057-2070. [PMID: 39397842 PMCID: PMC11464871 DOI: 10.1007/s13197-024-06052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Packaging aims first to protect the quality and safety of food. Although synthetic packaging is easy and practical to use, it significantly poses many health and environmental hazards. In this context, the need for environmentally and food-friendly packaging is increasing. Edible coatings with many barrier properties cover the food surface like a blanket. This study evaluated content analyses and research trends on the edible coating of foods. For this goal, a bibliometric network analysis of the studies that included the concepts of "edible packaging", "coating", and "food" together in the abstracts, keywords, and titles of the articles was carried out. Today, with this network analysis method, it is easier to summarize innovations in edible coating technology and their applicability to foods in a detailed and understandable way. Between 2016 and 2023, bibliometric data consisting of 2131 studies were processed VOSviewer program using the network analysis method. Results revealed that China is the leading country in coatings studies, followed by India. The study shows which foods and methods the coatings are applied. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06052-7.
Collapse
Affiliation(s)
- Enes Kavrut
- Restaurant and Catering Services Department, Igdir Vocational School, Hotel, Igdir, 76002 Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, Iğdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Turkey
| | - Çiğdem Sezer
- Faculty of Veterinary Medicine, Department of Food Safety and Public Health, Kafkas University, Kars, 36100 Turkey
| | - Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, Igdir, 76002 Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, Iğdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Turkey
| |
Collapse
|
14
|
Hanan E, Dar AH, Shams R, Goksen G. New insights into essential oil nano emulsions loaded natural biopolymers recent development, formulation, characterization and packaging applications: A comprehensive review. Int J Biol Macromol 2024; 280:135751. [PMID: 39304053 DOI: 10.1016/j.ijbiomac.2024.135751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Customer demand for wholesome diets has spurred researchers to explore preservative-free methods for maintaining food product quality. Nano emulsion-based coatings and films are seen as sustainable solutions for extending the shelf life of fresh produce. These innovations are driving progress in various industries. Nano emulsion techniques offer effective encapsulation of bioactive compounds due to their small droplet size, stability, and enhanced activity. This review highlights the preparation and manufacturing methods of biopolymer-based nano emulsions containing essential oils, which are used as edible coatings and films over the past decade, representing the first comprehensive review paper on this topic to encompass research from the past ten years. The characterization and application of these coatings and films are also discussed. It has been revealed that essential oils can be successfully incorporated into nano emulsion delivery system with different biopolymers. These edible coatings and films help delay or prevent oxidation in various food products, enhancing their quality and safety during storage. They present a green, sustainable, and biodegradable solution for protecting fresh foods in the industry. Essential oil biopolymer nano emulsions not only extend shelf life but also offer protection against hazards, contributing to consumer trust in food safety and quality. This technology holds promise for delivering healthier food options in the marketplace. The current review thus provides an updated overview of the latest literature on EO nano emulsions as active agents in the advancement of edible coatings and films.
Collapse
Affiliation(s)
- Entesar Hanan
- Department of Nutrition and Dietetics, School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad Haryana, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India.
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey.
| |
Collapse
|
15
|
Mahmud J, Muranyi P, Salmieri S, Shankar S, Lacroix M. UV-C-Activated Riboflavin Crosslinked Gelatin Film with Bioactive Nanoemulsion for Enhanced Preservation of Fresh Beef in Modified Atmosphere Packaging. Foods 2024; 13:3504. [PMID: 39517288 PMCID: PMC11544885 DOI: 10.3390/foods13213504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores a new eco-friendly approach for developing bioactive gelatin films using UV-C irradiation-induced photo-crosslinking. Riboflavin, a food-grade photoinitiator, was selected at an optimal concentration of 1.25% (w/w) for crosslinking gelatin under UV-C exposure for 4 to 22 min. Physicochemical analyses revealed enhanced tensile strength, reduced water vapor permeability, and lower water solubility in films crosslinked for up to 13 min. FTIR analysis demonstrated significant molecular changes, confirming the formation of crosslinking connections in gelatin-riboflavin films. Antimicrobial nanoemulsion (NE) (0.5, 0.75, 1% v/v) was incorporated into crosslinked films and applied to fresh beef. The 1% NE film exhibited the strongest antimicrobial effect, extending shelf-life by 20 days. In vitro release study confirmed Fickian diffusion behavior in the 1% NE film. This study also investigated the synergy between 1% NE film and three different types of modified atmosphere packaging (MAP) on the microbiological and physicochemical properties of beef for 26 days. The best results were achieved with 1% NE film under MAP1 and MAP2, which preserved meat redness and prevented lipid oxidation, extending the shelf-life up to 26 days. Therefore, UV-C irradiation-induced crosslinked bioactive film combined with high-oxygen MAP offers a promising solution for prolonging the shelf-life of beef.
Collapse
Affiliation(s)
- Jumana Mahmud
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| | - Peter Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser, Str. 35, 85354 Freising, Germany;
| | - Stephane Salmieri
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| | - Shiv Shankar
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 Des Prairies Blvd, Laval, QC H7V 1B7, Canada; (J.M.); (S.S.); (S.S.)
| |
Collapse
|
16
|
Zhu Y, Gu M, Su Y, Li Z, Xie T, Zhang Y, Qiao G, Lu F, Han C. Effect of Litsea cubeba and Cinnamon Essential Oil Nanoemulsion Coatings on the Preservation of Plant-Based Meat Analogs. Foods 2024; 13:3365. [PMID: 39517151 PMCID: PMC11545311 DOI: 10.3390/foods13213365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Plant-based meat analogs (PBMAs) are promising sustainable food sources. However, their high moisture and protein contents make them prone to microbial deterioration, limiting their shelf life and sensory appeal. This study explored enhancing PBMAs' shelf life using nanoemulsions of Litsea cubeba and cinnamon essential oils, emulsified with chitosan and Tween 80. The composite nanoemulsion, produced through high-pressure homogenization, exhibited a droplet size of 4.99 ± 0.03 nm, a polydispersity index (PDI) of 0.221 ± 0.008, and a zeta potential of 95.13 ± 2.67 mV, indicating remarkable stability (p < 0.05). Applied to PBMAs stored at 4 °C, it significantly improved color and pH balance and reduced thiobarbituric acid reactive substances and cooking loss. Most notably, it inhibited the growth of Escherichia coli and Staphylococcus aureus, curbing spoilage and protein oxidation, thereby extending the products' shelf life and preserving sensory quality. As shown above, the encapsulation of LCEO/CEO in nanoemulsions effectively inhibits spoilage and deterioration in PBMAs, improving flavor and quality more than direct addition. Future studies should explore using various essential oils and emulsifiers, as well as alternative encapsulation techniques like microcapsules and nanoparticles, to further prevent PBMA deterioration.
Collapse
Affiliation(s)
- Yiqun Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yuhan Su
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Tiemin Xie
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Guohua Qiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Chunyang Han
- School of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| |
Collapse
|
17
|
Xie X, Bu T, Zhu Q, Ma L, Gao Z, Du T, Liu S, Wang J. Chitosan-puerarin composite hydrogel with magnetic enhanced photothermal properties as sustained antimicrobial coatings for beef preservation. Int J Biol Macromol 2024; 278:135027. [PMID: 39182871 DOI: 10.1016/j.ijbiomac.2024.135027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The bactericidal properties of traditional food coatings mostly depend on the amount of fungicides present, which reduces the sustainability of food packaging. Herein, we proposed a magnetic field to precisely modulate the near-infrared (NIR) absorption activity to enhance antimicrobial coatings sustainability. Inspired by the typical grinding procedure, the assembly of CP/Fe3O4@TA nanofiber hydrogel was proposed as the coating, applying mechanical force and encouraging the collision of effective molecules of puerarin (PUE), chitosan (CS), and Fe3O4@TA NFs. This hydrogel design offers precise control over the physical and chemical properties, including appearance, viscoelasticity, and rheology. Particularly, significant changes in photothermal performance were observed as a result of magnetic regulation of NIR absorption activity. As a result, the CP/Fe3O4@TA coatings achieve effective bacteria killing performance under NIR irradiation, magnetocaloric effect, boric acid adsorption, and aggregation interference. Finally, the hydrogel coating was applied to the beef surface and serves as an effective barrier against the growth of pathogenic bacteria, thereby preserving the freshness and tenderness of the beef. The finding from this work is expected to open up a new way in active nano hydrogel coating for food preservation.
Collapse
Affiliation(s)
- Xianghong Xie
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Bu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Qianyue Zhu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Libin Ma
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihan Gao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
18
|
Cao Y, Yin L, Li F, Deng Y, Kong B, Liu Q, Wang H, Wang H. Characterization of sodium alginate film containing zein-Arabic gum nanoparticles encapsulated with oregano essential oil for chilled pork packaging. Int J Biol Macromol 2024; 278:134824. [PMID: 39154685 DOI: 10.1016/j.ijbiomac.2024.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Chilled pork retains most of its nutrients but is prone to deterioration during the production-to-consumption process. To address this issue this study aimed to develop zein-Arabic gum composite nanoparticles loaded with oregano essential oil (ZAG-OEO) and incorporate them into sodium alginate films to enhance the freshness and shelf life of chilled pork. Sodium alginate, known for its excellent film-forming properties, was selected as the matrix to prepare ZAG-OEO-containing sodium alginate films (SA-ZAG-OEO). The results revealed that the tensile strength and elongation at break of the prepared films were 47.73 ± 2.15 MPa and 6.27 ± 0.21 %, respectively, at a 2.5 % nanoparticle concentration. The water contact angle of the films incorporating nanoparticles reached 81.5 ± 1.95°. The incorporation of nanoparticles enhanced the thermal stability and antibacterial activity of the films. The prepared films were utilized for the storage of chilled pork, and the quality changes were analyzed. The results demonstrate that SA-ZAG-OEO films inhibit microbial growth and lipid oxidation, thereby delaying pork spoilage. This study offers new insights into extending the shelf life of chilled pork and developing advanced meat preservation methods for the future development of the meat industry.
Collapse
Affiliation(s)
- Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lingyu Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi Deng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
19
|
Li B, Li H, Su S, Shi M, Qin S, Zeng C. Enhanced bioaccessibility of interfacial delivered oleanolic acid through self-constructed Pickering emulsion: Effects of oil types. Food Res Int 2024; 191:114708. [PMID: 39059961 DOI: 10.1016/j.foodres.2024.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Pentacyclic triterpenes have attracted much attention because of their many bioactivities, but their bioaccessibility is low. Oleanolic acid (OA) was used in this study as a typical edible pentacyclic triterpene. In this work, we proposed an OA interfacial delivery model based on W/O Pickering emulsion, and investigated the effects of different oil types on the emulsion properties and OA bioaccessibility of the OA W/O Pickering emulsion interfacial delivery system (EIDS). Medium chain triglyceride (MCT), long chain triglycerides (LCT) and MCT/LCT (1:1, w/w) were selected as carrier oils for the preparation of emulsions, respectively. The results showed that the emulsions formed from LCT had smaller particle sizes, which increased the deformation resistance of the emulsions and exhibited good stability during the simulated in vitro digestion. The extent of free fatty acid (FFA) release during oil digestion was MCT (103.32 ± 3.74 %) > M/L (97.89 ± 2.89 %) > LCT (71.41 ± 6.64 %). Of interest, the bioaccessibility of OA was influenced by the carrier oil: LCT (59.34 ± 2.55 %) > M/L (47.35 ± 6.25 %) > MCT (13.11 ± 1.40 %) > PBS (7.11 ± 1.74 %), and such a difference was mainly attributed to the greater solubilisation of OA in mixed micelles consisting of long-chain fatty acids. In summary, the size of hydrophobic domains in the mixed micelles produced a greater effect than the effect of FFA release on OA bioaccessibility. This study provides a theoretical basis for the interfacial delivery of OA and the enhancement of OA bioaccessibility based on W/O Pickering emulsions with different oil types.
Collapse
Affiliation(s)
- Benyang Li
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Haiyan Li
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Shuxian Su
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Meng Shi
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Si Qin
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
20
|
Yin J, Li Y, Zhong W, Li K, Xu J, Zeng X, Chen H, Pang J, Wu C. Effect of konjac glucomannan-based preservation pads on quality changes in refrigerated large yellow croaker (Pseudosciaena crocea). Int J Biol Macromol 2024; 276:133752. [PMID: 38986984 DOI: 10.1016/j.ijbiomac.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.
Collapse
Affiliation(s)
- Jing Yin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yaoling Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kehao Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingting Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingxing Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
21
|
Bizymis AP, Giannou V, Tzia C. Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity. Molecules 2024; 29:3754. [PMID: 39202834 PMCID: PMC11356815 DOI: 10.3390/molecules29163754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The aim of this study was to develop functional composite edible films or coatings for fruit preservation by the addition of bioactive components in combinations that have not yet been thoroughly studied, according to the relevant literature. Edible films were initially composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio), and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio). The bioactive components incorporated (5, 10 and 15% v/v) were as follows: (i) pomace oil-based nanoemulsion (NE) aiming to enhance barrier properties, and (ii) caffeine (C), aiming to enhance the antioxidant activity of films, respectively. Indeed, NE addition led to very high barrier properties (low oxygen and water vapor permeability), increased flexibility and reduced color. Furthermore, the contribution of these coatings to fresh strawberries' preservation under cold storage was investigated, with very promising results concerning weight loss, color difference, and preservation of fruit moisture and quantity of O2 and CO2 inside the packages. Additionally, C addition led to very high antioxidant activity, reduced color and improved barrier properties. Finally, the contribution of these coatings to avocado's preservation under cold storage was investigated, with very encouraging results for color difference, hardness and peroxide value of the fruit samples.
Collapse
Affiliation(s)
| | | | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Polytechnioupoli, Zografou, 15780 Athens, Greece; (A.-P.B.); (V.G.)
| |
Collapse
|
22
|
Zhang R, Zhang P, Xia F, Jin Z, Chen S, Yu Y, Sun W. Preparation of chitosan photodynamic antibacterial film loaded with VK 3 complex in the preservation of chilled mutton. Int J Biol Macromol 2024; 274:133105. [PMID: 38876240 DOI: 10.1016/j.ijbiomac.2024.133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
To effectively utilize the photodynamic antibacterial ability of vitamin K3 (VK3), by solving the photothermal instability of VK3, it was combined with natural polymers to apply the preservation of chilled mutton. We encapsulated VK3 in the (2-Hydroxypropyl)-β-cyclodextrin (HP-β-CD) to construct VK3-HP-β-CD complex and then introduced the complex to chitosan (CS) and polyvinyl alcohol (PVA) to fabricate an antibacterial film (CS/PVA-VK3-HP-β-CD film). Through the packaging performance test of the film, the content of VK3-HP-β-CD was an important factor determining the properties of film including tensile strength, elongation at break, water vapor permeability, water content and water contact angle. Meanwhile, CS/PVA-VK3-HP-β-CD films could continuously release ROS under light and suspended in dark, thus realizing >99 % antibacterial rate for Escherichia coli and Staphylococcus aureus. In the application experiment of chilled mutton, CS/PVA-VK3-1-HP-β-CD film could significantly inhibit the increase of total viable count (TVC), pH value (pH) and total volatile base nitrogen (TVB-N) of chilled mutton, and extended its shelf life for at least 12 days. These results indicated that the CS/PVA film with the VK3-HP-β-CD complex might have promising potential as an antibacterial material for packaging and preserving food.
Collapse
Affiliation(s)
- Rongxi Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Fei Xia
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zichun Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Sixu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yaxin Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
23
|
Zheng L, Guo H, Zhu M, Xie L, Jin J, Korma SA, Jin Q, Wang X, Cacciotti I. Intrinsic properties and extrinsic factors of food matrix system affecting the effectiveness of essential oils in foods: a comprehensive review. Crit Rev Food Sci Nutr 2024; 64:7363-7396. [PMID: 36861257 DOI: 10.1080/10408398.2023.2184767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Essential oils (EOs) have been proved as natural food preservatives because of their effective and wide-spectrum antimicrobial activity. They have been extensively explored for potential applications in food industry, and substantial progresses have been achieved. However well EOs perform in antibacterial tests in vitro, it has generally been found that a higher level of EOs is needed to achieve the same effect in foods. Nevertheless, this unsimilar effect has not been clearly quantified and elaborated, as well as the underlying mechanisms. This review highlights the influence of intrinsic properties (e.g., oils and fats, carbohydrates, proteins, pH, physical structure, water, and salt) and extrinsic factors (e.g., temperature, bacteria characteristics, and packaging in vacuum/gas/air) of food matrix systems on EOs action. Controversy findings and possible mechanism hypotheses are also systematically discussed. Furthermore, the organoleptic aspects of EOs in foods and promising strategies to address this hurdle are reviewed. Finally, some considerations about the EOs safety are presented, as well as the future trends and research prospects of EOs applications in foods. The present review aims to fill the evidenced gap, providing a comprehensive overview about the influence of the intrinsic and extrinsic factors of food matrix systems to efficiently orientate EOs applications.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Liangliang Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| |
Collapse
|
24
|
Wang J, Zhao F, Huang J, Li Q, Yang Q, Ju J. Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Crit Rev Food Sci Nutr 2024; 64:6272-6297. [PMID: 36651301 DOI: 10.1080/10408398.2023.2167066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jinglin Huang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qianyu Li
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
25
|
Zhu Z, Meng L, Gao Z, Liu R, Guo X, Wang H, Kong B. Development of chitosan/polycaprolactone-thymol Janus films with directional transport and antibacterial properties for meat preservation. Int J Biol Macromol 2024; 268:131669. [PMID: 38642683 DOI: 10.1016/j.ijbiomac.2024.131669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Reducing contamination from percolate is critical to the preservation of foods with high water content, such as pork. This study aims to develop a novel active packaging material for meat preservation by precisely controlled dual-channel one-step electrospinning. Compared to traditional strategies of preparing Janus films, this method allows for greater flexibility and efficiency. The structure and properties of the Janus film are characterized by scanning electron microscopy (SEM), water contact angle (WCA), directional liquid transport investigation, Thymol release and permeation features, and biocompatibility evaluation. Moreover, the Janus film is applied to the packaging of pork with modified atmosphere packaging to demonstrate its practical application prospects in the food active packaging field. The results revealed that the two sides of the film showed completely different wettability, and the change rate of WCA increased with the increase of the scale of hydrophilic fibers. The permeation features of thymol loaded in the film was consistent with the results of antibacterial properties and biocompatibility assessment. Moreover, the Janus film can effectively prolong the shelf life, improve the quality and safety of the pork.
Collapse
Affiliation(s)
- Zhaozhang Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lingna Meng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhennan Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
| | - Xiang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin 150028, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Wang Z, Zhang M, Liang S, Li Y. Enhanced antioxidant and antibacterial activities of chitosan/zein nanoparticle Pickering emulsion-incorporated chitosan coatings in the presence of cinnamaldehyde and tea polyphenol. Int J Biol Macromol 2024; 266:131181. [PMID: 38552702 DOI: 10.1016/j.ijbiomac.2024.131181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Pickering emulsions were prepared by using zein/chitosan nanoparticles as stabilizer and then incorporated into chitosan coatings. To improve the stability and performances, tea polyphenol and cinnamaldehyde (CA) were used to modulate the formation and functionalities of Pickering emulsions. The oil phase in Pickering emulsions were set at 5 % and 20 % to alter the hydrophobicity of chitosan coatings. Physical, structural, antioxidant and antibacterial activities of chitosan coatings with Pickering emulsions were characterized. Tea polyphenol significantly enhanced antioxidant capacity of chitosan coatings from 2.09 % to 57.61 % of DPPH value and from 2.63 % to 38.85 % of ABTS value. CA effectively increased the antibacterial activity of chitosan coatings against S. aureus and E. coli. Under 20 % oil content, the inhibition zones on S. aureus and E. coli increased from 3.03 ± 0.23 mm to 18.39 ± 1.22 mm and 7.66 ± 1.61 mm to 15.70 ± 1.75 mm, respectively. The preservative effect of chitosan coatings on fresh pork was further confirmed that the shelf-life of fresh pork could be extended by >4 days. These results suggested a great potential application of Pickering emulsion-incorporated chitosan coatings in the preservation of fresh pork.
Collapse
Affiliation(s)
- Zinan Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Shan Liang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Wang Z, Tang W, Sun Z, Liu F, Wang D. An innovative Pickering W/O/W nanoemulsion co-encapsulating hydrophilic lysozyme and hydrophobic Perilla leaf oil for extending shelf life of fish products. Food Chem 2024; 439:138074. [PMID: 38091791 DOI: 10.1016/j.foodchem.2023.138074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
A Pickering water-in-oil-in-water nanoemulsion co-encapsulating lysozyme (LYS) and Perilla leaf oil (PO) was prepared using whey protein isolate-tannin acid conjugated nanoparticles (WPI-TA NPs) as emulsifiers, called LYS-PO-NE, and subsequently analyzed. The nano size and multiple phases was confirmed based on the results of confocal laser scanning microscope, scanning electron microscope, and droplet size analysis. LYS-PO-NE had high encapsulation efficiencies of 89.36 % (PO) and 43.91 % (LYS) and both could be released at a slow and continuous rate. The PO addition increased the droplet size, and the LYS addition delayed the release of PO. LYS-PO-NE also showed good storage, pH, thermal, and salt stability, and an effective combined bactericidal activity of LYS and PO against spoilage bacteria. Furthermore, the results of chilled salmon storage experiments indicated that LYS-PO-NE could extend the shelf life of chilled salmon to at least 6 days, demonstrating the potential in the shelf life for fish products.
Collapse
Affiliation(s)
- Zaitian Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Wenxiang Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
28
|
Nolasco A, Squillante J, Velotto S, D’Auria G, Ferranti P, Mamone G, Errico ME, Avolio R, Castaldo R, De Luca L, Romano R, Esposito F, Cirillo T. Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach. Foods 2024; 13:1044. [PMID: 38611351 PMCID: PMC11011278 DOI: 10.3390/foods13071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The increasing population, food demand, waste management concerns, and the search for sustainable alternatives to plastic polymers have led researchers to explore the potential of waste materials. This study focused on a waste of pine nut processing referred to in this paper as pine nut skin. For the first time, its nutritional profile, potential bioactive peptide, contaminants, and morphological structure were assessed. Pine nut skin was composed mainly of carbohydrates (56.2%) and fiber (27.5%). The fat (9.8%) was about 45%, 35%, and 20% saturated, monounsaturated, and polyunsaturated fatty acid, respectively, and Omega-9,-6, and -3 were detected. Notably, oleic acid, known for its health benefits, was found in significant quantities, resembling its presence in pine nut oil. The presence of bioactive compounds such as eicosapentaenoic acid (EPA) and phytosterols further adds to its nutritional value. Some essential elements were reported, whereas most of the contaminants such as heavy metals, polycyclic aromatic hydrocarbons, rare earth elements, and pesticides were below the limit of quantification. Furthermore, the in silico analysis showed the occurrence of potential precursor peptides of bioactive compounds, indicating health-promoting attributes. Lastly, the morphological structural characterization of the pine nut skin was followed by Fourier Transform Infrared and solid-state NMR spectroscopy to identify the major components, such as lignin, cellulose, and hemicellulose. The thermostability of the pine nut skin was monitored via thermogravimetric analysis, and the surface of the integument was analyzed via scanning electron microscopy and volumetric nitrogen adsorption. This information provides a more comprehensive view of the potential uses of pine nut skin as a filler material for biocomposite materials. A full characterization of the by-products of the food chain is essential for their more appropriate reuse.
Collapse
Affiliation(s)
- Agata Nolasco
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Jonathan Squillante
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma “San Raffaele”, Via di Val Cannuta, 247-00166 Roma, Italy
| | - Giovanni D’Auria
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | - Maria Emanuela Errico
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Roberto Avolio
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Rachele Castaldo
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Francesco Esposito
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| |
Collapse
|
29
|
Shinde MM, Malik M, Kaur K, Gahlawat VK, Kumar N, Chiraang P, Upadhyay A. Formulization and characterization of guar gum and almond gum based composite coating and their application for shelf-life extension of okra (Hibiscus esculentus). Int J Biol Macromol 2024; 262:129630. [PMID: 38336319 DOI: 10.1016/j.ijbiomac.2024.129630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024]
Abstract
The current novel study aims was to development and characterization of gum based (guar gum: almond gum) composite formulations with or without addition of oregano essential oils to extend the shelf life of okra at ambient condition. In this study, the optimized composite of guar gum: almond gum (75:25 V/V) prepared with addition of different concentrations (0.05, 0.1 and 0.15 % (V/V) of oregano essential oils to study their physicochemical, rheological, antimicrobial and particle size & zeta potential distribution. In addition, the effects of prepared edible coatings on shelf-life of okra vegetables were also investigated by assessing their postharvest quality attributes at ambient (23 °C) storage up to 7 days storage. The results revealed, increasing concentration of essential oils in composite coating significantly increased in pH, TSS, particle size, antimicrobial (Apergillus. niger, Escherichia coli, Staphylococcus aureus) activity respectively. Furthermore, the increasing EOs improved viscosity (n) and stability of the coatings matrix. In addition, the applications of guar gum (0.25 %): almond gum (0.5 %) composite ratio (75,25) with oregano essential oils exhibited excellent properties and potential to maintain the postharvest characteristics of okra throughout the storage period. The results of this study revealed that the addition of higher concentration (0.15 %) of essential oils in composite formulation of 75 % guar gum +25 % almond gum (03) showed higher value of pH (5.45), antioxidant activity (20.87 %), particle size (899.1 nm), zeta potential (-8.6 mV), polydispersity index (50.6 %) and higher antimicrobial activity against E.coli (19 mm), S. aureus (29 mm) and A. niger (35 mm) as compared to other formulations. Therefore, the lower composite formulation (01) with lower concentration (0.05 %) of oregano essential oil was found most effective formulation to maintain the shelf life of okra for up to 4 days as compared to other treated and control okra samples at ambient temperature by retarded the weight loss (12.74 %), maintained higher firmness (0.998 N), lower respiration rate (484.32 ml Co2/kg/h) respectively on 7 days of storage. The microbial load in the okra samples treated with different guar gum: almond gum composite showed lower microbial load in terms of total plate count and yeast & mold counts as compared to control samples. Samples treated with O3 coating showed lowest TPC (0.1 × 108 cfu/g) and YMC (6.63 × 106 cfu/g) followed by O2 (0.48 × 108 cfu/g, 7.9 × 106 cfu/g) and O1 (0.78 × 108 cfu/g, 9.45 × 106 cfu/g) respectively on 6rd day of storage, overall results indicated that the application of composite coating with different concentrations of oregano essential oils were effective to maintained postharvest shelf life of okra up to 4 days at ambient condition.
Collapse
Affiliation(s)
- Mahesh Mohan Shinde
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Mohit Malik
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Kujinder Kaur
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Vijay Kumar Gahlawat
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India.
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India.
| | - Poojal Chiraang
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| |
Collapse
|
30
|
Li J, Sun H, Weng Y. Natural Extracts and Their Applications in Polymer-Based Active Packaging: A Review. Polymers (Basel) 2024; 16:625. [PMID: 38475309 DOI: 10.3390/polym16050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
At a time when food safety awareness is increasing, attention is paid not only to food and additives but also to packaging materials. Most current food packaging is usually made of traditional petroleum-based polymeric materials, which are not biodegradable and have adverse effects on the environment and health. In this context, the development of new non-toxic and biodegradable materials for extending the best-before date of food is receiving increasing attention. In addition, additives in packaging materials may migrate outward, resulting in contact with food. For this reason, additives are also seen as a transition from synthetic additives to natural extracts. Active extracts from animals and plants having good antioxidant and antibacterial properties are also beneficial for human health. It is indisputable that active extracts are ideal substitutes for synthetic additives. Polymer packaging materials combined with active extracts not only maintain their original mechanical and optical properties and thermal stability but also endow polymers with new functions to extend the shelf life of food. This review paper provides an overview of this promising natural extract-containing polymer-based active packaging, with a focus on plant essential oils (containing phenolics, monoterpenes, terpene alcohols, terpene ketones, and aldehydes), pigments (procyanidins), vitamins (vitamin B), and peptides (nisin). In particular, this paper covers the research progress of such active extracts, in single or compound forms, combined with diverse polymers (mostly biopolymers) for food packaging applications with particular focus on the antioxidant and antibacterial properties of packaging materials.
Collapse
Affiliation(s)
- Jiawei Li
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Sun
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
31
|
Allagui MB, Moumni M, Romanazzi G. Antifungal Activity of Thirty Essential Oils to Control Pathogenic Fungi of Postharvest Decay. Antibiotics (Basel) 2023; 13:28. [PMID: 38247587 PMCID: PMC10812670 DOI: 10.3390/antibiotics13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
Essential oils (EOs) extracted from aromatic or medicinal plants are biodegradable, safe, and regarded as alternatives to chemical pesticides to reduce fungal species attacking different crops. In this study, thirty EOs at 0.5 mg/mL were evaluated for in vitro growth inhibition of the main postharvest fungi, which are Alternaria alternata, Botrytis cinerea, and Penicillium italicum. Cinnamomum verrum EO completely inhibited the mycelial growth of A. alternata and B. cinerea, and Syzygium aromaticum EO completely inhibited the mycelia of A. alternata. B. cinerea mycelial growth was completely inhibited by Gautheria fragrantissima, Cymbopogon nardus, Pelargonium asperum, and Cupressus sempervirens EOs. G. fragrantissima EO inhibited the mycelia growth of P. italicum by 98%. Overall, B. cinerea displayed the highest sensitivity to EOs than P. italicum and A. alternata. G. fragrantissima, C. sempervirens, C. nardus, P. asperum, Mentha piperita, Foeniculum vulgare, C. verrum, and S. aromaticum EOs showed the highest inhibition for these three pathogens. Minimum inhibitory concentrations were lower for C. verrum and S. aromaticum EOs, ranging between 0.31 and 0.45 mg/mL and 0.37 to 0.57 mg/mL, respectively, against the three pathogens. The tested EOs inhibited the in vitro growth of three of the main postharvest fungal pathogens. Further studies are needed to confirm these activities in vivo.
Collapse
Affiliation(s)
- Mohamed Bechir Allagui
- Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia (INRAT), University of Carthage, Rue Hedi Karray, Ariana 2080, Tunisia
| | - Marwa Moumni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (G.R.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (G.R.)
| |
Collapse
|
32
|
Zaharioudakis K, Kollia E, Leontiou A, Moschovas D, Karydis-Messinis A, Avgeropoulos A, Zafeiropoulos NE, Ragkava E, Kehayias G, Proestos C, Salmas CE, Giannakas AE. Carvacrol Microemulsion vs. Nanoemulsion as Novel Pork Minced Meat Active Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3161. [PMID: 38133058 PMCID: PMC10745327 DOI: 10.3390/nano13243161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Carvacrol is well documented for its antibacterial and antioxidant effects. However, its high volatility has directed researchers toward nanoencapsulation technology according to bioeconomy and sustainability trends. This study examined and compared free carvacrol (FC), carvacrol microemulsion (MC), carvacrol microemulsion busted with chitosan (MMC), and carvacrol nanoemulsions (NC) as active coatings on extending minced pork meat shelf life at 4 ± 1 °C for 9 days, focusing on microbiological, physiochemical, and sensory characteristics. The research involved pre-characterizing droplet sizes, evaluating antioxidants, and determining antibacterial efficacy. The results demonstrated that NC with a 21 nm droplet size exhibited the highest antioxidant and antibacterial activity. All coatings succeeded in extending the preservation of fresh minced pork meat in comparison to the free carvacrol sample (FC). The NC coating showed the highest extension of minced pork meat preservation and maintained meat freshness for 9 days, with a lower TBARs of 0.736 mg MDA/Kg, and effectively reduced mesophilic, lactic acid, and psychotrophic bacterial counts more significantly by 1.2, 2, and 1.3 log, respectively, as compared to FC. Sensory assessments confirmed the acceptability of NC and MCC coatings. Overall, the carvacrol-based nanoemulsion can be considered a novel antioxidant and antimicrobial active coating due to its demonstrated higher efficacy in all the examined tests performed.
Collapse
Affiliation(s)
- Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (C.P.)
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Efthymia Ragkava
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (C.P.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| |
Collapse
|
33
|
Safari R, Yaghoubi M, Marcinkowska‐Lesiak M, Paya H, Sun X, Rastgoo A, Rafiee M, Alirezalu K. The effects of double gelatin containing chitosan nanoparticles-calcium alginate coatings on the stability of chicken breast meat. Food Sci Nutr 2023; 11:7673-7685. [PMID: 38107100 PMCID: PMC10724606 DOI: 10.1002/fsn3.3686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of gelatin coatings (2% and 4%) containing chitosan nanoparticles (ChNPs; 1% and 2%), in combination with calcium-alginate coatings (CA; 2%), on quality attributes and shelf life of chicken breast meat were evaluated at 4°C for 12 days. The results indicated that double-active gelatin-calcium alginate coatings had significant (p < .05) effects on moisture and protein content. Incorporation of ChNPs into double gelatin-CA coatings led to significant reduction (p < .05) in TBARS, pH, and TVB-N values at the end of storage. The counts of total viable count (TVC), coliforms, yeasts, and molds were significantly (p < .05) lower in all coated samples, particularly in treated samples by 4% gelatin containing 2% ChNPs + 2% CA coatings (6.85, 6.78, and 5.91 log CFU/g, respectively, compared with 8.35, 8.76, and 7.71 log CFU/g in control) at the end of keeping time. The results of sensory attributes showed that the coated samples had higher overall acceptability scores compared with the untreated samples. A synergistic relationship between the concentrations of gelatin and ChNPs was observed in maintaining the quality characteristics of meat samples during storage. Therefore, this study aims to evaluate the performance of double gelatin coating containing ChNPs in combination with CA coating in the storage quality improvement of chicken breast meat stored for 12 days at 4 °C to develop novel and practical coatings for meat and meat products.
Collapse
Affiliation(s)
- Rashid Safari
- Department of Animal Science, Ahar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Monika Marcinkowska‐Lesiak
- Department of Technique and Food Development, Institute of Human Nutrition SciencesWarsaw University of Life SciencesWarsawPoland
| | - Hamid Paya
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of AgricultureDalhousie UniversityTruroNova ScotiaCanada
| | - Anahita Rastgoo
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Mirmehdi Rafiee
- Department of Food Science and Technology, Faculty of AgricultureAzad University of KhoyKhoyIran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
34
|
Hashemi M, Aminzare M, Hassanzadazar H, Roohinejad S, Tahergorabi R, Bekhit AEA. Impact of sodium alginate-based film loaded with resveratrol and thymol on the shelf life of cooked sausage and the inoculated Listeria monocytogenes. Food Sci Nutr 2023; 11:7855-7869. [PMID: 38107107 PMCID: PMC10724608 DOI: 10.1002/fsn3.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
In present study, sodium alginate biodegradable films containing different concentrations of resveratrol (RES: 0.002% and 0.004%) or thymol (THY: 0.5% and 1%) and their combinations were prepared, and evaluated for their effects on spoilage-related microbial profile, lipid oxidation, sensory properties, and protective effects against Listeria monocytogenes in beef mortadella sausage during 40 days storage at 4°C. The release rate of phenolic compounds was determined by the Folin-Ciocalteu test. To assess the shelf life of the product, changes in total viable count (TVC), lactic acid bacteria count (LAB), psychrotrophic bacteria count (PTC), pH levels, thiobarbituric acid reactive substances (TBARS) levels, and sensory characteristics (taste, color, odor, and overall acceptability) were evaluated. For the sensory evaluation, a panel of 70 semi-trained judges was selected according to their initial performance. Samples wrapped with sodium alginate films containing 1% THY (alone or combined with different concentrations of RES) exhibited lower bacterial counts compared to other experimental groups at the end of the storage period (6.01-6.35 vs. 6.71-8.17 log10 CFU/g for TVC, 5.37-5.83 vs. 6.07-7.11 log10 CFU/g for LAB, 5.08-5.18 vs. 5.40-7.23 log10 CFU/g for PTC, and 6.53-6.92 vs. 7.23-9.01 log10 CFU/g for inoculated L. monocytogenes). Sodium alginate films containing the combination of 0.004% RES and different concentrations of THY showed higher antioxidant effects than other experimental groups (TBARS values of 1.68-1.99 vs. 2.23-3.80 mg MDA/kg sample). The sodium alginate film containing 0.004% RES + 1% THY exhibited the highest antimicrobial and antioxidant activities and highest sensory scores among all treatments. These findings highlight the potential application of the sodium alginate film containing a combination of RES and THY as an active packaging material with natural preservatives in the meat products industry. This application can effectively extend the shelf life and enhance the microbial safety of clean-label cooked sausages during refrigerated storage.
Collapse
Affiliation(s)
- Mahsa Hashemi
- Student Research Committee, Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Shahin Roohinejad
- Division of Food and Nutrition, Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Reza Tahergorabi
- Food and Nutritional Sciences ProgramNorth Carolina Agricultural and Technical State UniversityGreensboroNorth CarolinaUSA
| | | |
Collapse
|
35
|
Zhang R, Xu G, Su Y, Rao S. Potential Application of Ovalbumin Gel Nanoparticles Loaded with Carvacrol in the Preservation of Fresh Pork. Gels 2023; 9:941. [PMID: 38131927 PMCID: PMC10742687 DOI: 10.3390/gels9120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Plant essential oil has attracted much attention in delaying pork spoilage due to its safety, but its low antibacterial efficiency needs to be solved by encapsulation. Our previous research had fabricated a type of ovalbumin gel nanoparticles loaded with carvacrol (OCGn-2) using the gel-embedding method, which had a high encapsulation rate and antibacterial activity. The main purpose of this study was to further evaluate the stability and slow-release characteristics of OCGn-2 and potential quality effects of the nanoparticles on the preservation of fresh pork pieces during 4 °C storage. The particle test showed that the nanoparticles had better heat stability below 85 °C and salt stability below 90 mM. The in vitro release study indicated that the carvacrol in OCGn-2 followed a Fickian release mechanism. The pork preservation test suggested that the OCGn-2 coating treatments could remarkably restrict the quality decay of pork slices compared to free carvacrol or a physical mixture of ovalbumin and carvacrol treatment. Nano-encapsulation of ovalbumin is beneficial to the sustained release, enhanced oxidation resistance, and improved antibacterial activity of carvacrol. The study suggested that ovalbumin gel nanoparticles embedded with carvacrol could be applied as an efficient bacterial active packaging to extend the storage life of pork.
Collapse
Affiliation(s)
- Ruyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.Z.); (Y.S.)
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Guangwei Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.Z.); (Y.S.)
| | - Shengqi Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.Z.); (Y.S.)
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| |
Collapse
|
36
|
Bizymis AP, Kalantzi S, Mamma D, Tzia C. Addition of Silver Nanoparticles to Composite Edible Films and Coatings to Enhance Their Antimicrobial Activity and Application to Cherry Preservation. Foods 2023; 12:4295. [PMID: 38231729 DOI: 10.3390/foods12234295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
The aim of this study was to examine the potential enhancement of the antimicrobial activity of edible films, composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%) and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%), with silver nanoparticle (AgNP) incorporationat levels 5, 10 and 15% v/v. According to the results, the AgNP addition led to very high antimicrobial activity of both films, reducing by more than 96% the microbial growth of the Gram-negative bacterium Escherichia coli (E. coli) in all cases. On the other hand, by adding AgNPs to films, their thickness as well as oxygen and water vapor permeability decreased, while their transparency increased. Furthermore, the contribution of these specific edible films to preserve cherries under cold storage was investigated. All edible coatings resulted in an improvement of the fruit properties under consideration, and especially the color difference, hardness and total microbial load.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| |
Collapse
|
37
|
Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023; 12:4017. [PMID: 37959136 PMCID: PMC10648556 DOI: 10.3390/foods12214017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Preservation of foods, along with health and safety issues, is a growing concern in the current generation. Essential oils have emerged as a natural means for the long-term protection of foods along with the maintenance of their qualities. Direct applications of essential oils have posed various constraints to the food system and also have limitations in application; hence, encapsulation of essential oils into biopolymers has been recognized as a cutting-edge technology to overcome these challenges. This article presents and evaluates the strategies for the development of encapsulated essential oils on the basis of fascination with the modeling and shuffling of various biopolymers, surfactants, and co-surfactants, along with the utilization of different fabrication processes. Artificial intelligence and machine learning have enabled the preparation of different nanoemulsion formulations, synthesis strategies, stability, and release kinetics of essential oils or their bioactive components from nanoemulsions with improved efficacy in food systems. Different mathematical models for the stability and delivery kinetics of essential oils in food systems have also been discussed. The article also explains the advanced application of modeling-based encapsulation strategies on the preservation of a variety of food commodities with their intended implication in food and agricultural industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; (M.S.); (A.Y.); (A.M.); (S.D.); (N.K.D.)
| |
Collapse
|
38
|
Sonar E, Shukla VH, Vaidya VM, Zende RJ, Ingole SD. Nanoparticles of chitosan and oregano essential oil: application as edible coatings on chicken patties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2868-2880. [PMID: 37711572 PMCID: PMC10497486 DOI: 10.1007/s13197-023-05804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023]
Abstract
Abstract The dense nutritional structure of meat predisposes it to microbial spoilage and oxidative changes. Thus, the present study evaluated the antimicrobial and antioxidant effect of the edible coating of nanoparticles of chitosan and oregano essential oil on the quality and shelf-life of chicken patties. Total four types of edible coatings were prepared, viz. T1:0.3% chitosan; T2:0.3% chitosan incorporated with 0.3% v/v oregano essential oil; T3:0.3% chitosan nanoparticles and T4: nanoparticles of 0.3% chitosan incorporated with 0.3% v/v oregano essential oil which were characterized by UV-visible spectrophotometry, particle size analysis and High-Resolution Transmission Electron Microscopy (HR-TEM). The chicken patties were dipped in developed edible coatings and evaluated for quality parameters at five days interval during refrigeration storage (4 ± 1 °C). The results indicated significantly (P < 0.05) improved physicochemical, microbiological, Hunter colour and sensory parameters in treatments than in control. Among the treatments, quality parameters were significantly enhanced in T4 than in other treatments. The results revealed that T3 and T4 had an improved shelf life of about 25 days while T1 and T2 had a shelf life of 15 and 20 days, respectively, but control spoiled on the 10th day of refrigeration storage. Graphical abstract Edible coating of nanoparticles of chitosan alone (T3) as well as chitosan incorporated with incorporated with oregano essential (T4) oil were prepared and characterized by HR-TEM and UV-Vis Spectrophotometry. UV-Vis Spectrophotometry revealed that T3 and T4 had the absorption maximum of 209 nm and 276 nm, respectively. HR-TEM revealed that (T4) had a spherical shape, with average size ranging from 100 to 200 nm while (T3) had a smaller size ranging from 80 to 100 nm, with a rough surface having a dense structure. Upon coating of chicken patties with edible coatings, a significant improvement was observed in the quality and shelf-life of chicken patties than control during refrigeration storage (4±1 °C). Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05804-1.
Collapse
Affiliation(s)
- Eshwari Sonar
- Department of Livestock Products Technology, Mumbai Veterinary College, Mumbai, India
| | - V. H. Shukla
- Department of Livestock Products Technology, Mumbai Veterinary College, Mumbai, India
| | - V. M. Vaidya
- Department of Veterinary Public Health, Mumbai Veterinary College, Mumbai, India
| | - R. J. Zende
- Department of Veterinary Public Health, Mumbai Veterinary College, Mumbai, India
| | - S. D. Ingole
- Department of Veterinary Physiology, Mumbai Veterinary College, Mumbai, India
| |
Collapse
|
39
|
Jacinto-Valderrama RA, Andrade CT, Pateiro M, Lorenzo JM, Conte-Junior CA. Recent Trends in Active Packaging Using Nanotechnology to Inhibit Oxidation and Microbiological Growth in Muscle Foods. Foods 2023; 12:3662. [PMID: 37835315 PMCID: PMC10572785 DOI: 10.3390/foods12193662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Muscle foods are highly perishable products that require the use of additives to inhibit lipid and protein oxidation and/or the growth of spoilage and pathogenic microorganisms. The reduction or replacement of additives used in the food industry is a current trend that requires the support of active-packaging technology to overcome novel challenges in muscle-food preservation. Several nano-sized active substances incorporated in the polymeric matrix of muscle-food packaging were discussed (nanocarriers and nanoparticles of essential oils, metal oxide, extracts, enzymes, bioactive peptides, surfactants, and bacteriophages). In addition, the extension of the shelf life and the inhibitory effects of oxidation and microbial growth obtained during storage were also extensively revised. The use of active packaging in muscle foods to inhibit oxidation and microbial growth is an alternative in the development of clean-label meat and meat products. Although the studies presented serve as a basis for future research, it is important to emphasize the importance of carrying out detailed studies of the possible migration of potentially toxic additives, incorporated in active packaging developed for muscle foods under different storage conditions.
Collapse
Affiliation(s)
- Rickyn A. Jacinto-Valderrama
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Cristina T. Andrade
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Carlos Adam Conte-Junior
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| |
Collapse
|
40
|
Nunes C, Silva M, Farinha D, Sales H, Pontes R, Nunes J. Edible Coatings and Future Trends in Active Food Packaging-Fruits' and Traditional Sausages' Shelf Life Increasing. Foods 2023; 12:3308. [PMID: 37685240 PMCID: PMC10486622 DOI: 10.3390/foods12173308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The global food production industry faces environmental concerns exacerbated by substantial food waste. European countries are striving to reduce food waste towards a circular bioeconomy and sustainable development. To address environmental issues and reduce plastic waste, researchers are developing sustainable active packaging systems, including edible packaging made from industry residues. These innovations aim to increase food safety and quality, extend shelf life, and reduce plastic and food waste. Particularly important in the context of the growing demand for fresh and minimally processed fruits, edible coatings have emerged as a potential solution that offers numerous advantages in maintaining fruit quality. In addition to fruit, edible coatings have also been investigated for animal-based foods to meet the demand for high-quality, chemical-free food and extended shelf life. These products globally consumed can be susceptible to the growth of harmful microorganisms and spoilage. One of the main advantages of using edible coatings is their ability to preserve meat quality and freshness by reducing undesirable physicochemical changes, such as color, texture, and moisture loss. Furthermore, edible coatings also contribute to the development of a circular bioeconomy, promoting sustainability in the food industry. This paper reviews the antimicrobial edible coatings investigated in recent years in minimally processed fruits and traditional sausages. It also approaches bionanocomposites as a recently emerged technology with potential application in food quality and safety.
Collapse
Affiliation(s)
| | | | - Diana Farinha
- Association BLC3–Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155 Oliveira do Hospital, Portugal; (C.N.); (M.S.); (H.S.); (R.P.); (J.N.)
| | | | | | | |
Collapse
|
41
|
Frosi I, Balduzzi A, Moretto G, Colombo R, Papetti A. Towards Valorization of Food-Waste-Derived Pectin: Recent Advances on Their Characterization and Application. Molecules 2023; 28:6390. [PMID: 37687219 PMCID: PMC10489144 DOI: 10.3390/molecules28176390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Pectin, a natural biopolymer, can be extracted from food waste biomass, adding value to raw materials. Currently, commercial pectin is mostly extracted from citrus peels (85.5%) and apple pomace (14.0%), with a small segment from sugar beet pulp (0.5%). However, driven by high market demand (expected to reach 2.12 billion by 2030), alternative agro-industrial waste is gaining attention as potential pectin sources. This review summarizes the recent advances in characterizing pectin from both conventional and emerging food waste sources. The focus is the chemical properties that affect their applications, such as the degree of esterification, the neutral sugars' composition, the molecular weight, the galacturonic acid content, and technological-functional properties. The review also highlights recent updates in nutraceutical and food applications, considering the potential use of pectin as an encapsulating agent for intestinal targeting, a sustainable biopolymer for food packaging, and a functional and emulsifying agent in low-calorie products. It is clear from the considered literature that further studies are needed concerning the complexity of the pectin structure extracted from emerging food waste raw materials, in order to elucidate their most suitable commercial application.
Collapse
Affiliation(s)
- Ilaria Frosi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Anna Balduzzi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Giulia Moretto
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Raffaella Colombo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
- Center for Colloid and Surface Science (C.S.G.I.), University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
42
|
Hashemi SMB, Kaveh S, Abedi E, Phimolsiripol Y. Polysaccharide-Based Edible Films/Coatings for the Preservation of Meat and Fish Products: Emphasis on Incorporation of Lipid-Based Nanosystems Loaded with Bioactive Compounds. Foods 2023; 12:3268. [PMID: 37685201 PMCID: PMC10487091 DOI: 10.3390/foods12173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The high water and nutritional contents of meat and fish products make them susceptible to spoilage. Thus, one of the most important challenges faced by the meat industry is extending the shelf life of meat and fish products. In recent years, increasing concerns associated with synthetic compounds on health have limited their application in food formulations. Thus, there is a great need for natural bioactive compounds. Direct use of these compounds in the food industry has faced different obstacles due to their hydrophobic nature, high volatility, and sensitivity to processing and environmental conditions. Nanotechnology is a promising method for overcoming these challenges. Thus, this article aims to review the recent knowledge about the effect of biopolymer-based edible films or coatings on the shelf life of meat and fish products. This study begins by discussing the effect of biopolymer (pectin, alginate, and chitosan) based edible films or coatings on the oxidation stability and microbial growth of meat products. This is followed by an overview of the nano-encapsulation systems (nano-emulsions and nanoliposomes) and the effect of edible films or coatings incorporated with nanosystems on the shelf life of meat and fish products.
Collapse
Affiliation(s)
- Seyed Mohammad Bagher Hashemi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa 74616-86131, Iran; (S.M.B.H.); (E.A.)
| | - Shima Kaveh
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan 49189-43464, Iran
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa 74616-86131, Iran; (S.M.B.H.); (E.A.)
| | | |
Collapse
|
43
|
Wang X, Han M, Zou L, Huang Z, Dong W, Fan J, Huang A. Preparation and characterization of Pickering emulsion with directionally embedded antimicrobial peptide MOp2 and its preservation effect on grass carp. Curr Res Food Sci 2023; 7:100569. [PMID: 37664003 PMCID: PMC10474363 DOI: 10.1016/j.crfs.2023.100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
The peptide MOp2 obtained from Moringa oleifera seeds showed good antimicrobial activity. However, the stability of its activity has not yet been studied. In the present study, MOp2-loaded thiolated chitosan-stabilized (CMOp2) Pickering emulsion was prepared and applied to prolong the shelf life of grass carp. The encapsulation rate of MOp2 was 57.7% in CMOp2. In addition, the effects of different concentrations of CMOp2 solid particles and pH on droplet size, zeta optional and storage stability of Pickering emulsions were evaluated; the best condition for preparing Pickering emulsion through experiment was 1.75% CMOp2 solid particles at pH 9.5. Moreover, morphological observations and rheological analysis indicated that Pickering emulsions were considered a water-in-oil emulsion with typical non-Newtonian fluid characteristics. Furthermore, the prepared Pickering emulsion could significantly inhibit the growth of Escherichia coli and Staphylococcus aureus. Besides, Pickering emulsion effectively prevented spoilage of grass carp, and the Pickering emulsion-treated group reduced its pH, TVB-N and color values, inhibited microbial growth, and extended shelf life to 9 day at the storage of 4 °C. Overall, the present findings provide a reference for the application of MOp2-loaded Pickering emulsions in food preservation.
Collapse
Affiliation(s)
| | | | | | - Zhiyuan Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenming Dong
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiangping Fan
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| |
Collapse
|
44
|
Bhat ZF, Bhat HF, Mohan MS, Aadil RM, Hassoun A, Aït-Kaddour A. Edible packaging systems for improved microbial quality of animal-derived foods and the role of emerging technologies. Crit Rev Food Sci Nutr 2023; 64:12137-12165. [PMID: 37594230 DOI: 10.1080/10408398.2023.2248494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Boulogne-sur-Mer, France
| | | |
Collapse
|
45
|
Chen S, Zeng Q, Tan X, Ye M, Zhang Y, Zou L, Liu S, Yang Y, Liu A, He L, Hu K. Photodynamic antibacterial chitosan/nitrogen-doped carbon dots composite packaging film for food preservation applications. Carbohydr Polym 2023; 314:120938. [PMID: 37173034 DOI: 10.1016/j.carbpol.2023.120938] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
In this study, we synthesized nitrogen-doped carbon dots (N-CDs) with remarkable photodynamic antibacterial properties by a hydrothermal method. The composite film was prepared by solvent casting method, compounding N-CDs with chitosan (CS). The morphology and structure of the films were analyzed by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) techniques. The films' mechanical, barrier, thermal stability, and antibacterial properties were analyzed. A preservation test of the films was studied on the samples of pork, volatile base nitrogen (TVB-N), total viable count (TVC), and pH were determined. Besides, the effect of film on the preservation of blueberries was observed. The study found that, compared with the CS film, the CS/N-CDs composite film is strong and flexible, with good UV light barrier performance. The prepared CS/7 % N-CDs composites showed high photodynamic antibacterial rates of 91.2 % and 99.9 % for E. coli and S. aureus, respectively. In the preservation of pork, it was found that its pH, TVB-N, and TVC indicators were significantly lower. The extent of mold contamination and anthocyanin loss was less in the CS/3 % N-CDs composite film-coated group, which could greatly extend the shelf life of food.
Collapse
Affiliation(s)
- Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| | - Qiuyan Zeng
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xinyu Tan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Mengyi Ye
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yanan Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
46
|
Santamaría E, Maestro A, Vilchez S, González C. Study of nanoemulsions using carvacrol/MCT-(Oleic acid-potassium oleate)/ Tween 80 ®- water system by low energy method. Heliyon 2023; 9:e16967. [PMID: 37332948 PMCID: PMC10276228 DOI: 10.1016/j.heliyon.2023.e16967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Carvacrol is studied in different fields due to its microbial and antioxidant properties. Its use is limited because of the water insolubility and its strong taste. To overcome these problems, carvacrol has been successfully loaded into nanoemulsions. The low-energy emulsification method Phase Inversion Composition (PIC) is used to prepare oil-in-water nanoemulsions in the carvacrol/medium chain triglycerides (MCT)-(oleic acid-potassium oleate/Tween 80 ®)-water system. Oleic acid acts as a co-surfactant when it is neutralized with KOH along the emulsification path changing the spontaneous curvature of the interface when increasing the HLB number from 1 for the oleic acid to 20 for the potassium oleate and, therefore, changing the HLB number of the surfactant mixture. The phases diagrams are studied in order to understand the behaviour of the system and to establish the composition range where nanoemulsions can be obtained. Nanoemulsions are formed when the emulsification path crosses a region of direct or planar structure without excess of oil. Experimental design is performed in order to study the influence of composition variables as carvacrol/MCT ratio and (oleic-oleate)/Tween 80 ® ratio (OL-OT/T80 ratio) on the diameter of the nanoemulsions and their stability. It has been observed the importance of the HLB number of the surfactants mixture in order to obtain small-sized stable nanoemulsions. Surface response graphic shows that (OL-OT)/T80 ratio is a significant parameter in the mean diameter of the nanoemulsions. A minimum diameter is obtained for a (OL-OT)/T80 ratio 45/55 due to the fact that ratio is near the preferred HLB of the oil mixture and the emulsification path contains a wide liquid crystal monophasic region with all the oil incorporated in the structure. Diameters of 19 nm for carvacrol/MCT ratio of 30/70 or diameters of 30 nm for ratios of 45/55 with high stability values presented a good potential to be incorporated into edible films in the future. Regarding nanoemulsions stability an optimum value is also observed for a carvacrol/MCT ratio. The addition of another carrier oil as olive oil instead of MCT showed an improvement of the nanoemulsions stability against Ostwald ripening, probably due to the smaller solubility of olive oil. The use of olive oil does not significantly change the diameter of the nanoemulsion.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028, Spain
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028, Spain
| | - Susana Vilchez
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Carme González
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028, Spain
| |
Collapse
|
47
|
Baghi F, Ghnimi S, Dumas E, Chihib NE, Gharsallaoui A. Nanoemulsion-Based Multilayer Films for Ground Beef Preservation: Antimicrobial Activity and Physicochemical Properties. Molecules 2023; 28:molecules28114274. [PMID: 37298757 DOI: 10.3390/molecules28114274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to improve the physical, mechanical, and biological properties of a monolayer pectin (P) film containing nanoemulsified trans-Cinnamaldehyde (TC) by incorporating it between inner and outer layers of ethylcellulose (EC). The nanoemulsion had an average size of 103.93 nm and a zeta potential of -46 mV. The addition of the nanoemulsion increased the opacity of the film, reduced its moisture absorption capacity, and improved its antimicrobial activity. However, the tensile strength and elongation at break of the pectin films decreased after the incorporation of nanoemulsions. Multilayer films (EC/P/EC) showed a higher resistance to breaking and better extensibility compared to monolayer films. The antimicrobial activity of both mono and multilayer films was effective in inhibiting the growth of foodborne bacteria during storage of ground beef patties at 8 °C for 10 days. This study suggests that biodegradable antimicrobial multilayer packaging films can be effectively designed and applied in the food packaging industry.
Collapse
Affiliation(s)
- Fatemeh Baghi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
- Higher Institute of Agriculture and Agri-Food Rhone-Alpes, ISARA, 23 Rue Jean Baldassini, F-69007 Lyon, France
| | - Sami Ghnimi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
- Higher Institute of Agriculture and Agri-Food Rhone-Alpes, ISARA, 23 Rue Jean Baldassini, F-69007 Lyon, France
| | - Emilie Dumas
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
| | - Nour-Eddine Chihib
- University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207, UMET-Unité Matériaux et Transformations, F-59000 Lille, France
| | - Adem Gharsallaoui
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
| |
Collapse
|
48
|
Zduńczyk W, Tkacz K, Modzelewska-Kapituła M. The Effect of Superficial Oregano Essential Oil Application on the Quality of Modified Atmosphere-Packed Pork Loin. Foods 2023; 12:foods12102013. [PMID: 37238830 DOI: 10.3390/foods12102013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
During meat storage, changes in the meat colour occur, making it less intensive and red. The present study was aimed at investigating the effect of oregano EO applied directly on the surface of fresh pork on its quality, with a special emphasis on the colour. In the study, an oregano essential oil in concentrations of 0.5% and 1.0% (v/v) was used on the surface of pork loins (1.5% v/w) packed in a modified atmosphere during 15-d storage at 4 °C. The application of oregano EO in the concentration of 1.0% increased lightness and hue and decreased redness compared to the control, whereas the concentration of 0.5% did not affect the pork colour. EO did not affect pH, free water content, purge and cooking losses, cooked meat juiciness and tenderness; however, it gave the meat a distinctive herbal aroma and taste. The antimicrobial effect of 1% EO was noted only on the 15th day. Therefore, the application of oregano essential oil is not recommended to protect the colour of raw pork nor to prolong its shelf-life; however, it might be used to obtain a new product with a specific herbal aroma and taste, with modifications in water-holding capacity of the meat.
Collapse
Affiliation(s)
- Weronika Zduńczyk
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
| | - Katarzyna Tkacz
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
| | - Monika Modzelewska-Kapituła
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
| |
Collapse
|
49
|
Li XL, Shen Y, Hu F, Zhang XX, Thakur K, Rengasamy KRR, Khan MR, Busquets R, Wei ZJ. Fortification of polysaccharide-based packaging films and coatings with essential oils: A review of their preparation and use in meat preservation. Int J Biol Macromol 2023; 242:124767. [PMID: 37164134 DOI: 10.1016/j.ijbiomac.2023.124767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
As the demand for botanical food additives and eco-friendly food packaging materials grows, the use of essential oils, edible biodegradable films and coatings are becoming more popular in packaging. In this review, we discussed the recent research trends in the use of natural essential oils, as well as polysaccharide-based coatings and films: from the composition of the substrates to preparing formulations for the production of film-forming technologies. Our review emphasized the functional properties of polysaccharide-based edible films that contain plant essential oils. The interactions between essential oils and other ingredients in edible films and coatings including polysaccharides, lipids, and proteins were discussed along with effects on film physical properties, essential oil release, their active role in meat preservation. We presented the opportunities and challenges related to edible films and coatings including essential oils to increase their industrial value and inform the development of edible biodegradable packaging, bio-based functional materials, and innovative food preservation technologies.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE, Surrey, England, the United Kingdom of Great Britain and Northern Ireland
| | - Yi Shen
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Fei Hu
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Xiu-Xiu Zhang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rosa Busquets
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
50
|
Zeng Z, Yang YJ, Tu Q, Jian YY, Xie DM, Bai T, Li SS, Liu YT, Li C, Wang CX, Liu AP. Preparation and characterization of carboxymethyl chitosan/pullulan composite film incorporated with eugenol and its application in the preservation of chilled meat. Meat Sci 2023; 198:109085. [PMID: 36640716 DOI: 10.1016/j.meatsci.2022.109085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023]
Abstract
To solve the problem of easy spoilage of chilled meat during storage, we fabricated a novel composite film using carboxymethyl chitosan (CMCS)/pullulan (Pul)/eugenol (E) by casting method. The results showed that the mechanical properties of the films were better when the CMCS/Pul ratio was 2.5/2.5. The Fourier transform infrared spectroscopy (FTIR) results showed that intermolecular hydrogen bonds were formed among E, CMCS, and Pul, which was consistent with the rheological test results. Scanning electron microscopic (SEM) images showed that eugenol was well dispersed in the CMCS/Pul matrix. The addition of eugenol significantly increased the antibacterial properties and antioxidant properties. Moreover, when 5% eugenol was added, the water vapor permeability (WVP) of the film reduced to 2.41 × 10-11 g/m·s·Pa. Finally, the freshness of the chilled meat wrapped with the eugenol-containing composite film was prolonged, thereby offering a potential alternative to synthetic materials.
Collapse
Affiliation(s)
- Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yu-Jing Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qian Tu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yu-Ying Jian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Da-Ming Xie
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Shan-Shan Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yun-Tao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Cai-Xia Wang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ai-Ping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|