1
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Liu C, Xu Q, Ma J, Wang S, Li J, Mao X. Ultrasonic cavitation induced Vibrio parahaemolyticus entering an apoptosis-like death process through SOS response. ULTRASONICS SONOCHEMISTRY 2024; 103:106771. [PMID: 38245921 PMCID: PMC10830854 DOI: 10.1016/j.ultsonch.2024.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
As an effective non-thermal sterilization method, ultrasound remains at the level of passive bacterial death despite the initial understanding of its sterilization mechanism. Here, we present the perspective that bacteria can choose to actively enter an apoptosis-like death state in response to external ultrasonic stress. In this study, Vibrio parahaemolyticus exhibited apoptotic markers such as phosphatidylserine ectropion and activated caspases when subjected to ultrasound stress. Additionally, the accumulation of reactive oxygen species (ROS) and enhanced calcium signaling were observed. Further transcriptomic analysis was conducted to investigate the regulatory mechanism of the SOS response in Vibrio parahaemolyticus during an apoptosis-like state. The results showed that the genes encoding the citrate cycle were down-regulated in Vibrio parahaemolyticus cells adapted to ultrasonic stress, leading to an apoptosis-like state and a decrease in production capacity and ability to catabolize carbon dioxide. Furthermore, the level of oxidized glutathione increased, suggesting that the bacteria were engaged in various anti-oxidative stress responses, ultimately leading to apoptosis. Moreover, the ultrasound field activated the regulatory factor CsrA, which facilitates stress survival as cells transition from rapid growth to an apoptotic state through a stringent response and catabolic inhibition system. Parallel reaction monitoring (PRM) revealed that the expression of certain key SOS proteins in Vibrio parahaemolyticus was up-regulated following ultrasound treatment, resulting in a gradual adaptation of the cells to external stress and ultimately leading to active cell death. In conclusion, the biological lethal effect of ultrasound treatment is not solely a mechanical cell necrosis process as traditionally viewed, but also a programmed cell death process regulated by cellular adaptation. This enriched the biological effect pathway of ultrasound sterilization.
Collapse
Affiliation(s)
- Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Qi Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jiaqi Ma
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
3
|
Faleye OS, Lee JH, Lee J. Selected flavonoids exhibit antibiofilm and antibacterial effects against Vibrio by disrupting membrane integrity, virulence and metabolic activities. Biofilm 2023; 6:100165. [PMID: 38034415 PMCID: PMC10681883 DOI: 10.1016/j.bioflm.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Vibrio parahaemolyticus is a high-risk foodborne pathogen associated with raw or undercooked seafoods and its biofilm forming potential has become a threat to food safety and economic values. Hence, this study aims to examine the antibacterial and antibiofilm activities as well as virulence inhibitory effects of selected flavonoids against V. parahaemolyticus. Out of the sixteen flavonoid derivatives, 6-aminoflavone (6-AF), 3,2-dihydroxyflavone (3,2-DHF) and 2,2-dihydroxy-4-methoxybenzophenone (DHMB) were found as active biofilm inhibitors. 3,2-DHF and DHMB had minimum inhibitory concentrations of 20 and 50 μg/mL respectively against Vibrio planktonic cells and displayed superior antibacterial activities to standard controls. Also, they disrupted preformed biofilms and suppressed virulence properties including motilities, cell hydrophobicity and aggregation. They impaired iron acquisition mechanism and hemolysin production at sub-MICs as supported by transcriptomic studies. Interestingly, the flavonoids interfered with the metabolic activity, cell division and membrane permeability to exert antibiofilm and antibacterial activities. 6-AF and 3,2-DHF were non-toxic in the C. elegans model and showed excellent capacity to protect shrimps from biodeterioration. Furthermore, the flavonoids inhibited biofilm formation by V. harveyi, Staphylococcus aureus and Salmonella typhimurium and the mixed-species biofilm with Vibrio. This study discovered flavonoid derivatives, especially 3,2-DHF as potential bioactive compounds capable of offering protection from risks associated with biofilm formation by V. parahaemolyticus and other food pathogens.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
4
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Yu W, Guo J, Liu Y, Xue X, Wang X, Wei L, Ma J. Potential Impact of Combined Inhibition by Bacteriocins and Chemical Substances of Foodborne Pathogenic and Spoilage Bacteria: A Review. Foods 2023; 12:3128. [PMID: 37628127 PMCID: PMC10453098 DOI: 10.3390/foods12163128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, food safety caused by foodborne pathogens and spoilage bacteria has become a major public health problem worldwide. Bacteriocins are a kind of antibacterial peptide synthesized by microbial ribosomes, and are widely used as food preservatives. However, when used individually bacteriocins may have limitations such as high cost of isolation and purification, narrow inhibitory spectrum, easy degradation by enzymes, and vulnerability to complex food environments. Numerous studies have demonstrated that co-treatment with bacteriocins and a variety of chemical substances can have synergistic antibacterial effects on spoilage microorganisms and foodborne pathogens, effectively prolonging the shelf life of food and ensuring food safety. Therefore, this paper systematically summarizes the synergistic bacteriostatic strategies of bacteriocins in combination with chemical substances such as essential oils, plant extracts, and organic acids. The impacts of bacteriocins when used individually and in combination with other chemical substances on different food substrates are clarified, and bacteriocin-chemical substance compositions that enhance antibacterial effectiveness and reduce the potential negative effects of chemical preservatives are highlighted and discussed. Combined treatments involving bacteriocins and different kinds of chemical substances are expected to be a promising new antibacterial method and to become widely used in both the food industry and biological medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (W.Y.); (J.G.); (Y.L.); (X.X.); (X.W.); (L.W.)
| |
Collapse
|
6
|
Metekia WA, Ulusoy BH. Antimicrobial activity of Spirulina platensis extract on total mesophilic and psychrophilic bacteria of fresh tilapia fillet. Sci Rep 2023; 13:13081. [PMID: 37567905 PMCID: PMC10421913 DOI: 10.1038/s41598-023-40260-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Spirulina platensis has a wide range of activities, notably antibacterial property against food pathogens. This study investigates the antibacterial activity of S. platensis extract on Total Mesophilic and Psychrophilic Aerobic Bacteria. The results were compared using statistical analysis and the predicted model values using artificial intelligence-based models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) Models. The extraction of spirulina was done by using the freeze-thaw method with a concentration of 0.5, 1 and 5% w/v. Before the application of the extract, initial microbial load of fillets was analyzed the and the results were used as control. After application analysis was performed at 1, 24 and 48 h of storage at 4 °C. Based on the statistical analysis result the S. platensis extracts' antimicrobial activity over TMAB of fresh tilapia fish fillets at 1, 24 and 48 h was using EA from 2.5 log10 CFU/g during the control stage to 1.8, 1.1 and 0.7 log10 CFU/g respectively whereas EB and EC was from 2.1 and 2.2 log10 CFU/g at control to 1.5, 0.8, 0.5 log10 CFU/g and 1.23, 0.6 and 0.32 log10 CFU/g respectively at the specified hour interval. Similarly, the three extracts over TPAB were from 2.8 log10 CFU/g at control time to 2.1, 1.5 and 0.9 in EA, while using EB reduces from 2.8 log10 CFU/g to 1.9, 1.3 and 0.8 log10 CFU/g at 1, 24 and 48 h respectively. Although EC presented the reduction from 1.9 log10 CFU/g to 1.4, 1 and 0.5 log10 CFU/g. This was supported by ANN and ANFIS models prediction.
Collapse
Affiliation(s)
- Wubshet Asnake Metekia
- Ethiopian Ministry of Agriculture, Food and Nutrition Office, Food Safety and Quality Desk, P. O. Box. 62347, Addis Ababa, Ethiopia.
| | - Beyza Hatice Ulusoy
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Near East University, 99138, Nicosia, Cyprus
| |
Collapse
|
7
|
Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Heteroprotein complex between soy protein isolate and lysozyme: Protein conformation, lysozyme activity, and structural characterization. Food Chem 2023; 411:135509. [PMID: 36682167 DOI: 10.1016/j.foodchem.2023.135509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/31/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Heteroprotein complexes are formed by electrostatic interactions of oppositely charged proteins in a purely aqueous environment. Understanding the relationship between their structural and functional properties will contribute to their tailor-made applications. Therefore, this study investigated the protein conformation, assembling structure, and enzyme activity of soy protein isolate/lysozyme (SPI/LYS) complexes at mass ratios of 2:1 (soluble complex) and 1:1.3 (stoichiometric ratio). Electrostatic complexation increased the surface hydrophobicity of complexes. Their surface hydrophobicity decreased with increasing NaCl concentrations and reached the theoretical values at the critical salt concentration of 200 mM NaCl. Electrostatic complexation did not decrease the LYS activity (∼43,000 units/mg). SPI/LYS complexes exhibited flocculated structures in which the two proteins were unevenly distributed; these were typical amorphous complexes. High dilution disassembled these complexes over 5 μm into particles of ∼100 nm, and NaCl reduced the size of these particles. Immobilized water was detected in the complexes formed by particle flocculation.
Collapse
|
9
|
Ghorbani Tajani A, Bisha B. Effect of Food Matrix and Treatment Time on the Effectiveness of Grape Seed Extract as an Antilisterial Treatment in Fresh Produce. Microorganisms 2023; 11:microorganisms11041029. [PMID: 37110451 PMCID: PMC10142837 DOI: 10.3390/microorganisms11041029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Listeriosis outbreaks were associated with contaminated fruits and vegetables, including cantaloupe, apples, and celery. Grape seed extract (GSE) is a natural antimicrobial with potential for reducing Listeria monocytogenes contamination in food. This study assessed the effectiveness of GSE to reduce L. monocytogenes on fresh produce and the impact of food matrices on its antilisterial activity. GSE showed MIC values of 30-35 μg/mL against four Listeria strains used in this study. A total of 100 g portions of cantaloupe, apples, and celery were inoculated with L. monocytogenes and treated with 100-1000 μg/mL of GSE for 5 or 15 min. Results were analyzed using Rstudio and a Tukey's test. Treated produce had significantly lower L. monocytogenes counts than the control samples (p-value < 0.05). The inhibition was significantly higher on apples and lowest on cantaloupe. Moreover, a 15 min treatment was found to be more effective than a 5 min treatment in reducing L. monocytogenes on all produce types. The reduction in L. monocytogenes levels varied between 0.61 and 2.5 log10 CFU reduction, depending on the treatment concentration, duration, and produce matrix. These findings suggest that GSE is an effective antilisterial treatment for fresh produce, with varying levels of effectiveness depending on the food matrix and treatment time.
Collapse
Affiliation(s)
| | - Bledar Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
10
|
Castellano P, Melian C, Burgos C, Vignolo G. Bioprotective cultures and bacteriocins as food preservatives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:275-315. [PMID: 37722775 DOI: 10.1016/bs.afnr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food preservation technologies face the challenge of extending product shelf life applying different factors to prevent the microbiological spoilage of food and inhibit/inactivate food borne pathogens maintaining or even enhancing its quality. One such preservation strategy is the application of bacteriocins or bacteriocin-producer cultures as a kind of food biopreservation. Bacteriocins are ribosomally synthesized small polypeptide molecules that exert antagonistic activity against closely related and unrelated bacteria without harming the producing strain by specific immunity proteins. This chapter aims to contribute to current knowledge about innovative natural preservative agents and their application in the food industry. Specifically, its purpose is to analyze the classification of bacteriocins from lactic acid bacteria (LAB), desirable characteristics of bacteriocins that position them in a privileged place in food biopreservation technology, their success story as well as the bacteriocinogenic LAB in various food systems. Finally, challenges and barrier strategies used to enhance the efficiency of the bacteriocins antimicrobial effect are presented in this chapter.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Carla Burgos
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
11
|
A Systematic Quantitative Determination of the Antimicrobial Efficacy of Grape Seed Extract against Foodborne Bacterial Pathogens. Foods 2023; 12:foods12050929. [PMID: 36900445 PMCID: PMC10001079 DOI: 10.3390/foods12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Concerns regarding the role of antimicrobial resistance (AMR) in disease outbreaks are growing due to the excessive use of antibiotics. Moreover, consumers are demanding food products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics. Grape seed extract (GSE) is isolated from wine industry waste and is an interesting source of natural antimicrobials, especially when aiming to increase sustainable processing. The aim of this study was to obtain a systematic understanding of the microbial inactivation efficacy/potential of GSE against Listeria monocytogenes (Gram-positive), Escherichia coli and Salmonella Typhimurium (Gram-negative) in an in vitro model system. More specifically, for L. monocytogenes, the effects of the initial inoculum concentration, bacterial growth phase and absence of the environmental stress response regulon (SigB) on the GSE microbial inactivation potential were investigated. In general, GSE was found to be highly effective at inactivating L. monocytogenes, with higher inactivation achieved for higher GSE concentrations and lower initial inoculum levels. Generally, stationary phase cells were more resistant/tolerant to GSE as compared to exponential phase cells (for the same inoculum level). Additionally, SigB appears to play an important role in the resistance of L. monocytogenes to GSE. The Gram-negative bacteria under study (E. coli and S. Typhimurium) were less susceptible to GSE as compared to L. monocytogenes. Our findings provide a quantitative and mechanistic understanding of the impact of GSE on the microbial dynamics of foodborne pathogens, assisting in the more systematic design of natural antimicrobial-based strategies for sustainable food safety.
Collapse
|
12
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
13
|
Bioactive Compounds from Fruits as Preservatives. Foods 2023; 12:foods12020343. [PMID: 36673435 PMCID: PMC9857965 DOI: 10.3390/foods12020343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The use of additives with preservative effects is a common practice in the food industry. Although their use is regulated, natural alternatives have gained more attention among researchers and professionals in the food industry in order to supply processed foods with a clean label. Fruits are essential components in a healthy diet and have also been associated with improved health status and a lower risk of developing diseases. This review aims to provide an overview of the main bioactive compounds (polyphenols, betalain, and terpenes) naturally found in fruits, their antioxidant and antimicrobial activity in vitro, and their preservative effect in different foods. Many extracts obtained from the skin (apple, grape, jabuticaba, orange, and pomegranate, for instance), pulp (such as red pitaya), and seeds (guarana, grape, and jabuticaba) of fruits are of great value due to the presence of multiple compounds (punicalagin, catechin, gallic acid, limonene, β-pinene, or γ-terpinene, for instance). In terms of antioxidant activity, some fruits that stand out are date, jabuticaba, grape, and olive, which interact with different radicals and show different mechanisms of action in vitro. Antimicrobial activity is observed for natural extracts and essential oils (especially from citrus fruits) that limit the growth of many microorganisms (Bacillus subtilis, Escherichia coli, Penicillium digitatum, and Pseodomonas aeruginosa, for instance). Studies in foods have revealed that the use of extracts or essential oils as free or encapsulated forms or incorporated into films and coatings can inhibit microbial growth, slow oxidative reactions, reduce the accumulation of degradative products, and also preserve sensory attributes, especially with films and coatings. Future studies could focus on the advances of extracts and essential oils to align their use with the development of healthier foods (especially for meat products) and explore the inhibition of spoilage microorganisms in dairy products, for instance.
Collapse
|
14
|
Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, Sonne C, Ma NL. Application of antimicrobial, potential hazard and mitigation plans. ENVIRONMENTAL RESEARCH 2022; 215:114218. [PMID: 36049514 PMCID: PMC9422339 DOI: 10.1016/j.envres.2022.114218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Meng Shien Goh
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Amirah Alias
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Kah Wei Chin
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tiong Hui Ling Michelle
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Nyuk Ling Ma
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
15
|
Bernardo YAA, do Rosario DKA, Mutz YS, Castro VS, Conte‐Junior CA. Optimizing
Escherichia coli
O157
:
H7
inactivation in goat's milk by thermosonication. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yago A. A. Bernardo
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF), Vital Brazil Filho Niterói Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Denes K. A. do Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Department of Food Engineering, Center for Agrarian Sciences and Engineering Federal University of Espírito Santo (UFES), Alto Universitário, S/N, Guararema Alegre Brazil
| | - Yhan S. Mutz
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Vinícius S. Castro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Carlos A. Conte‐Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF), Vital Brazil Filho Niterói Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| |
Collapse
|
16
|
Pereira WA, Mendonça CMN, Urquiza AV, Marteinsson VÞ, LeBlanc JG, Cotter PD, Villalobos EF, Romero J, Oliveira RPS. Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. Microorganisms 2022; 10:microorganisms10091705. [PMID: 36144306 PMCID: PMC9503917 DOI: 10.3390/microorganisms10091705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Carlos Miguel N. Mendonça
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
- Correspondence:
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, El Libano 5524, Santiago 783090, Chile
| | - Ricardo P. S. Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
17
|
Li L, Baima C, Jiang J, Liu Z, Wang J, Chen XD, Wu P. In vitro gastric digestion and emptying of tsampa under simulated elderly and young adult digestive conditions using a dynamic stomach system. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Synergistic effect of UV-C LED irradiation and PLA/PBAT-based antimicrobial packaging film on fresh-cut vegetables. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Liu CY, Tsai GJ, Pan CL, Shang KC, Tseng HJ, Chai HJ, Hsiao HI. Dual bacterial strains TTI for monitoring fish quality in food cold chain. J Food Sci 2022; 87:3562-3572. [PMID: 35789483 DOI: 10.1111/1750-3841.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022]
Abstract
Most microbial time-temperature indicators (TTIs) considered only one spoilage strain. This research compared single and dual spoilage strains-based microbial TTI for quality changes of chilled grouper fish (Epinephelus fuscoguttatus x E. lanceolatus) fillet products during distribution. The next-generation sequencing (NGS) and traditional plate count approach showed that Pseudomonas fragi and Vibrio parahaemolyticus were specific spoilage bacteria at 7 and 15°C. A dual-strain TTI response provides more accurate results than a single-strain TTI and provides an irreversible color change from yellow to reddish-brown, showing levels of fish freshness. The microbial TTI comprises fish spoilage bacteria strains with 3 log CFU/ml, a nutrient broth supplemented with 2% NaCl as a medium, and phenol red with 0.25 mg/ml as a pH indicator. Overall, this study points to the applicability of a dual-strain microbial TTI as a valuable tool for monitoring fish quality changes during cold chain break condition.
Collapse
Affiliation(s)
- Chia-Yu Liu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Chorng-Liang Pan
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Kuo-Chung Shang
- Department of Transportation Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsiang-Jung Tseng
- Research and Development Department, Plastic Industry Development Center, Taichung, Taiwan
| | - Huey-Jine Chai
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| |
Collapse
|
20
|
Chen L, Zhao X, Li R, Yang H. Integrated metabolomics and transcriptomics reveal the adaptive responses of Salmonella enterica serovar Typhimurium to thyme and cinnamon oils. Food Res Int 2022; 157:111241. [DOI: 10.1016/j.foodres.2022.111241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
|
21
|
NISIN and gilaburu (Viburnum opulus L.) combination is a cost-effective way to control foodborne Staphylococcus aureus. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Wen Y, Li W, Su R, Yang M, Zhang N, Li X, Li L, Sheng J, Tian Y. Multi-Target Antibacterial Mechanism of Moringin From Moringa oleifera Seeds Against Listeria monocytogenes. Front Microbiol 2022; 13:925291. [PMID: 35756047 PMCID: PMC9213813 DOI: 10.3389/fmicb.2022.925291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate] is an isothiocyanate from Moringa oleifera seeds. It is the bioactivated form of the glucosinolate precursor glucomoringin with various health benefits. However, few studies have examined the antibacterial activity of moringin. This study aimed to investigate the antimicrobial activity and mechanism of moringin against Listeria monocytogenes. The minimum inhibitory concentration (MIC), and growth curves were used to evaluate the bacteriostatic effect of moringin against L. monocytogenes. Transcriptome analysis by RNA sequencing was performed to elucidate the underlying mechanism of moringin against L. monocytogenes. The transcriptome results were validated. The results showed that moringin inhibited the growth of L. monocytogenes with a MIC of 400 μM. RNA sequencing results showed that the differences in the expression of genes related to the cell wall and membrane biosynthesis, phosphotransferase system (PTS), oxidative stress, energy metabolism, and DNA binding were significantly affected. As with the transcriptome results, the results of the mechanism verification found that moringin damaged the integrity of the cell wall and cell membrane, stimulated oxidative stress, interfered with energy metabolism and DNA replication, and finally led to the death of L. monocytogenes. The present study provides evidence that moringin exhibits strong antimicrobial activity against L. monocytogenes and insight into its potential mechanism.
Collapse
Affiliation(s)
- Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Wenyun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Rongzhen Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Nan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ximing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
23
|
Liu G, Nie R, Liu Y, Mehmood A. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154058. [PMID: 35217045 DOI: 10.1016/j.scitotenv.2022.154058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Bacteriocins are ribosomally synthesized peptides to inhibit food spoilage bacteria, which are widely used as a kind of food biopreservation. The role of bacteriocins in therapeutics and food industries has received increasing attention across a number of disciplines in recent years. Despite their advantages as alternative therapeutics over existing strategies, the application of bacteriocins suffers from shortcomings such as the high isolation and purification cost, narrow spectrum of activity, low stability and solubility and easy enzymatic degradation. Previous studies have studied the synergistic or additive effects of bacteriocins when used in combination with other hurdles including physics, chemicals, and microbes. These combined treatments reduce the adverse effects of chemical additives, extending the shelf life of food products while guaranteeing food quality. This review highlights the advantages and disadvantages of bacteriocins in food preservation. It then reviews the combined effect and mechanism of different hurdles and bacteriocins in enhancing food preservation in detail. The combination of bacterioncins and other hurdles provide potential approaches for maintaining food quality and food safety.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yangshuo Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
24
|
Hossain MI, Rahaman Mizan MF, Toushik SH, Roy PK, Jahid IK, Park SH, Ha SD. Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Yap PG, Lai ZW, Tan JS. Bacteriocins from lactic acid bacteria: purification strategies and applications in food and medical industries: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00227-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Bacteriocins are generally defined as ribosomally synthesized peptides, which are produced by lactic acid bacteria (LAB) that affect the growth of related or unrelated microorganisms. Conventionally, the extracted bacteriocins are purified by precipitation, where ammonium sulphate is added to precipitate out the protein from the solution.
Main text
To achieve the high purity of bacteriocins, a combination with chromatography is used where the hydrophobicity and cationic properties of bacteriocins are employed. The complexity column inside the chromatography can afford to resolve the loss of bacteriocins during the ammonium sulphate precipitation. Recently, an aqueous two-phase system (ATPS) has been widely used in bacteriocins purification due to the several advantages of its operational simplicity, mild process conditions and versatility. It reduces the operation steps and processing time yet provides high recovery products which provide alternative ways to conventional methods in downstream processing. Bacteriocins are widely approached in the food and medical industry. In food application, nisin, which is produced by Lactococcus lactis subsp. has been introduced as food preservative due to its natural, toxicology safe and effective against the gram-positive bacteria. Besides, bacteriocins provide a board range in medical industries where they are used as antibiotics and probiotics.
Short conclusion
In summary, this review focuses on the downstream separation of bacteriocins from various sources using both conventional and recent ATPS techniques. Finally, recommendations for future interesting areas of research that need to be pursued are highlighted.
Collapse
|
26
|
Zhao L, Poh CN, Wu J, Zhao X, He Y, Yang H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Tan J, Cui P, Ge S, Cai X, Li Q, Xue H. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit: Modeling, optimization, purification, and characterization. ULTRASONICS SONOCHEMISTRY 2022; 84:105966. [PMID: 35247682 PMCID: PMC8897718 DOI: 10.1016/j.ultsonch.2022.105966] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 05/24/2023]
Abstract
Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit was modeled by response surface methodology (RSM) and artificial neural network (ANN), and optimized using genetic algorithm coupled with ANN (GA-ANN). Statistical analysis showed that the models obtained by RSM and ANN could accurately predict the Cornus officinalis polysaccharides (COPs) yield. However, ANN prediction was more accurate than RSM. The optimum extraction parameters to achieve the highest COPs yield (7.85 ± 0.09)% was obtained at the ultrasound power of 350 W, extraction temperature of 51 ℃, liquid-to-solid ratio of 17 mL/g, and extraction time of 38 min. Subsequently, the crude COPs were further purified via DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous fraction (COPs-4-SG, 33.64 kDa) that contained galacturonic acid, arabinose, mannose, glucose, and galactose in a molar ratio of 34.82:14.19:6.75:13.48:12.26. The structure of COPs-4-SG was also characterized with UV-vis, fourier-transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), Congo-red test, and circular dichroism (CD). The findings provide a feasible way for the extraction, purification, and optimization of polysaccharides from plant resources.
Collapse
Affiliation(s)
- Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengshan Cui
- College of Quality and Technical Supervision, Hebei University, No. 2666 Qiyi East Road, Lianchi District, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
28
|
Abdel-Khalek HH, Mattar ZA. Biological activities of Egyptian grape and mulberry by-products and their potential use as natural sources of food additives and nutraceuticals foods. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [PMCID: PMC8776558 DOI: 10.1007/s11694-022-01289-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Bastarrachea LJ, Britt DW, Demirci A. Development of Bioactive Solid Support for Immobilized Lactococcus lactis Biofilms in Bioreactors for the Production of Nisin. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Jia Z, Xu Y, Wang J, Song R. Antioxidant activity and degradation kinetics of astaxanthin extracted from Penaeus sinensis (Solenocera crassicornis) byproducts under pasteurization treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Zhang X, Sun J, Li P, Zeng F, Wang H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res 2021; 254:126912. [PMID: 34742105 DOI: 10.1016/j.micres.2021.126912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Sapindus saponins extracted from Sapindus mukorossi Gaertn. have been reported to exert antibacterial activity against Cutibacterium acnes (C. acnes). However, there are no reports about their potentials against its biofilm, which is a major contributor to the antibiotic resistance of C. acnes. This study aimed to investigate the synergistic antibiofilm activity and action of the combination of Sapindoside A and B (SAB) against C. acnes. SAB with sub-MICs significantly inhibited the early-formed and mature biofilm of C. acnes and decreased the adhesion and cell surface hydrophobicity (p < 0.05). Also, SAB greatly reduced the production of exopolysaccharide and lipase (p < 0.05), and the binding mode of SAB and lipase was predicted by molecular docking, via hydrogen bonds and hydrophobic interactions. Biofilm observed with electron microscopies further confirmed the high antibiofilm activity of SAB against C. acnes. Furthermore, a significant down-regulation of biofilm biosynthesis-associated genes was observed. The combination index explained the synergistic effects of SAB leading to the above results, and the contribution of SA was greater than that of SB. The current results showed that SAB had synergistic antibiofilm activity against C. acnes, and the Sapindoside A played a major role, indicating that SAB could be a natural antiacne additive against C. acnes biofilm-associated infections.
Collapse
Affiliation(s)
- Min-Ping Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yu-Liang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
33
|
Zhou J, Sheng L, Lv R, Liu D, Ding T, Liao X. Application of a 360-Degree Radiation Thermosonication Technology for the Inactivation of Staphylococcus aureus in Milk. Front Microbiol 2021; 12:771770. [PMID: 34803991 PMCID: PMC8602915 DOI: 10.3389/fmicb.2021.771770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Milk is easy to be contaminated by microorganisms due to its abundant nutrients. In this study, a 360-degree radiation thermosonication (TS) system was developed and utilized for the inactivation of Staphylococcus aureus in milk. The 360-degree radiation TS system-induced inactivation kinetics of S. aureus was fitted best by the Weibull model compared with biphasic and linear models. The treatment time, the exposure temperature, and the applied ultrasound power was found to affect the bactericidal efficacy of the 360-degree radiation TS system. Additionally, the TS condition of 200 W and 63°C for 7.5 min was successfully applied to achieve complete microbial inactivation (under the limit of detection value) in raw milk. The treatment of 360-degree radiation TS can enhance the zeta potential and decrease the average particle size of milk. It also exhibited better retainment of the proteins in milk compared with the ultrahigh temperature and conventional pasteurization processing. Therefore, the 360-degree radiation TS system developed in this study can be used as an alternative technology to assure the microbiological safety and retain the quality of milk, and the Weibull model could be applied for the prediction of the inactivation levels after exposure to this technology.
Collapse
Affiliation(s)
- Jianwei Zhou
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
| | - Lele Sheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ruiling Lv
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xinyu Liao
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Yu H, Liu Y, Yang F, Xie Y, Guo Y, Cheng Y, Yao W. Combined an acoustic pressure simulation of ultrasonic radiation and experimental studies to evaluate control efficacy of high-intensity ultrasound against Staphylococcus aureus biofilm. ULTRASONICS SONOCHEMISTRY 2021; 79:105764. [PMID: 34601447 PMCID: PMC8496304 DOI: 10.1016/j.ultsonch.2021.105764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
This study evaluated efficacy of high-intensity ultrasound (HIU) on controlling or stimulating Staphylococcus aureus biofilm. Acoustic pressure distribution on the surface of glass slide cultivated S. aureus biofilm was first simulated as a standardized parameter to reflect sono-effect. When the power of HIU was 240 W with acoustic pressure of -1.38×105 Pa, a reasonably high clearance rate of S. aureus biofilm was achieved (96.02%). As an all-or-nothing technique, the HIU did not cause sublethal or injury of S. aureus but inactivate the cell directly. A further evaluation of HIU-induced stimulation of biofilm was conducted at a low power level (i.e. 60 W with acoustic pressure of -6.91×104 Pa). The low-power-long-duration HIU treatment promoted the formation of S. aureus biofilm and enhanced its resistance as proved by transcriptional changes of genes in S. aureus, including up-regulations of rbf, sigB, lrgA, icaA, icaD, and down-regulation of icaR. These results indicate that the choose of input power is determined during the HIU-based cleaning and processing. Otherwise, the growth of S. aureus and biofilm formation are stimulated when treats by an insufficiently high power of HIU.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
35
|
Zhu J, Liu Z, Chen H, Liu H, Bao X, Li C, Chen L, Yu L. Designing and developing biodegradable intelligent package used for monitoring spoilage seafood using aggregation-induced emission indicator. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Ren B, Wu W, Soladoye OP, Bak KH, Fu Y, Zhang Y. Application of biopreservatives in meat preservation: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Baojing Ren
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
- Westa College Southwest University Chongqing 400715 China
| | - Wei Wu
- College of Animal Science and Technology Southwest University Chongqing 400715 China
| | - Olugbenga P. Soladoye
- Agriculture and Agri‐Food Canada Government of Canada Lacombe Research and Development Centre 6000 C&E Trail Lacombe AB T4L 1W1 Canada
| | - Kathrine H. Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health University of Veterinary Medicine, Vienna Veterinärplatz 1 Vienna 1210 Austria
| | - Yu Fu
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| |
Collapse
|
37
|
Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Cui H, Lu J, Li C, Lin L. Fabrication of phospholipid nanofibers containing eugenol@cationic starch nanoparticles against Bacillus cereus in beef. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Zhu Z, Zhang Y, Wang W, Huang Z, Wang J, Li X, Sun S. Structural characterisation and antioxidant activity of melanoidins from high‐temperature fermented apple. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zuoyi Zhu
- Institute of Quality and Standard for Agricultural Products Zhejiang Academy of Agricultural Science Hangzhou310021China
| | - Yu Zhang
- Institute of Quality and Standard for Agricultural Products Zhejiang Academy of Agricultural Science Hangzhou310021China
| | - Wei Wang
- Institute of Quality and Standard for Agricultural Products Zhejiang Academy of Agricultural Science Hangzhou310021China
| | - Zhongping Huang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou310014China
| | - Junhong Wang
- Institute of Quality and Standard for Agricultural Products Zhejiang Academy of Agricultural Science Hangzhou310021China
| | - Xue Li
- Institute of Quality and Standard for Agricultural Products Zhejiang Academy of Agricultural Science Hangzhou310021China
| | - Suling Sun
- Institute of Quality and Standard for Agricultural Products Zhejiang Academy of Agricultural Science Hangzhou310021China
| |
Collapse
|
40
|
Lou X, Zhai D, Yang H. Changes of metabolite profiles of fish models inoculated with Shewanella baltica during spoilage. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Zhou L, Wang Y. Physical and antimicrobial properties of zein and methyl cellulose composite films with plasticizers of oleic acid and polyethylene glycol. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110811] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Šimat V, Čagalj M, Skroza D, Gardini F, Tabanelli G, Montanari C, Hassoun A, Ozogul F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:55-118. [PMID: 34311904 DOI: 10.1016/bs.afnr.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contribution of food in promotion of health has become of most importance. The challenges that lie before the global food supply chain, such as climate changes, food contamination, and antimicrobial resistance may compromise food safety at international scale. Compounds with strong antimicrobial and antioxidant activity can be extracted from different natural and sustainable sources and may contribute to extend the shelf life of meat and seafood products, enhance food safety and enrich foods with additional biologically active and functional ingredients. This chapter describes the use of bioprotective cultures, essential oils, plant extracts, seaweed extracts and grape pomace compounds in production of value-added meat and seafood products with improved shelf life and safety, following the requests from the market and consumers.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
43
|
Characterization of the key taste compounds during bread oral processing by instrumental analysis and dynamic sensory evaluation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Wang J, Zhu K, Wang Y, Dai B, Liu S, Li Y. Moisture diffusion and shrinkage characteristics of broad bean during low-temperature vacuum drying. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1849277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jinshan Wang
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Kai Zhu
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Yabo Wang
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Baomin Dai
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Shengchun Liu
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Yanjie Li
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
45
|
Huang T, Tu Z, Shangguan X, Wang H, Zhang L, Bansal N. Characteristics of fish gelatin-anionic polysaccharide complexes and their applications in yoghurt: Rheology and tribology. Food Chem 2020; 343:128413. [PMID: 33268178 DOI: 10.1016/j.foodchem.2020.128413] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
In this study, the rheological and tribological properties of complex solutions comprising of fish gelatin (FG)-Arabic gum (AG), FG-xanthan gum (XG), and FG-κ-carrageenan (κC), respectively, were measured, as well as the effects of the complex on the physical properties of yoghurt. Results showed that with increased XG and κC concentrations, the viscosity of FG-XG and FG-κC complex solutions both increased. It was also found that the lubrication properties of FG-anionic polysaccharide (AP) solutions decreased with the increased AP contents. The applications of FG-AP complexes (FG:AP = 9:1) improved firmness, water holding capacity and viscosity of yoghurt by the formation of large aggregates, but gels were easily destroyed at high frequency. Moreover, compared with gelatin, FG-AP complexes made yoghurt better lubrication properties during low and medium sliding speed, especially for FG-XG complexes. Thus, FG-AP complexes have the potential to be applied in producing yoghurt with good quality.
Collapse
Affiliation(s)
- Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Zongcai Tu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Xinchen Shangguan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Drug Administration of Jiangxi Province, Nanchang, Jiangxi 330029, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lu Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Qld 4072, Australia.
| |
Collapse
|
46
|
Khelissa S, Chihib NE, Gharsallaoui A. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Arch Microbiol 2020; 203:465-480. [PMID: 33001222 DOI: 10.1007/s00203-020-02054-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 01/06/2023]
Abstract
Nisin is a small peptide produced by Lactococcus lactis ssp lactis that is currently industrially produced. This preservative is often used for growth prevention of pathogenic bacteria contaminating the food products. However, the use of nisin as a food preservative is limited by its low production during fermentation. This low production is mainly attributed to the multitude of parameters influencing the fermentation progress such as bacterial cells activity, growth medium composition (namely carbon and nitrogen sources), pH, ionic strength, temperature, and aeration. This review article focuses on the main parameters that affect nisin production by Lactococcus lactis bacteria. Moreover, nisin applications as a food preservative and the main strategies generally used are also discussed.
Collapse
Affiliation(s)
- Simon Khelissa
- UMR 8207-UMET-Unité Matériaux et Transformations, Univ Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Nour-Eddine Chihib
- UMR 8207-UMET-Unité Matériaux et Transformations, Univ Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | | |
Collapse
|
47
|
Potential of protein-prebiotic as protective matrices on the storage stability of vacuum-dried probiotic Lactobacillus casei. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Sun X, Zhang D, Zhao L, Shi B, Xiao J, Shi J, Zou X. Development of differential pulse voltammetric method for rapid quantification of total hydroxyl-sanshools in Sichuan Pepper. Lebensm Wiss Technol 2020; 130:109640. [DOI: 10.1016/j.lwt.2020.109640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|