1
|
Sánchez-Zúñiga K, Rivera-Méndez W, Campos-Boza S, Araya-Valverde E, Solano-Campos F, Vinas M. Factors influencing fumonisin B 1 contamination in maize: insights from two production regions in Costa Rica. Mycotoxin Res 2024; 40:641-649. [PMID: 39153044 DOI: 10.1007/s12550-024-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Maize (Zea mays L.) is an important cereal crop worldwide. Contaminated maize kernels pose a significant mycotoxin exposure risk for humans in Latin America. Fumonisins, the most prevalent mycotoxin in maize, typically occur during pre-harvest conditions leading to significant economic losses. Various factors, including weather conditions, may influence this contamination. This study aimed to determine the association between fumonisin B1 (FB1) contamination, prevalence of Fusarium verticillioides, weather conditions and kernel quality in the two primary maize production areas in Costa Rica (Brunca and Chorotega). All maize samples (100%) showed FB1 contamination, with higher concentrations in samples from Brunca region, consistent with the presence of F. verticilliodes. Weather conditions appeared to play an important role in this contamination, since Brunca region had the highest mean temperature and relative humidity after maize silking (R1) and the total monthly rainfall in this region was significantly higher during the last two months of maize cultivation (grain-filling and physiological maturity stages R3 to R6). Interestingly, this study found a negative correlation between grain damage and kernel contamination with FB1 and F. verticillioides. The concentration of mineral nutrients in kernels from both regions was largely similar. Most nutrients in kernels exhibited a negative correlation with FB1, particularly nitrogen. Zinc and phosphorus were the only nutrients in kernels showing a positive correlation with FB1 in samples from the Brunca region. The results highlight elevated levels of FB1 contamination in maize and contribute to a better understanding of pre-harvest factors influencing FB1 contamination in tropical conditions.
Collapse
Affiliation(s)
- Katherine Sánchez-Zúñiga
- Centro de Investigación en Biotecnología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San José, Costa Rica
| | - William Rivera-Méndez
- Centro de Investigación en Biotecnología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Stefany Campos-Boza
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San José, Costa Rica
| | - Emanuel Araya-Valverde
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, Pavas, San José, Costa Rica
| | | | - Maria Vinas
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
2
|
Hudu AR, Addy F, Mahunu GK, Abubakari A, Opoku N. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub-Saharan Africa. Food Sci Nutr 2024; 12:4489-4512. [PMID: 39055180 PMCID: PMC11266927 DOI: 10.1002/fsn3.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
The fungal genus Fusarium contains many important plant pathogens as well as endophytes of wild and crop plants. Globally, Fusarium toxins in food crops are considered one of the greatest food safety concerns. Their occurrence has become more pronounced in Africa in recent times. Among the major Fusarium mycotoxins with food and feed safety concerns, zearalenone is frequently detected in finished feeds and cereals in Africa. However, the impact of indigenous agricultural practices (pre- and postharvest factors) and food processing techniques on the prevalence rate of Fusarium species and zearalenone occurrence in food and feed have not been collated and documented systematically. This review studies and analyzes recent reports on zearalenone contamination in maize and other cereal products from Africa, including its fungi producers, agronomic and climate variables impacting their occurrences, preventive measures, removal/decontamination methods, and legislations regulating their limits. Reports from relevant studies demonstrated a high prevalence of F. verticillioides and F. graminearum as Africa's main producers of zearalenone. Elevated CO2 concentration and high precipitation may carry along an increased risk of zearalenone contamination in maize. African indigenous processing methods may contribute to reduced ZEA levels in agricultural products and foods. Most African countries do not know their zearalenone status in the food supply chain and they have limited regulations that control its occurrence.
Collapse
Affiliation(s)
- Abdul Rashid Hudu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Francis Addy
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| | - Gustav Komla Mahunu
- Department of Food Science and Technology, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Abdul‐Halim Abubakari
- Department of Horticulture, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Nelson Opoku
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| |
Collapse
|
3
|
Hou S, Ma J, Cheng Y, Wang Z, Wang H, Sun JH, Wang G, Jia A, Yan YX. Protective Mechanisms of Various Active Substances on Cell DNA Damage and Apoptosis Induced by Deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6651-6659. [PMID: 38501756 DOI: 10.1021/acs.jafc.3c09100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Deoxynivalenol (DON) is a secondary metabolite of fungi that is harmful to humans and animals. This study examined the protective effects of natural substances, including resveratrol, quercetin, vitamin E, vitamin C, and microbe-derived antioxidants (MA), on both human gastric mucosal cells (GES-1) and pig small intestinal epithelial cells (IPEC-1) when induced by DON. Cells were incubated with active substances for 3 h and then exposed to DON for 24 h. The oxidative stress index, cell cycle, and apoptosis were measured. As compared to cells treated only with DON, pretreatment with active substances improved the balance of the redox status in cells caused by DON. Specifically, quercetin, vitamin E, vitamin C, and MA showed the potential to alleviate the G2 phase cell cycle arrest effect that was induced by DON in both kinds of cells. It was observed that vitamin E and vitamin C can alleviate DON-induced apoptosis and the G2 phase cycle arrest effect mediated via the ATM-Chk 2-Cdc 25C and ATM-P53 signaling pathways in GES-1 cells. In IPEC-1 cells, vitamin C and MA can alleviate both DON-induced apoptosis and the G2 phase cycle arrest effect via the ATM-Chk 2-Cdc 25C signaling pathway. Different bioactive substances utilize different protective mechanisms against DON in interacting with different cells. The proper addition of vitamin E and vitamin C to food can neutralize the toxic effect of DON, while the addition of vitamin C and MA to animal feed can reduce the harm DON does to animals.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Demonstration Center of Food Quality and Safety Testing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Jian-He Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Guiping Wang
- Guangdong Haid Group Co. Limited, Guangzhou, Guangdong 511400, China
| | - Aiqing Jia
- Guangdong Haid Group Co. Limited, Guangzhou, Guangdong 511400, China
| | - Ya-Xian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Shi H, Li J, Zhao Y, Mao J, Wang H, Zhu J. Effect of Aspergillus flavus contamination on the fungal community succession, mycotoxin production and storage quality of maize kernels at various temperatures. Food Res Int 2023; 174:113662. [PMID: 37981378 DOI: 10.1016/j.foodres.2023.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Aspergillus flavus, a notorious saprobe and opportunistic plant pathogen, alters mycotoxin contamination and biochemical components in maize kernels during processing and storage, thereby reducing the possibilities of maize end use and compromising food safety. This study explored changes in mycotoxin production, fungal community succession and biochemical components in maize kernels stored at 20, 25 and 30 °C, exposed to A. flavus. Results showed that aflatoxin B1 concentration increased over time, reaching 4.88 μg/kg at 20 °C, 167.23 μg/kg at 25 °C and 349.64 μg/kg at 30 °C after 15 days of storage, whereas the zearalenone production was characterized by an increase followed by a decrease. Correspondingly, the number of molds gradually increased and reached a stable stage after 10 days. High-throughput sequencing of the internal transcribed spacer (ITS) revealed that Eurotium dominated the fungal communities, with A. flavus reaching maximum abundance in maize kernels stored at 30 °C for 15 days. Correlation analysis indicated that the relative abundance of A. flavus was significantly negatively correlated with the content of zein and moisture (P < 0.05). Moreover, the wet milling process of maize effectively eliminated the concentration of aflatoxin B1 and zearalenone from the starch. Pasting temperature and setback value of starch decreased while peak viscosity, final viscosity and breakdown value increased with storage. These findings indicate that interactions between the epiphytic fungal community and A. flavus at elevated storage temperatures aggravate both maize quality deterioration and mycotoxin contamination. Furthermore, they have a discernible impact on the pasting properties of starch. This insight informs strategies to control fungal infections during maize processing and storage.
Collapse
Affiliation(s)
- Honghui Shi
- School of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiaxin Li
- School of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yan Zhao
- School of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiangdi Mao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Junli Zhu
- School of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Chang J, Luo H, Li L, Zhang J, Harvey J, Zhao Y, Zhang G, Liu Y. Mycotoxin risk management in maize gluten meal. Crit Rev Food Sci Nutr 2023; 64:7687-7706. [PMID: 36995226 DOI: 10.1080/10408398.2023.2190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.
Collapse
Affiliation(s)
- Jinghua Chang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Lin Li
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Junnan Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Jagger Harvey
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Yueju Zhao
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
7
|
DON entry into the nucleus induces DNA damage, apoptosis and cycle arrest in GES-1 cells. Food Chem Toxicol 2022; 171:113531. [DOI: 10.1016/j.fct.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
|
8
|
Pascale M, Logrieco AF, Lippolis V, De Girolamo A, Cervellieri S, Lattanzio VMT, Ciasca B, Vega A, Reichel M, Graeber M, Slettengren K. Industrial-Scale Cleaning Solutions for the Reduction of Fusarium Toxins in Maize. Toxins (Basel) 2022; 14:toxins14110728. [PMID: 36355978 PMCID: PMC9695466 DOI: 10.3390/toxins14110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Grain cleaning is the most effective non-destructive post-harvest mitigation strategy to reduce high levels of mycotoxins on account of the removal of mold-infected grains and grain fractions with high mycotoxin content. In this study, the reduction in the concentration of some co-occurring Fusarium toxins in maize, namely deoxynivalenol (DON), zearalenone (ZEA) and fumonisins B1 and B2 (FBs), was evaluated at an industrial-scale level by mechanical removal (sieving and density separation) of dust, coarse, small, broken, shriveled and low-density kernels and/or optical sorting of defected kernels. Samples were dynamically collected according to the Commission Regulation No. 401/2006 along the entire process line. Mycotoxin analyses of water-slurry aggregate samples were performed by validated LC methods. Depending on the contamination levels in raw incoming maize, the overall reduction rates ranged from 36 to 67% for DON, from 67 to 87% for ZEA and from 27 to 67% for FBs. High levels of DON, ZEA and FBs were found in all rejected fractions with values, respectively, up to 3030%, 1510% and 2680%, compared to their content in uncleaned maize. Results showed that grain cleaning equipment based on mechanical and or optical sorting technologies can provide a significant reduction in Fusarium toxin contamination in maize.
Collapse
Affiliation(s)
- Michelangelo Pascale
- Institute of Food Sciences (ISA), National Research Council of Italy (CNR), 83100 Avellino, Italy
- Correspondence: (M.P.); (K.S.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Veronica M. T. Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Biancamaria Ciasca
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
9
|
Yang D, Ye Y, Sun J, Wang JS, Huang C, Sun X. Occurrence, transformation, and toxicity of fumonisins and their covert products during food processing. Crit Rev Food Sci Nutr 2022; 64:3660-3673. [PMID: 36239314 DOI: 10.1080/10408398.2022.2134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fumonisins comprise structurally related metabolites mainly produced by Fusarium verticillioides and Fusarium proliferatum. Contamination with fumonisins causes incalculable damage to the economy and poses a great risk to animal and human health. Fumonisins and their covert products are found in cereals and cereal products. Food processing significantly affects the degradation of toxins and the formation of covert toxins. However, studies on fumonisins and their covert mycotoxins remain inadequate. This review aims to summarize changes in fumonisins and the generation of covert fumonisins during processing. It also investigates the toxicity and determination methods of fumonisins and covert fumonisins, and elucidates the factors affecting fumonisins and their covert forms during processing. In addition to the metabolic production by plants and fungi, covert fumonisins are mainly produced by covalent or noncovalent binding, complexation, or physical entrapment of fumonisins with other substances. The toxicity of covert fumonisins is similar to that of free fumonisins and is a non-negligible hazard. Covert fumonisins are commonly found in food matrices, and methods to analyze them have yet to be improved. Food processing significantly affects the conversion of fumonisins to their covert toxins.
Collapse
Affiliation(s)
- Diaodiao Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Caihong Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Kumar P, Mahato DK, Gupta A, Pandey S, Paul V, Saurabh V, Pandey AK, Selvakumar R, Barua S, Kapri M, Kumar M, Kaur C, Tripathi AD, Gamlath S, Kamle M, Varzakas T, Agriopoulou S. Nivalenol Mycotoxin Concerns in Foods: An Overview on Occurrence, Impact on Human and Animal Health and Its Detection and Management Strategies. Toxins (Basel) 2022; 14:toxins14080527. [PMID: 36006189 PMCID: PMC9413460 DOI: 10.3390/toxins14080527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi that infect a wide range of foods worldwide. Nivalenol (NIV), a type B trichothecene produced by numerous Fusarium species, has the ability to infect a variety of foods both in the field and during post-harvest handling and management. NIV is frequently found in cereal and cereal-based goods, and its strong cytotoxicity poses major concerns for both human and animal health. To address these issues, this review briefly overviews the sources, occurrence, chemistry and biosynthesis of NIV. Additionally, a brief overview of several sophisticated detection and management techniques is included, along with the implications of processing and environmental factors on the formation of NIV. This review’s main goal is to offer trustworthy and current information on NIV as a mycotoxin concern in foods, with potential mitigation measures to assure food safety and security.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
- Department of Botany, University of Lucknow, Lucknow 226007, India
- Correspondence: (P.K.); (S.A.)
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (D.K.M.); (S.G.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Surabhi Pandey
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (C.K.)
| | - Arun Kumar Pandey
- Food Science and Technology, MMICT & BM(HM) Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Sreejani Barua
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Mandira Kapri
- Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), New Delhi 110016, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (C.K.)
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (D.K.M.); (S.G.)
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
- Correspondence: (P.K.); (S.A.)
| |
Collapse
|
11
|
Compression and Fungal Heat Production in Maize Bulk Considering Kernel Breakage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breakage in maize kernels and vertical pressure in grains lead to the uneven distribution of grain bulk density, which easily causes undesired problems in terms of grain storage. The objective of this study was, therefore, to determine the compression and heat production of the whole kernel (WK) and half kernel (HK) under two different loadings, i.e., 50 and 150 kPa, in maize bulk. An easy-to-use element testing system was developed by modification of an oedometer, and an empirical–analytical–numerical method was established to evaluate fungal heat production, considering kernel breakage and vertical pressure. Based on the experimental results, it was found that breakage induced larger compression; the compression of HK was 62% and 58% higher than that of WK at 50 kPa and 150 kPa, respectively. The creep model of the Hooke spring–Kelvin model in series can be used to accurately describe the creep behavior of maize bulk. Fungi and aerobic plate counting (APC) were affected significantly by the breakage and vertical pressure. APC in HK was 19 and 15 times that of WK under 150 and 50 kPa, respectively. The heat released by the development of fungi was found to be directly related to the APC results. The average temperatures of WK and HK under 150 and 50 kPa were 11.1%, 9.7%, 7.9%, and 7.6% higher than the room temperature, respectively. A numerical method was established to simulate the temperature increase due to fungi development. Based on the numerical results, heat production (Q) by fungi was estimated, and the results showed that the Q in HK was 1.29 and 1.32 times that of WK on average under 150 and 50 kPa. Additionally, the heat production results agreed very well with the APC results.
Collapse
|
12
|
Wang X, Liu J, Zhang K, Yao X, Zhang S. Analysis of mycotoxins in grain samples using 3D covalent organic frameworks and stable isotope labeling technique. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2066689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xueting Wang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Juping Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Kaiyue Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xin Yao
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|
13
|
Hoffmans Y, Schaarschmidt S, Fauhl-Hassek C, van der Fels-Klerx H. Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins (Basel) 2022; 14:301. [PMID: 35622548 PMCID: PMC9143035 DOI: 10.3390/toxins14050301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are naturally present in cereal-based feed materials; however, due to adverse effects on animal health, their presence in derived animal feed should be minimized. A systematic literature search was conducted to obtain an overview of all factors from harvest onwards influencing the presence and concentration of mycotoxins in cereal-based feeds. The feed production processes covered included the harvest time, post-harvest practices (drying, cleaning, storage), and processing (milling, mixing with mycotoxin binders, extrusion cooking, ensiling). Delayed harvest supports the production of multiple mycotoxins. The way feed materials are dried after harvest influences the concentration of mycotoxins therein. Applying fungicides on the feed materials after harvest as well as cleaning and sorting can lower the concentration of mycotoxins. During milling, mycotoxins might be redistributed in cereal feed materials and fractions thereof. It is important to know which parts of the cereals are used for feed production and whether or not mycotoxins predominantly accumulate in these fractions. For feed production, mostly the milling fractions with outer parts of cereals, such as bran and shorts, are used, in which mycotoxins concentrate during processing. Wet-milling of grains can lower the mycotoxin content in these parts of the grain. However, this is typically accompanied by translocation of mycotoxins to the liquid fractions, which might be added to by-products used as feed. Mycotoxin binders can be added during mixing of feed materials. Although binders do not remove mycotoxins from the feed, the mycotoxins become less bioavailable to the animal and, in the case of food-producing animals, to the consumer, lowering the adverse effects of mycotoxins. The effect of extruding cereal feed materials is dependent on several factors, but in principle, mycotoxin contents are decreased after extrusion cooking. The results on ensiling are not uniform; however, most of the data show that mycotoxin production is supported during ensiling when oxygen can enter this process. Overall, the results of the literature review suggest that factors preventing mycotoxin production have greater impact than factors lowering the mycotoxin contents already present in feed materials.
Collapse
Affiliation(s)
- Yvette Hoffmans
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands;
| | - Sara Schaarschmidt
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | - Carsten Fauhl-Hassek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | | |
Collapse
|
14
|
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Qi Guo
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
- College of Food Science and Technology Northwest University Xi’ an 710000 China
| |
Collapse
|
15
|
DENARDI-SOUZA T, LUZ C, MAÑES J, BADIALE-FURLONG E, MECA G. Action of phenolic extract obtained from rice bran fermented with Rhizopus oryzae in the synthesis of trichothecenes and emerging mycotoxins in sweet corn. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.35821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins (Basel) 2021; 13:768. [PMID: 34822552 PMCID: PMC8619142 DOI: 10.3390/toxins13110768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mycotoxins are one of the most dangerous food and feed contaminants, hence they have significant influence on human and animal health. This study reviews the information reported over the last few years on the toxic effects of the most relevant and studied Fusarium toxins and their modified forms. Deoxynivalenol (DON) and its metabolites can induce intracellular oxidative stress, resulting in DNA damage. Recent studies have also revealed the capability of DON and its metabolites to disturb the cell cycle and alter amino acid expression. Several studies have attempted to explore the mechanism of action of T-2 and HT-2 toxins in anorexia induction. Among other findings, two neurotransmitters associated with this process have been identified, namely substance P and serotonin (5-hydroxytryptamine). For zearalenone (ZEN) and its metabolites, the literature points out that, in addition to their generally acknowledged estrogenic and oxidative potentials, they can also modify DNA by altering methylation patterns and histone acetylation. The ability of the compounds to induce alterations in the expression of major metabolic genes suggests that these compounds can contribute to the development of numerous metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
17
|
Zhang J, Xu Y, Hu T, Sun C, Wu W. Experimental Study on the Status of Maize Mycotoxin Production in Farmers' Grain Storage Silos in Northeastern China. Toxins (Basel) 2021; 13:741. [PMID: 34822525 PMCID: PMC8625731 DOI: 10.3390/toxins13110741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The scientific rationality of farmers' grain storage technology and equipment is crucial for the biosecurity of grain in the main grain-producing areas represented by Northeast China. In this paper, four farmer grain storage mock silos of different widths were used as a means to track an experimental cycle of grain storage. The absolute water potential of corn in all four silos at the beginning of the experiment was greater than the absolute water potential of air, prompting moisture migration from the grain interior to the air and down to about 14%. Moisture was influenced by wind direction, and moisture decreased faster with better ventilation on both sides of the grain silos. Therefore, grain silo width has a significant effect on the drying effect under naturally ventilated conditions of maize ears. This research focused on the determination and assessment of mycotoxin contamination under farmers' storage grain conditions and analyzed the effect of silo structure on the distribution of mycotoxin contamination. When the width was too large, areas of high mycotoxin infection existed in the middle of the grain silo, and ventilation and tipping could be used to reduce the risk of toxin production. This study proved that reasonable farmer grain storage techniques and devices in Northeast China can effectively protect grain from mycotoxin contamination.
Collapse
Affiliation(s)
- Jinsong Zhang
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
| | - Yan Xu
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
| | - Taogang Hu
- Department of Grain Science and Technology, Jilin Business and Technology College, Changchun 130507, China;
| | - Changpo Sun
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
- Standards and Quality Center of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China
| | - Wenfu Wu
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
- Department of Grain Science and Technology, Jilin Business and Technology College, Changchun 130507, China;
| |
Collapse
|
18
|
Borba VSD, Furlong VB, Cerqueira MBR, Badiale-Furlong E. Fate of trichothecenes B in rice and parboiling process as a mitigation strategy. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins (Basel) 2021; 13:292. [PMID: 33924246 PMCID: PMC8074758 DOI: 10.3390/toxins13040292] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as "actions" because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as "reactions" of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the "reactions" could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|