1
|
Feng K, Liu C, Zhang S, Wu J, Eleuteri AM, Bai Y. Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier. Int J Biol Macromol 2025; 299:140091. [PMID: 39842598 DOI: 10.1016/j.ijbiomac.2025.140091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and fluorescence assays confirmed that probiotics could be effectively encapsulated in the nanofilm, with 92.6 % of viable cells retained after electrospinning. Results of thermogravimetric analysis and thermal test indicated that the heat resistance of the encapsulated bacteria was significantly improved (P < 0.05). After 28 days of storage, the loss of viable bacteria was higher at 25 °C (2.9 log) than at 4 °C (0.5 log). This observation is consistent with the results of accelerated storage test, which showed that probiotic nanofilms stored at 4 °C had a longer shelf life with an inactivation rate constant of 1.74 × 10-5. Furthermore, the dissolution study revealed that the nanofilms could disintegrate in simulated saliva within 15 s, highlighting their potential as oral fast dissolving formulation.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shanshuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Junwei Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Bambace MF, Alvarez MV, Moreira MDR. Alginate coatings applied on apple cubes as a vehicle for Lacticaseibacillus casei: probiotic viability and overall quality of a new functional product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:74-83. [PMID: 39139005 DOI: 10.1002/jsfa.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Worldwide, vegan and vegetarian lifestyles, as well as food allergies and intolerance (e.g. lactose intolerance and milk protein allergy) demand the development of alternatives to dairy-based probiotic foods. In the present study, probiotic Lacticaseibacillus casei CECT 9104 was added to alginate-based edible coatings enriched with inulin and oligofructose and applied to fresh-cut apple. Microbiological, physicochemical and sensory quality parameters of the apple cubes were monitored during 8 days of refrigerated storage. Lacticaseibacillus casei was tested for its antagonistic effect against inoculated Listeria innocua and Escherichia coli O157:H7. The viability of the probiotic strain during refrigerated storage and after simulated gastrointestinal digestion (GID) was evaluated. RESULTS After 8 days of storage, 9.52-9.64 log colony-forming units (CFU) g-1 of L. casei were detected in apple samples. The functional apple cubes retained 8.31-8.43 log CFU g-1 of the probiotic after GID, without a significant effect of prebiotic addition. The microbiological quality and nutritional properties were maintained by the use of active coatings, whereas the sensory quality decreased after 8 days of storage. A bactericidal effect was exerted by the probiotic strain loaded in the coating against L. innocua artificially inoculated on apple cubes. Escherichia coli O157:H7 counts were reduced by 2.5 log after 8 days. CONCLUSION This study has demonstrated the suitability of apple cubes as an alternative matrix to milk for carrying probiotic L. casei CECT 9104 and prebiotics, offering a promising alternative for the development of plant-based functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- María Florencia Bambace
- Grupo de Investigación en Ingeniería en Alimentos. Instituto de Ciencia y Tecnología de Alimentos y Ambiente (INCITAA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Alvarez
- Grupo de Investigación en Ingeniería en Alimentos. Instituto de Ciencia y Tecnología de Alimentos y Ambiente (INCITAA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Del Rosario Moreira
- Grupo de Investigación en Ingeniería en Alimentos. Instituto de Ciencia y Tecnología de Alimentos y Ambiente (INCITAA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Shen Y, Miao C, Ma M, Zhen Z, He J, Pei X, Zhang Y, Man C, Zhao Q, Jiang Y. Mechanistic insights into the changes of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei fortified milk powder during storage. Food Chem 2024; 452:139501. [PMID: 38728887 DOI: 10.1016/j.foodchem.2024.139501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zizhu Zhen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
4
|
Payne J, Bellmer D, Jadeja R, Muriana P. The Potential of Bacillus Species as Probiotics in the Food Industry: A Review. Foods 2024; 13:2444. [PMID: 39123635 PMCID: PMC11312092 DOI: 10.3390/foods13152444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The demand for probiotics is increasing, providing opportunities for food and beverage products to incorporate and market these foods as a source of additional benefits. The most commonly used probiotics belong to the genera of Lactobacillus and Bifidobacterium, and traditionally these bacteria have been incorporated into dairy products, where they have a wider history and can readily survive. More recently, there has been a desire to incorporate probiotics into various food products, including baked goods. In recent years, interest in the use of Bacillus species as probiotics has greatly increased. The spores of various Bacillus species such as Bacillus coagulans and Bacillus subtilis, have significantly improved viability and stability under harsher conditions during heat processing. These characteristics make them very valuable as probiotics. In this review, factors that could affect the stability of Bacillus probiotics in food products are highlighted. Additionally, this review features the existing research and food products that use Bacillus probiotics, as well as future research opportunities.
Collapse
Affiliation(s)
- Jessie Payne
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Danielle Bellmer
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ravi Jadeja
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Peter Muriana
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
5
|
Ramazanidoroh F, Hosseininezhad M, Shahrampour D, Wu X. Edible Packaging as a Functional Carrier of Prebiotics, Probiotics, and Postbiotics to Boost Food Safety, Quality, and Shelf Life. Probiotics Antimicrob Proteins 2024; 16:1327-1347. [PMID: 37389789 DOI: 10.1007/s12602-023-10110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
The safety limitations of chemical preservatives led to an increasing trend among industries and customers toward preservative-free foods; hence, the necessity has arisen for developing innovative, safe antimicrobial elements to prolong the shelf life. Beneficial microorganisms that are described as probiotics and also their metabolites are increasingly being considered as bioprotective agents. These microorganisms could be beneficial for extending food shelf-life and boosting human health. During distribution and storage (25 °C or 4 °C), they could contribute to suppressing unwanted microbes and then improving food safety and quality. Also, by tolerating the harsh conditions of gastrointestinal tract (low pH (~3), presence of bile salts, digestive enzymes, competition with other microbes, etc.), probiotics could exert several biological effects at the host. Besides inclusion in foods and supplements, probiotics and their functional metabolites could be delivered via edible packaging (EP). Recent studies have demonstrated the strong potential of pre/pro/post-biotic EP in food biopreservation. These packaging systems may show different potency of food biopreservation. Among others, postbiotics, as metabolic by-products of probiotics, have gained tremendous attention among researchers due to their unique properties like presenting a variety of antimicrobial activities, convenience in use in different industrial stages and commercialization, extended shelf life, and stability in a wide range of pH and temperature. In addition to antimicrobial activities, various bio-EP could differently influence physical or sensorial attributes of food commodities, impacting their acceptance by consumers. Hence, this study is aimed at presenting a comprehensive review of the application of bio-EP, not only by providing a protective barrier against physical damage but also by creating a controlled atmosphere to improve the health and shelf life of food.
Collapse
Affiliation(s)
- Fahimeh Ramazanidoroh
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Marzieh Hosseininezhad
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Dina Shahrampour
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
El-Aidie SAM, Khalifa GSA. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13319. [PMID: 38506186 DOI: 10.1111/1541-4337.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Industrial waste management is critical to maintaining environmental sustainability. The dairy industry (DI), as one of the major consumers of freshwater, generates substantial whey dairy effluent, which is notably rich in organic matter and thus a significant pollutant. The effluent represents environmental risks due to its high biological and chemical oxygen demands. Today, stringent government regulations, environmental laws, and heightened consumer health awareness are compelling industries to responsibly manage and reuse whey waste. Therefore, this study investigates sustainable solutions for efficiently utilizing DI waste. Employing a systematic review approach, the research reveals that innovative technologies enable the creation of renewable, high-quality, value-added food products from dairy byproducts. These innovations offer promising sustainable waste management strategies for the dairy sector, aligning with economic interests. The main objectives of the study deal with, (a) assessing the environmental impact of dairy sector waste, (b) exploring the multifaceted nutritional and health benefits inherent in cheese whey, and (c) investigating diverse biotechnological approaches to fashion value-added, eco-friendly dairy whey-based products for potential integration into various food products, and thus fostering economic sustainability. Finally, the implications of this work span theoretical considerations, practical applications, and outline future research pathways crucial for advancing the sustainable management of dairy waste.
Collapse
Affiliation(s)
- Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | | |
Collapse
|
7
|
Gad M, Elbahnasawy AS, Ramadan AA, Yamamah GAN, Hussein L. Dietary intervention with edible film-coated multistrain probiotic Lacticaseibacilli in nondairy food matrices significantly increased the recovery of fecal viable Lacticaseibacilli and improved the performance of several colonic biomarkers among slightly malnourished preschool children. Food Funct 2024; 15:977-991. [PMID: 38179614 DOI: 10.1039/d3fo02829a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Probiotic enriched dairy products are widely consumed in Western countries for their beneficial effects on the gastrointestinal tract and overall health. The present study aims to investigate the beneficial effects of probiotic Lacticaseibacilli (LAB) strains in non-dairy food matrices. A blend of edible film-coated probiotic LAB, L. plantarum, L. paracasei, and L. rhamnosus, were incorporated into plain biscuits and dry dates. Design of the randomized controlled study: Children of both sexes (mean age 55.7 ± 14.5 months) attending kindergarten in Tersa, a poor urban Giza district, were recruited and randomized into 5 groups of equal numbers. Treatment groups: (1) placebo biscuits, (2) functional probiotic biscuits (0.18 billion colony forming units (cfu) of LAB) (3) functional probiotic + inulin biscuits (0.2 billion cfu of LAB + 2 g of chicory inulin); (4) placebo dates and (5) functional probiotic dates (0.3 billion cfu of viable multistrain LAB). The supplements were served 5 days a week and each child had to consume 21 servings of the supplement. The primary outcome was an increase in the fecal recovery of viable LAB after the intake of 21 servings (T1) compared to the respective baseline counts (T0). The secondary outcomes include the determination of fecal short-chain fatty acids (SCFA) and secretory immunoglobulin A (s-Ig A) using ELISA and fecal ammonia excretion. Results: Statistically significant % increases in the recoveries of fecal viable LAB were found among the children consuming 21 servings of supplements 2, 3, and 5 compared to the respective count at T0. Similar significant increases were found in the fecal concentrations of SCFA and s-Ig A among the children consuming 21 servings of supplements 2, 3 and 5 compared to the respective counts at T0. On the other hand, the concentration of toxic ammonia excretion decreased significantly in the feces of all children consuming probiotic-containing supplements (groups 2, 3, and 5) at T1 compared to the respective concentrations obtained at T0. Conclusion: Multistrain microencapsulated probiotic Lacticaseibacilli in functional biscuits and dry dates successfully tolerated the acidic gastric transit and exerted their bioactive action on the colonic microbiome. The synbiotic supplement exhibited a higher production rate of colonic SCFA. Probiotic-enriched products that confer definitive health benefits are convenient and do not need to be kept under refrigeration. Manipulating the composition and function of the microbiome in childhood through probiotic/+ prebiotic interventions is cost-effective with long-term beneficial health outcomes. This study was approved by the Medical Research Ethics Committee, National Research Center and registered as Clinical Trial 16/422. Written informed consent was obtained from the mothers of all participating children.
Collapse
Affiliation(s)
- Mosab Gad
- Nutrition and Food Science Department, National Research Centre, Dokki, Cairo 12662, Egypt.
| | - Amr S Elbahnasawy
- Nutrition and Food Science Department, National Research Centre, Dokki, Cairo 12662, Egypt.
| | - Asmaa A Ramadan
- Nutrition and Food Science Department, National Research Centre, Dokki, Cairo 12662, Egypt.
| | | | - Laila Hussein
- Nutrition and Food Science Department, National Research Centre, Dokki, Cairo 12662, Egypt.
| |
Collapse
|
8
|
Chang S, Guo Q, Du G, Tang J, Liu B, Shao K, Zhao X. Probiotic-loaded edible films made from proteins, polysaccharides, and prebiotics as a quality factor for minimally processed fruits and vegetables: A review. Int J Biol Macromol 2023; 253:127226. [PMID: 37802455 DOI: 10.1016/j.ijbiomac.2023.127226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Minimally processed fruits and vegetables (MPFVs) are gaining popularity in households because of their freshness, convenience, and rapid consumption, all of which align with today's busy lifestyles. However, their exposure of large surface areas during peeling and slicing can result in contamination by foodborne pathogens and spoilage bacteria, posing potential food safety concerns. In addition, enzymatic browning of MPFVs can significantly reduce their consumer appeal. Therefore, it is necessary to adopt certain methods to protect MPFVs. Recent studies have shown that utilizing biopolymer-based edible films containing probiotics is a promising approach to preserving MPFVs. These active food packaging films exhibit barrier function, antioxidant function, and antimicrobial function while protecting the viability of probiotics, which is essential to maintain the nutritional value and quality of MPFVs. This paper reviews microbial contamination in MPFVs and the preparation of probiotic-loaded edible films with common polysaccharides (alginate, gellan gum, and starch), proteins (zein, gelatin, and whey protein isolate), prebiotics (oligofructose, inulin, and fructooligosaccharides). It also explores the potential application of probiotic-loaded biopolymer films/coatings on MPFVs, and finally examines the practical application requirements from a consumer perspective.
Collapse
Affiliation(s)
- Shuaidan Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Guo
- Henan Agr Univ, Coll Food Sci & Technol, Zhengzhou 450002, China
| | - Gengan Du
- Henan Univ Technol, Sch Food & Strateg Reserv, Zhengzhou 450001, China
| | - Jiayao Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, Indiana 47405, United States
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
9
|
Chávez García SN, Rodríguez-Herrera R, Nery Flores S, Silva-Belmares SY, Esparza-González SC, Ascacio-Valdés JA, Flores-Gallegos AC. Sprouts as probiotic carriers: A new trend to improve consumer nutrition. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100185. [PMID: 38155686 PMCID: PMC10753383 DOI: 10.1016/j.fochms.2023.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 12/30/2023]
Abstract
Over the past few decades, efforts to eradicate hunger in the world have led to the generation of sustainable development goals to reduce poverty and inequality. It is estimated that the current coronavirus pandemic could add between 83 and 132 million to the total number of undernourished people in the world by 2021. Food insecurity is a contributing factor to the increase in malnutrition, overweight and obesity due to the quality of diets to which people have access. It is therefore necessary to develop functional foods that meet the needs of the population, such as the incorporation of sprouts in their formulation to enhance nutritional quality. Germination of grains and seeds can be used as a low-cost bioprocessing technique that provides higher nutritional value and better bioavailability of nutrients. Consequently, the manuscript describes relevant information about the germination process in different seeds, the changes caused in their nutritional value and the use of techniques within the imbibition phase to modify the metabolic profiles within the sprouts such as inoculation with lactic acid bacteria and yeasts, to generate a functional symbiotic food.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Cecilia Esparza-González
- School of Odontology, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas S/N, Republica Oriente, C.P. 25280 Saltillo, Coahuila, Mexico
| | | | | |
Collapse
|
10
|
Arepally D, Sudharshan Reddy R, Coorey R, Goswami TK. Modelling inactivation kinetics of free and encapsulated probiotic cells in millet biscuit under different baking conditions. Food Res Int 2023; 174:113573. [PMID: 37986522 DOI: 10.1016/j.foodres.2023.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
The rising popularity of probiotic food in the diet for improved health benefits leads to the development of new probiotic functional foods. In general, biscuit is a long-shelf-life snack product that can be consumed straight from the pack without further processing. Although the development of probiotic bakery products is an innovative approach to market expansion, the infusion of probiotics in biscuits to produce probiotic biscuits has not been explored because of the complexity of the baking process. Therefore, this study aimed to evaluate the impact of baking conditions (160, 180, 200, and 220 °C) on the viability of free and encapsulated probiotic Lactobacillus acidophilus NCDC 016 cells by adding them into biscuit dough separately and baking for up to 600 sec. The cells were encapsulated using 20 % maltodextrin and 8.51 % gum arabic as a wall material and spray drying at an inlet and outlet air temperature of 150 and 55 ± 2 °C, respectively. At different baking temperatures (160, 180, 200, and 220 °C), the viability of probiotic (free and encapsulated) cells, the physicochemical properties of biscuits, and the inactivation kinetics of cells were examined by withdrawing samples every 120 sec. The survivability of encapsulated cells was observed to be higher than free cells at 160 and 180 °C for 600 sec. The moisture content and water activity were found to be higher and lower, respectively for encapsulated probiotic biscuits than for the biscuit containing free cells. The observed results of higher cell viability at 200 °C, 360 sec (5.38 log CFU/g) than at 180 °C, 600 sec (5.02 log CFU/g) can be explained by the time-temperature combination. Thus, producing the probiotic biscuit at baking conditions of 200 °C and 360 min is possible, providing the cell viability of 5 log CFU/g of probiotic biscuit. Further, the inactivation kinetics of cells were predicted by log-linear, Weibull, log-logistic, Gompertz, and Buchanan models. Under all baking conditions, the log-linear model was the best model for describing the data of encapsulated and free cells.
Collapse
Affiliation(s)
- Divyasree Arepally
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Western Australia, Australia; Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721 302, India
| | - Ravula Sudharshan Reddy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721 302, India
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Western Australia, Australia.
| | - Tridib Kumar Goswami
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721 302, India.
| |
Collapse
|
11
|
Sadeghi A, Ebrahimi M, Assadpour E, Jafari SM. Recent advances in probiotic breads; a market trend in the functional bakery products. Crit Rev Food Sci Nutr 2023; 64:13163-13174. [PMID: 37889505 DOI: 10.1080/10408398.2023.2261056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Although bread is the main consumed staple food worldwide containing essential micro- and macronutrients, incorporation of probiotics (PRO) into this nondairy product has been less documented. Due to the mechanical and thermal stresses during bread-making process, production of PRO bread (PRO-BR) is dependent on development of emerging strategies like edible coating, encapsulation, three-dimensional printing, and application of thermophilic PRO strains. In the present study, novel technological and formulation aspects of PRO-BR, as well as critical conditions for obtaining products with guaranteed PRO potential have been reviewed. The biological functionality of these products, their scale up, marketing and commercial success factors are also highlighted. Production of functional PRO-BR containing bioactive compounds, phytochemicals and prebiotic components as an emerging field also affects dough rheology and textural features, sensory attributes and shelf-life of the final product. Recent data has revealed the effect of PRO on acrylamide content and staling rate of the produced bread. Furthermore, there are clinical evidences confirming the effects of PRO and synbiotic breads on reduction of triacylglycerol, low-density lipoprotein, insulin level and malondialdehyde, along with the increase of nitric oxide in the patients with type II diabetes.
Collapse
Affiliation(s)
- Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Ebrahimi
- Food, Drug & Natural Products Health Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
12
|
Akman PK, Kutlu G, Tornuk F. Development and characterization of a novel sodium alginate based active film supplemented with Lactiplantibacillus plantarum postbiotic. Int J Biol Macromol 2023:125240. [PMID: 37301346 DOI: 10.1016/j.ijbiomac.2023.125240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, sodium alginate based biodegradable films were prepared by the supplementation with postbiotics of Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) W2 strain and the effect of probiotics (probiotic-SA film) and postbiotics (postbiotic-SA film) incorporation on physical, mechanical (tensile strength and elongation at break), barrier (oxygen and water vapor permeability), thermal and antimicrobial properties of the films were investigated. The pH, titratable acidity and brix of the postbiotic was 4.02, 1.24 % and 8.37, respectively while gallic acid, protocatechuic acid, myricetin and catechin were the major phenolic compounds. Mechanical and barrier properties of the alginate-based films were improved by probiotic or postbiotic supplementation while postbiotic showed a more pronounced (P < 0.05) effect. Thermal analysis showed that postbiotics supplementation increased thermal stability of the films. In FTIR spectra, the absorption peaks at 2341 and 2317 cm-1 for probiotic-SA and postbiotic-SA edible films confirmed the incorporation of probiotics/postbiotics of L. plantarum W2 strain. Postbiotic supplemented films showed strong antibacterial activity against gram-positive (L. monocytogenes, S. aureus and B. cereus) and one gram-negative bacterial strain (E. coli O157:H7) while probiotic incorporation did not add an antibacterial effect to the films. SEM images revealed that the supplementation of postbiotics provided a rougher and rigid film surface. Overall, this paper brought a new perspective for development of novel active biodegradable films by incorporation of postbiotics with improved performance.
Collapse
Affiliation(s)
- Perihan Kubra Akman
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Gozde Kutlu
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Fatih Tornuk
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey.
| |
Collapse
|
13
|
Tlais AZA, Trossolo E, Tonini S, Filannino P, Gobbetti M, Di Cagno R. Fermented Whey Ewe's Milk-Based Fruit Smoothies: Bio-Recycling and Enrichment of Phenolic Compounds and Improvement of Protein Digestibility and Antioxidant Activity. Antioxidants (Basel) 2023; 12:antiox12051091. [PMID: 37237957 DOI: 10.3390/antiox12051091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to recycle whey milk by-products (protein source) in fruit smoothies (phenolic compounds source) through started-assisted fermentation and delivering sustainable and healthy food formulations capable of providing nutrients that are unavailable due to an unbalanced diet or incorrect eating habits. Five lactic acid bacteria strains were selected as best starters for smoothie production based on the complementarity of pro-technological (kinetics of growth and acidification) traits, exopolysaccharides and phenolics release, and antioxidant activity enhancement. Compared to raw whey milk-based fruit smoothies (Raw_WFS), fermentation led to distinct profiles of sugars (glucose, fructose, mannitol, and sucrose), organic acids (lactic acid and acetic acid), ascorbic acid, phenolic compounds (gallic acid, 3-hydroxybenzoic acid, chlorogenic acid, hydrocaffeic acid, quercetin, epicatechin, procyanidin B2, and ellagic acid) and especially anthocyanins (cyanidin, delphinidin, malvidin, peonidin, petunidin 3-glucoside). Protein and phenolics interaction enhanced the release of anthocyanins, notably under the action of Lactiplantibacillus plantarum. The same bacterial strains outperformed other species in terms of protein digestibility and quality. With variations among starters culture, bio-converted metabolites were most likely responsible for the increase antioxidant scavenging capacity (DPPH, ABTS, and lipid peroxidation) and the modifications in organoleptic properties (aroma and flavor).
Collapse
Affiliation(s)
| | - Elisabetta Trossolo
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Stefano Tonini
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
14
|
Yang Z, Li M, Li Y, Wang X, Li Z, Shi J, Huang X, Zhai X, Zou X, Gong Y, Holmes M, Povey M, Xiao J. Entrapment of probiotic (Bifidobacterium longum) in bilayer emulsion film with enhanced barrier property for improving viability. Food Chem 2023; 423:136300. [PMID: 37196410 DOI: 10.1016/j.foodchem.2023.136300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
The gelatin/gellan gum based-bilayer emulsion film was developed in this work to improve the survivability of Bifidobacterium longum during the storage process. The baobab seed oil (BO) was added to the gelatin (GE) matrix to develop emulsion film as the barrier outer layer. The blueberry anthocyanin extract (BE) was incorporated into the gellan gum (GG)-based inner layer to enhance the viability of B. longum. The SEM and FTIR results revealed that the probiotics were successfully entrapped in BO/BE-loaded bilayer film. The greatest survivability and viable cell numbers of the B. longum during the storage period were observed in the BO/BE loaded bilayer film. Furthermore, the stability of the colorful patterns by electrochemical writing was also evaluated in this work. Finally, the GE/BO-GG/BE/BM maintain satisfactory probiotic viability in steamed bread coating application. Hence, the GE/BO-GG/BE/BM bilayer film could be considered a novel material to deliver and protect the probiotics in food applications.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| |
Collapse
|
15
|
Sáez-Orviz S, Rendueles M, Díaz M. Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings- a review. Food Res Int 2023; 164:112381. [PMID: 36737965 DOI: 10.1016/j.foodres.2022.112381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Nowadays, conventional packaging materials made using non-renewable sources are being replaced by more sustainable alternatives such as natural biopolymers (proteins, polysaccharides, and lipids). Within edible packaging, one can differentiate between edible films or coatings. This packaging can be additivated with bioactive compounds to develop functional food packaging, capable of improving the consumer's state of health. Among the bioactive compounds that can be added are probiotics and prebiotics. This review novelty highlighted recent research on edible films and coatings additivated with probiotics and prebiotics, the interactions between them and the matrix and the changes in their physic, chemical and mechanical properties. When bioactive compounds are added, critical factors must be considered when selecting the most suitable production processes. Particularly, as probiotics are living microorganisms, they are more sensitive to certain factors, such as pH or temperature, while prebiotic compounds are less problematic. The interactions that occur inside the matrix can be divided into two main groups: covalent bonding (-NH2, -NHR, -OH, -CO2H, etc) and non-covalent interactions (van der Waals forces, hydrogen bonding, hydrophobic and electrostatic interactions). When probiotics and prebiotics are added, covalent and non-covalent interactions are modified. The physical and mechanical properties of films and coatings depend directly on the interactions that take place between the biopolymers that form their matrix. Greater knowledge about the influence of these compounds on the interactions that occur inside the matrix will allow better control of these properties and better understanding of the behaviour of edible packaging additivated with probiotics and prebiotics.
Collapse
Affiliation(s)
- S Sáez-Orviz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - M Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - M Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
16
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
17
|
Development and Application of Edible Coatings with Malva sylvestris L. Extract to Extend Shelf-Life of Small Loaf. Foods 2022; 11:foods11233831. [PMID: 36496640 PMCID: PMC9740940 DOI: 10.3390/foods11233831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Edible coatings that have a recognized ecological effect are an alternative to retard the processes of moisture evaporation and mold growth in bakery products. The aim of the present research was to study the influence of Malva sylvestris L. (mallow) flowers' extract on the antimicrobial activity of edible coatings of three types of polysaccharides, pectin/P/, xanthan/X/ and carboxymethylcellulose/C/, as well as to analyze their effect on the freshness and microbiological status of coated small loaves during storage. It was found that the presence of a mallow extract had a positive effect on the fungicidal and yeasticidal activities of the X and C coatings. The loaves were evaluated for their physical (moisture, color), textural (firmness and crumb firming kinetics) and microbiological characteristics. The coatings (P, X and C) with mallow extract had the strongest moisture-retaining effect on the loaves' crumb. The coatings with X and with P (with/without mallow extract) significantly slowed down the crumb firming process, and the value of the rate constant for the crumb firming (k) is the lowest for the X coating-0.1815 day-1. The smallest changes in the crust color were reported when mallow-based coatings were used. They have also been proven to have the lowest microbial load when they are stored for up to three days. This study shows that polysaccharide edible coatings with an active mallow component have significant potential to extend the shelf life of bakery products.
Collapse
|
18
|
Development of Bioactive Opuntia ficus-indica Edible Films Containing Probiotics as a Coating for Fresh-Cut Fruit. Polymers (Basel) 2022; 14:polym14225018. [PMID: 36433145 PMCID: PMC9693271 DOI: 10.3390/polym14225018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Bioactive edible films have received more attention in recent years as a method for food preservation with value-added functions. The aim of this study was to develop a bioactive edible film containing mucilage of cactus (Opuntia ficus-indica) and incorporating the probiotic strain Enterococcus faecium FM11-2 as an active component to promote consumer health benefits. Opuntia ficus-indica is rich in nutritional and bioactive compounds and the abundance of this cactus makes it attractive for food applications. Mucilage of Opuntia ficus-indica contained 0.47 ± 0.06 mg/g total sugar, 0.33 ± 0.06 mg AGE/mL phenolic content, 0.14 mg/ mL vitamin C, and possessed 35.51 ± 1.88% DPPH scavenging activity. The edible film that was developed exhibited the following characteristics: thickness of 0.02-0.11 mm, percent moisture content 0.19-0.24%, water solubility 30.66-59.41% and water vapor permeability of 0.15-1.5 g·mm/m2·min·kpa, while the range of the variation depended on the type of plasticizer used (either sorbitol or glycerol). The addition of sorbitol in the film provided the maximum mechanical strength based on the evaluation of tensile strength, Young's modulus and elongation at break (44.71 ± 0.78 MPa, 113.22 ± 0.23 MPa and 39.47 ± 0.61%, respectively). The optimal formulation of the edible film, according to the physicochemical, physical and maintenance of fresh-cut apple slices, contained cactus mucilage, gelatin, glycerol and a probiotic. The incorporation of a probiotic into the cactus film created a bioactive edible film that could provide a health benefit. While improvement is needed to maintain the survival rate of the probiotic, this work presents an exciting method for furthering the study of food preservation with edible films.
Collapse
|
19
|
Wai SN, How YH, Saleena LAK, Degraeve P, Oulahal N, Pui LP. Chitosan-Sodium Caseinate Composite Edible Film Incorporated with Probiotic Limosilactobacillus fermentum: Physical Properties, Viability, and Antibacterial Properties. Foods 2022; 11:foods11223583. [PMID: 36429174 PMCID: PMC9689195 DOI: 10.3390/foods11223583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Single-use synthetic plastics that are used as food packaging is one of the major contributors to environmental pollution. Hence, this study aimed to develop a biodegradable edible film incorporated with Limosilactobacillus fermentum. Investigation of the physical and mechanical properties of chitosan (CS), sodium caseinate (NaCas), and chitosan/sodium caseinate (CS/NaCas) composite films allowed us to determine that CS/NaCas composite films displayed higher opacity (7.40 A/mm), lower water solubility (27.6%), and higher Young's modulus (0.27 MPa) compared with pure CS and NaCas films. Therefore, Lb. fermentum bacteria were only incorporated in CS/NaCas composite films. Comparison of the physical and mechanical properties of CS/NaCas composite films incorporated with bacteria with those of control CS/NaCas composite films allowed us to observe that they were not affected by the addition of probiotics, except for the flexibility of films, which was improved. The Lb. fermentum incorporated composite films had a 0.11 mm thickness, 17.9% moisture content, 30.8% water solubility, 8.69 A/mm opacity, 25 MPa tensile strength, and 88.80% elongation at break. The viability of Lb. fermentum after drying the films and the antibacterial properties of films against Escherichia coli O157:H7 and Staphylococcus aureus ATCC 29213 were also evaluated after the addition of Lb. fermentum in the composite films. Dried Lb. fermentum composite films with 6.65 log10 CFU/g showed an inhibitory effect against E. coli and S. aureus (0.67 mm and 0.80 mm inhibition zone diameters, respectively). This shows that the Lb.-fermentum-incorporated CS/NaCas composite film is a potential bioactive packaging material for perishable food product preservation.
Collapse
Affiliation(s)
- Seat Ni Wai
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Pascal Degraeve
- BioDyMIA Research Unit, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01 000 Bourg en Bresse, France
| | - Nadia Oulahal
- BioDyMIA Research Unit, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01 000 Bourg en Bresse, France
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9101-8880
| |
Collapse
|
20
|
Mouzakitis CK, Sereti V, Matsakidou A, Kotsiou K, Biliaderis CG, Lazaridou A. Physicochemical properties of zein-based edible films and coatings for extending wheat bread shelf life. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Akkurt S, Renye J, Tomasula PM. Encapsulation of Lactobacillus rhamnosus GG in edible electrospun mats from calcium and sodium caseinates with pullulan blends. JDS COMMUNICATIONS 2022; 3:381-386. [PMID: 36465510 PMCID: PMC9709594 DOI: 10.3168/jdsc.2021-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/04/2022] [Indexed: 06/17/2023]
Abstract
Electrospinning has been proposed as a method to encapsulate and preserve bioactive compounds in nanofibrous mats to ensure their delivery and associated health benefits when consumed directly or added to a food formulation. In previous work, we demonstrated the production of edible fibers to form mats of both calcium (CaCAS) and sodium (NaCAS) caseinate-pullulan (PUL), with the polysaccharide PUL added as a carrier to facilitate molecular entanglement for fiber formation. In this study, we determined the viability of the probiotic bacteria, Lactobacillus rhamnosus GG (LGG), used as a model bacterium, in mats of CaCAS-PUL and NaCAS-PUL. Electrospinning of aqueous solutions at room temperature (21 ± 1°C) of 15% (wt/wt) CaCAS and NaCAS mixed with 15% (wt/wt) PUL, with a 1:1 ratio of CAS:PUL, resulted in fibrous mats with average fiber diameter sizes of 233 ± 20 and 244 ± 21 nm, respectively, as determined by scanning electron microscopy. Addition of LGG in the amounts of 9.3 and 9.0 log10 cfu/mL to the CaCAS-PUL and NaCAS-PUL solutions before electrospinning resulted in average fiber diameter sizes of 212 ± 14 and 286 ± 16 nm, respectively. The LGG was found to be distributed within the CaCAS-PUL and NaCAS-PUL fibers. The addition of LGG increased the shear viscosity and conductivity of the CaCAS-PUL solution, enhancing molecular entanglement and resulting in thinner fibers. For NaCAS, LGG increased the conductivity but reduced shear viscosity. Adjustment of the NaCAS-PUL composition would be needed to optimize conditions for thinner fibers. The numbers of viable LGG recovered from the CaCAS-PUL and NaCAS-PUL nanofibrous mats after electrospinning were 9.5 and 9.6 log10 cfu/g, respectively, proving that the electrospinning conditions used were capable of supporting probiotic encapsulation. These results demonstrate that food-grade electrospun fibrous mats can be used to develop functional foods with delivery of probiotics to improve human or animal health.
Collapse
|
22
|
Papadopoulou OS, Argyri AA, Bikouli VC, Lambrinea E, Chorianopoulos N. Evaluating the Quality of Cheese Slices Packaged with Na-Alginate Edible Films Supplemented with Functional Lactic Acid Bacteria Cultures after High-Pressure Processing. Foods 2022; 11:foods11182855. [PMID: 36140989 PMCID: PMC9498243 DOI: 10.3390/foods11182855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of the current study was to assess the efficacy of Na-alginate edible films as vehicles for delivering lactic acid bacteria (LAB) with functional properties to sliced cheeses, with or without high-pressure processing (HPP). A three-strain LAB cocktail (Lactococcus lactis Τ4, Leuconostoc mesenteroides Τ25 and Lacticaseibacillus paracasei Τ26) was incorporated into Na-alginate solution in a final population of 9 log CFU/mL. The cheese slices (without or with HPP treatment at 500 MPa for 2 min) were packaged in contact with the LAB edible films (LEFs), and subsequently vacuum packed and stored at 4 °C. Cheese slices without the addition of films, with or without HPP treatment, were used as controls. In all cases, microbiological, pH and sensory analyses were performed, while the presence and the relative abundance of each strain during storage was evaluated using Random Amplified Polymorphic DNA-PCR (RAPD-PCR). In addition, organic acid determination and peptide analysis were performed using high-performance liquid chromatography. The results showed that in cheeses without HPP treatment, the microbiota consisted mostly of mesophilic LAB and lactococci (>7.0 log CFU/g), while HPP caused a reduction in the indigenous microbiota population of approximately 1−1.5 log CFU/g. In the LEF samples, the populations of mesophilic LAB and lactococci were maintained at levels of >6.35 log CFU/g during storage, regardless of the HPP treatment. Sensory evaluation revealed that the LEF samples without HPP had a slightly more acidic taste compared to the control, whereas the HPP-LEF samples exhibited the best organoleptic characteristics. RAPD-PCR confirmed that the recovered strains were attributed to the three strains that had been entrapped in the films, while the strain distribution during storage was random. Overall, the results of the study are promising since the functional LAB strains were successfully delivered to the products by the edible films until the end of storage.
Collapse
|
23
|
Yang Z, Zhu X, Wen A, Qin L. Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri. Food Sci Nutr 2022; 10:3143-3153. [PMID: 36171765 PMCID: PMC9469843 DOI: 10.1002/fsn3.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Although most probiotic products are milk based, lactose intolerance and vegetarianism inspired the idea of developing nondairy probiotic products. In this study, probiotic beverages were produced from four enzymatically hydrolyzed cereal substrates (coix seed, quinoa, millet, and brown rice) and fermented by Limosilactobacillus reuteri. Fermentation parameters, including pH, titratable acidity, viable count, organic acids, and volatile components were determined. Results showed that the pH values decreased and titratable acidity increased with the fermentation process (p < .05). Although the final pH in all samples was below 4.0, the growth of L. reuteri was not significantly inhibited by low pH. The number of viable bacteria (12.96 log CFU/ml) in coix seed substrate was significantly higher than that in other samples after the fermentation for 24 h (p < .05). Lactic acid and acetic acid were the main organic acids after fermentation and the highest in quinoa (lactic acid: 7.58 mg/ml; acetic acid: 2.23 mg/ml). The flavor analysis indicated that there were differences in the flavor components of different cereal beverages. Forty-nine volatile compounds were identified in four beverages, including acids, alcohols, aldehydes, ketones, and esters. The results of the electronic tongue showed that the umami taste of the fermented coix seed was better than that of other samples, displaying the more pleasant taste characteristics. In conclusion, it is feasible to prepare probiotic symbiotic cereal beverage with L. reuteri as starter culture. This study provides a reference for the development of nondairy probiotic products.
Collapse
Affiliation(s)
- Zhoujie Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐bioengineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Xiaoli Zhu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Anyan Wen
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Likang Qin
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| |
Collapse
|
24
|
Csurka T, Varga-Tóth A, Kühn D, Hitka G, Badak-Kerti K, Alpár B, Surányi J, Friedrich LF, Pásztor-Huszár K. Comparison of techno-functional and sensory properties of sponge cakes made with egg powder and different quality of powdered blood products for substituting egg allergen and developing functional food. Front Nutr 2022; 9:979594. [PMID: 36105579 PMCID: PMC9465328 DOI: 10.3389/fnut.2022.979594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal blood is a valuable resource, which is usually not utilized in a value-added way by the industry like other animal by-products, even though it has plenty of benefits in terms of sustainability and human health, particularly against iron deficiency anemia. Animal blood is perfectly suitable for providing special functions, which are necessary for functional foods, and improving techno-functional properties based on the previous reports published in the literature. In this paper, egg powder was substituted by powdered animal blood products (whole blood powder, blood plasma powder, and hemoglobin powder) in sponge cake. Techno-functional and sensory properties (texture by texture profile analysis and three-point breaking test, water activity, dry matter content, and color) were instrumentally measured and then a sensory evaluation was carried out by unskilled panelists. Quality characteristics (texture, color, and dry matter content) were daily measured on the day of baking and then every 24 h for 3 additional days because freshly baked cakes are usually consumed within 3 days. Based on the results, powdered blood products are suitable for substituting the egg powder in sponge cakes and developing functional foods. Blood powders can increase the hardness, chewiness, and breaking force of cakes, giving them the ability to be stuffed with more fillings and molded into special shapes without compromising on the sensory characteristics. They can also increase the intensity of the cocoa flavor, which results in a richer, darker color without deceiving the consumers.
Collapse
Affiliation(s)
- Tamás Csurka
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Doctoral School of Food Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- *Correspondence: Tamás Csurka
| | - Adrienn Varga-Tóth
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Dorottya Kühn
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Géza Hitka
- Department of Postharvest, Commerce, Supply Chain and Sensory Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badak-Kerti
- Department of Grain and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Boglárka Alpár
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Doctoral School of Food Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - József Surányi
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Doctoral School of Food Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Ferenc Friedrich
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Klára Pásztor-Huszár
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
25
|
Osuna MB, Michaluk A, Romero AM, Judis MA, Bertola NC. Plasticizing effect of Apis mellifera honey on whey protein isolate films. Biopolymers 2022; 113:e23519. [PMID: 35633499 DOI: 10.1002/bip.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
The aims of this study were to analyze the plasticizing effect of Apis mellifera honey on the mechanical, physicochemical and optical properties of whey protein isolate (WPI) films and to compare the results collected with the plasticizing effect of glycerol on WPI-films. Response surface was applied to optimize the amounts of WPI and glycerol in order to obtain films with higher tensile strength (TS), moderate elongation, and lower water vapor permeability so that they could be used as reference films. Honey was added at different concentrations (60%, 80%, and 100%) of g honey/100 g WPI, as a plasticizer to the WPI-films. In comparison to glycerol-plasticized films, an increase in the percentage of honey produced a reduction of 20 ± 10 to 48 ± 0.5% of TS, a 66 ± 0.5% lower in Young's modulus (WPI-films with 100% honey), and an increase of 186 ± 11% in elongation at break in the WPI-films with 100% honey. Honey-plasticized WPI-films were from 29 ± 11 to 43 ± 3% less permeable to water vapor than glycerol-plasticized WPI films. The mechanical characteristics of the 80% honey formulation did not differ significantly from those of the reference film (p > 0.05). Findings from this study indicate that honey has great potential as a plasticizer in WPI-films.
Collapse
Affiliation(s)
- Mariana B Osuna
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina.,Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - UNCAus, Chaco, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ariel Michaluk
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina
| | - Ana M Romero
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina.,Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - UNCAus, Chaco, Argentina
| | - María A Judis
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina.,Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - UNCAus, Chaco, Argentina
| | - Nora C Bertola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina
| |
Collapse
|
26
|
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel) 2022; 15:644. [PMID: 35631470 PMCID: PMC9144165 DOI: 10.3390/ph15050644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics exhibit many health benefits and a great potential for broad applications in pharmaceutical fields, such as prevention and treatment of gastrointestinal tract diseases (irritable bowel syndrome), prevention and therapy of allergies, certain anticancer effects, and immunomodulation. However, their applications are limited by the low viability and metabolic activity of the probiotics during processing, storage, and delivery in the digestive tract. To overcome the mentioned limitations, probiotic delivery systems have attracted much attention. This review focuses on alginate as a preferred polymer and presents recent advances in alginate-based polymers for probiotic delivery systems. We highlight several alginate-based delivery systems containing various types of probiotics and the physical and chemical modifications with chitosan, cellulose, starch, protein, fish gel, and many other materials to enhance their performance, of which the viability and protective mechanisms are discussed. Withal, various challenges in alginate-based polymers for probiotics delivery systems are traced out, and future directions, specifically on the use of nanomaterials as well as prebiotics, are delineated to further facilitate subsequent researchers in selecting more favorable materials and technology for probiotic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China; (X.W.); (S.G.); (S.Y.); (M.Z.); (L.P.); (Y.L.)
| |
Collapse
|
27
|
Sogut E, Filiz BE, Seydim AC. Whey protein isolate- and carrageenan-based edible films as carriers of different probiotic bacteria. J Dairy Sci 2022; 105:4829-4842. [PMID: 35450710 DOI: 10.3168/jds.2021-21245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
The use of polymer blends as carriers for probiotic cells or using multi-strain probiotic culture mixture in film formulations has a high potential to maintain the stability of probiotics throughout storage. In this study, the survival of Lactobacillus acidophilus, Lactobacillus plantarum, and mixed culture (Lactobacillus spp., Lactococcus spp., and Bifidobacterium spp.) in whey protein isolate (W), carrageenan (C), and W/C blend (W to C on a wt/wt basis at 100 to 0, 75 to 25, 50 to 50, and 0 to 100) films were investigated during 30 d of storage at 4 and 25°C. The water vapor, mechanical, optical, and morphological properties of film samples were also determined. A significant decrease in total lactic acid bacteria counts of all strains (5-6 log cfu/g in reduction) for W and C films was observed during storage at 25°C, whereas blended films had 2 to 3 log cfu/g reduction. The mixed culture-incorporated films had higher cell counts during all storage temperatures. The incorporation of probiotic bacteria significantly influenced the water vapor permeability and color values of films while decreasing tensile strength and elongation at break values. This study reveals that a multi-strain mixed culture presented more chance for survival inside the polymer matrix, especially when carbohydrate- and protein-based polymers were blended.
Collapse
Affiliation(s)
- E Sogut
- Department of Food Engineering, Engineering Faculty, Süleyman Demirel University, 32200 Isparta, Turkey.
| | - B Ertekin Filiz
- Department of Food Engineering, Engineering Faculty, Süleyman Demirel University, 32200 Isparta, Turkey
| | - A C Seydim
- Department of Food Engineering, Engineering Faculty, Süleyman Demirel University, 32200 Isparta, Turkey
| |
Collapse
|
28
|
|
29
|
Arepally D, Reddy RS, Goswami TK, Coorey R. A Review on Probiotic Microencapsulation and Recent Advances of their Application in Bakery Products. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02796-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Sanchez LT, Pinzon MI, Villa CC. Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chem 2022; 371:131121. [PMID: 34555709 DOI: 10.1016/j.foodchem.2021.131121] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 11/04/2022]
Abstract
Active packaging that can be used to release active molecules food products during storage has been a central part in food science research over the last decades. This paper presents the development of an active film made from banana starch incorporated with curcumin-loaded orange oil nanoemulsion. Results showed that inclusion of the curcumin-loaded nanoemulsions reduced water vapor permeability, given the hydrophobic nature of curcumin. Likewise, elongation at break was also increased due to the plasticizing effect of the nanoemulsion. Finally, this paper reports the release profiles of curcumin from the active film into different food simulants. Results showed that curcumin release is diffusion driven in both aqueous and non-aqueous food simulants, however it seems that while the complete nanoemulsion droplets are released in the aqueous simulant, in non-aqueous simulant only curcumin molecules are released.
Collapse
Affiliation(s)
- Leidy T Sanchez
- Programa de Ingenieria de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia
| | - Magda I Pinzon
- Programa de Ingenieria de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia
| | - Cristian C Villa
- Programa de Quimica, Facultad de Ciencias Basicas y Tecnologias, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia.
| |
Collapse
|
31
|
Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Adedeji OE, Okehie ID, Ezekiel OO. Prebiotic influence of baobab pulp on the stability of Lactobacillus rhamnosus GG in white-pan bread. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Ghasemi L, Nouri L, Mohammadi Nafchi A, Al‐Hassan AA. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten‐free bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Leila Ghasemi
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
| | - Leila Nouri
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang Malaysia
| | - Ahmed Ali Al‐Hassan
- Department of Food Science and Human Nutrition College of Agriculture and Veterinary Medicine Qassim University Burydah Saudi Arabia
| |
Collapse
|
34
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Barros-Castillo JC, Solís-Pacheco JR, Calderón-Santoyo M. Characterization of sodium alginate coatings with Meyerozyma caribbica and impact on quality properties of avocado fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Nisar T, Alim A, Iqbal T, Iqbal M, Tehseen S, Zi‐Chao W, Guo Y. Functionality of different probiotic strains embedded in citrus pectin based edible films. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tanzeela Nisar
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an 710062 China
- Department of Food Science and Technology Government College Women University Faisalabad Punjab 38000 Pakistan
- Faculty of Rehabilitation and Allied Health Sciences (FRAHS) Riphah International University Lahore Punjab 54000 Pakistan
| | - Aamina Alim
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an 710062 China
| | - Taimoor Iqbal
- University of Engineering and Technology Lahore Lahore Punjab 54890 Pakistan
| | - Muneeb Iqbal
- Faculty of Rehabilitation and Allied Health Sciences (FRAHS) Riphah International University Lahore Punjab 54000 Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology Government College Women University Faisalabad Punjab 38000 Pakistan
| | - Wang Zi‐Chao
- College of Life Science Qinghai Normal University Xining Qinghai 810099 China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an 710062 China
| |
Collapse
|
36
|
Şenöztop E, Dokuzlu T, Güngörmüşler M. A comprehensive review on the development of probiotic supplemented confectioneries. Z NATURFORSCH C 2021; 77:71-84. [PMID: 34653326 DOI: 10.1515/znc-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/25/2021] [Indexed: 11/15/2022]
Abstract
Probiotics are living organisms that have beneficial effects on host by regulating the microbial balance of the intestinal system. While probiotics are naturally found in yogurt and other fermented foods, they can also be added to many products. Although mostly in dairy products, it is possible to see examples of food products supplemented by probiotics in bakeries, chocolates and confectioneries. Nowadays, the COVID-19 pandemic that the world suffers increased the demand for such functional food products including probiotics. Due to probiotics having potential effects on strengthening the immune system, confectioneries supplemented by probiotics were comprehensively discussed in this review together with the suggestion of a novel gelly composition. The suggested formulation of the product is a gel-like snack contains natural ingredients such as carrot, lemon juice and sugar provided from apples. This research review article provided a guide together with the recommendations for potential probiotic research in candy and confectionery industry.
Collapse
Affiliation(s)
- Eylül Şenöztop
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Tuğçe Dokuzlu
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| |
Collapse
|
37
|
Hadidi M, Majidiyan N, Jelyani AZ, Moreno A, Hadian Z, Mousavi Khanegah A. Alginate/Fish Gelatin-Encapsulated Lactobacillus acidophilus: A Study on Viability and Technological Quality of Bread during Baking and Storage. Foods 2021; 10:foods10092215. [PMID: 34574325 PMCID: PMC8472050 DOI: 10.3390/foods10092215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023] Open
Abstract
In the present study, Lactobacillus acidophilus LA-5 was microencapsulated in sodium alginate, followed by fish gelatin coating (0.5, 1.5, and 3%). The survival of L. acidophilus in bread before and after encapsulation in alginate/fish gelatin during the baking and 7-day storage was investigated. Moreover, the effect of alginate/fish gelatin-encapsulated L. acidophilus on the technological properties of bread (hardness, staling rate, water content, oven spring, specific volume, and internal texture structure) was evaluated. Compared with control (free bacteria), encapsulated L. acidophilus in alginate/fish gelatin showed an increase in the viability of bread until 2.49 and 3.07 log CFU/g during baking and storage, respectively. Good viability of (106 CFU/g) for probiotic in encapsulated L. acidophilus in alginate/fish gelatin (1.5 and 3%, respectively) after 4-day storage was achieved. Fish gelatin as a second-layer carrier of the bacteria had a positive effect on improving the technical quality of bread. Furthermore, the staling rate of bread containing encapsulated L. acidophilus alginate/fish gelatin 0.5, 1.5, and 3% decreased by 19.5, 25.8, and 31.7%, respectively. Overall, the findings suggested encapsulation of L. acidophilus in alginate/fish gelatin capsule had great potential to improve probiotic bacteria’s survival during baking and storage and to serve as an effective bread enhancer.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Correspondence: (M.H.); (A.M.K.)
| | - Nava Majidiyan
- Department of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia 57169-63896, Iran;
| | - Aniseh Zarei Jelyani
- Food Control Laboratory, Department of Food and Drug, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
| | - Andrés Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Zahra Hadian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 19395-4741, Iran;
| | - Amin Mousavi Khanegah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, São Paulo 13083-852, Brazil
- Correspondence: (M.H.); (A.M.K.)
| |
Collapse
|
38
|
Nanocomplexes based on egg white protein nanoparticles and bioactive compounds as antifungal edible coatings to extend bread shelf life. Food Res Int 2021; 148:110597. [PMID: 34507742 DOI: 10.1016/j.foodres.2021.110597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
This work is aimed to obtain nanocomplexes based on egg white protein nanoparticles (EWPn) and bioactive compounds (BC), carvacrol (CAR), thymol (THY) and trans-cinnamaldehyde (CIN), and evaluate their application as antifungal edible coatings on preservative-free breads. The nanocomplex formation was studied through stoichiometry, affinity, colloidal behavior, morphology, and encapsulation efficiency (EE, %). Rounded-shape nanocomplexes with particle sizes < 100 nm were obtained. The EE values were similar for all BC (>83%). Furthermore, the in vitro antifungal activity of the nanocomplexes was verified using the Aspergillus niger species. The nanocomplexes were applied as coatings onto the crust of preservative-free breads, which were stored for 7 days (at 25 °C). The coatings had no impact on the physicochemical properties of the bread loaves (moisture, aw, texture, and color). Finally, the coatings based on EWPn-THY and EWPn-CAR nanocomplexes showed higher antifungal efficacy, extending the bread shelf life after 7 days.
Collapse
|
39
|
Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. COATINGS 2021. [DOI: 10.3390/coatings11091056] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The recent surge in environmental awareness and consumer demand for stable, healthy, and safe foods has led the packaging and food sectors to focus on developing edible packaging materials to reduce waste. Edible films and coatings as a modern sustainable packaging solution offer significant potential to serve as a functional barrier between the food and environment ensuring food safety and quality. Whey protein is one of the most promising edible biopolymers in the food packaging industry that has recently gained much attention for its abundant nature, safety, and biodegradability and as an ecofriendly alternative of synthetic polymers. Whey protein isolate and whey protein concentrate are the two major forms of whey protein involved in the formation of edible films and coatings. An edible whey film is a dry, highly interacting polymer network with a three-dimensional gel-type structure. Films/coatings made from whey proteins are colorless, odorless, flexible, and transparent with outstanding mechanical and barrier properties compared with polysaccharide and other-protein polymers. They have high water vapor permeability, low tensile strength, and excellent oxygen permeability compared with other protein films. Whey protein-based films/coatings have been successfully demonstrated in certain foods as vehicles of active ingredients (antimicrobials, antioxidants, probiotics, etc.), without considerably altering the desired properties of packaging films that adds value for subsequent industrial applications. This review provides an overview of the recent advances on the formation and processing technologies of whey protein-based edible films/coatings, the incorporation of additives/active ingredients for improvement, their technological properties, and potential applications in food packaging.
Collapse
|
40
|
Davachi SM, Pottackal N, Torabi H, Abbaspourrad A. Development and characterization of probiotic mucilage based edible films for the preservation of fruits and vegetables. Sci Rep 2021; 11:16608. [PMID: 34400694 PMCID: PMC8368057 DOI: 10.1038/s41598-021-95994-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
There is growing interest among the public and scientific community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible films, we explored the addition of probiotics to the seed mucilage films of quince, flax, and basil. These mucilages are natural and compatible blends of different polysaccharides that have demonstrated medical benefits. All three seed mucilage films exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from flax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage films. These films effectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic films showed the best mechanical, physical, morphological and bacterial viability. This is the first report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics.
Collapse
Affiliation(s)
- Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Neethu Pottackal
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Bard Hall, Ithaca, NY, 14853, USA
| | - Hooman Torabi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
41
|
|
42
|
Moradi M, Guimarães JT, Sahin S. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Mihaly Cozmuta A, Jastrzębska A, Apjok R, Petrus M, Mihaly Cozmuta L, Peter A, Nicula C. Immobilization of baker's yeast in the alginate-based hydrogels to impart sensorial characteristics to frozen dough bread. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Characterization and Cell Viability of Probiotic/Prebiotics Film Based on Duck Feet Gelatin: A Novel Poultry Gelatin as a Suitable Matrix for Probiotics. Foods 2021; 10:foods10081761. [PMID: 34441538 PMCID: PMC8392242 DOI: 10.3390/foods10081761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023] Open
Abstract
The probiotic viability, physicochemical, mechanical, barrier, and microstructure properties of synbiotic edible films (SEFs) based on duck feet gelatin (DFG) were evaluated. Four synbiotic systems were obtained by mixing four types of prebiotics, namely, dextrin, polydextrose, gum Arabic, and sago starch, with DFG to immobilize of probiotic (Lactobacillus casei ATCC). The ability of DFG to create a suitable matrix to increase probiotic viability was compared with those of other commercial gelatins in a preliminary evaluation. The DFG showed proper probiotic viability compared with other gelatins. The addition of prebiotics reduced the transparency of SEFs and increased color differentiation, uniformity, and complete coverage of probiotic cells. The estimated shelf-life of surviving bacteria in the SEFs stored at 4 and 25 °C showed that gum arabic showed the best performance and enhanced the viability of L. casei by 42% and 45%, respectively. Dextrin, polydextrose, and sago starch enhanced the viability of L. casei at 4 and 25 °C by 26% and 35%, 26% and 5%, and 20% and 5%, respectively. The prebiotics improved the physicochemical, mechanical, and barrier properties of all SEFs, except polydextrose film. The viability of L. casei can be increased with the proper selection of gelatin and prebiotics.
Collapse
|
45
|
Rajagukguk YV, Arnold M, Gramza-Michałowska A. Pulse Probiotic Superfood as Iron Status Improvement Agent in Active Women-A Review. Molecules 2021; 26:molecules26082121. [PMID: 33917113 PMCID: PMC8067853 DOI: 10.3390/molecules26082121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Active women or women of reproductive age (15–49 years old) have a high risk of suffering from anaemia. Anaemia is not solely caused by iron deficiency, however, the approaches to improve iron status in both cases are greatly related. Improving the iron status of active women can be done by dietary intervention with functional food. This review aims to provide insights about the functional food role to increase iron absorption in active women and the potency of pulse probiotic superfood development in dry matrices. Results showed that the beneficial effect of iron status is significantly improved by the synergic work between probiotic and prebiotic. Furthermore, chickpeas and lentils are good sources of prebiotic and the consumption of pulses are related with 21st century people’s intention to eat healthy food. There are wide possibilities to develop functional food products incorporated with probiotics to improve iron status in active woman.
Collapse
|
46
|
Katsi P, Kosma IS, Michailidou S, Argiriou A, Badeka AV, Kontominas MG. Characterization of Artisanal Spontaneous Sourdough Wheat Bread from Central Greece: Evaluation of Physico-Chemical, Microbiological, and Sensory Properties in Relation to Conventional Yeast Leavened Wheat Bread. Foods 2021; 10:foods10030635. [PMID: 33802818 PMCID: PMC8002528 DOI: 10.3390/foods10030635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
In the present study, both yeast leavened bread (YLB) and artisanal sourdough wheat bread (SDB) were prepared. The physico-chemical, microbiological, and sensory properties of breads were monitored as a function of storage time (T = 25 °C). As expected, the titratable acidity (TA) values of SDB were higher than those of YLB. The aroma profile of SDB was similar to that of YLB, including classes of compounds such as alcohols, aldehydes, ketones, esters, organic acids, terpenes, and sulfur compounds; however, the concentrations between the two were different. Aroma deterioration of bread during storage was partly related to the loss of several volatiles. Texture and sensory analysis showed that SDB was harder, less elastic, but richer in aroma and light sour taste than YLB. Mold growth was apparent when the population of yeasts/molds reached approximately 4 log cfu/g. This yeast/mold count was reached on days 4–5 for YLB and day 18 + for SDB. A 16S amplicon meta-barcoding analysis showed that the bacterial profile of SDB was dominated by a single genus, (Lactobacillus). Analysis of the eukaryotic load showed that at the genus level, Saccharomyces and Alternaria were the most abundant genera, independently of the gene sequenced (18S or ITS). Based primarily on mold growth and texture data, which proved to be the most sensitive quality parameters, the shelf life was ca. 4–5 days for YLB and 10 days for SDB.
Collapse
Affiliation(s)
- Pavlina Katsi
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
| | - Ioanna S. Kosma
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
| | - Sofia Michailidou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (S.M.); (A.A.)
| | - Anagnostis Argiriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (S.M.); (A.A.)
- Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Anastasia V. Badeka
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
- Correspondence: (A.V.B.); (M.G.K.)
| | - Michael G. Kontominas
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (P.K.); (I.S.K.)
- Correspondence: (A.V.B.); (M.G.K.)
| |
Collapse
|
47
|
Protein-Based Films and Coatings for Food Industry Applications. Polymers (Basel) 2021; 13:polym13050769. [PMID: 33801341 PMCID: PMC7958328 DOI: 10.3390/polym13050769] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.
Collapse
|
48
|
Carvalho PH, Kawaguti HY, de Souza WFC, Sato HH. Immobilization of Serratia plymuthica by ionic gelation and cross-linking with transglutaminase for the conversion of sucrose into isomaltulose. Bioprocess Biosyst Eng 2021; 44:1109-1118. [PMID: 33547961 DOI: 10.1007/s00449-021-02513-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Isomaltulose is an alternative sugar obtained from sucrose using some bacteria producing glycosyltransferase. This work aimed to optimize conditions for the immobilization of Serratia plymuthica through ionic gelation and cross-linking by transglutaminase using the sequential experimental strategy for the conversion of sucrose into isomaltulose. The effect of five variables (concentrations of cell mass, alginate, gelatin, transglutaminase, and calcium chloride) was studied, as well as the interactions between them on the matrix composition for the S. plymuthica immobilization. Three experimental designs were used to optimize the concentrations of each variable to obtain higher concentration of isomaltulose. A high conversion of sucrose into isomaltulose (71.04%) was obtained by the cells immobilized in a matrix composed of alginate (1.7%), CaCl2 (0.25 mol/L), gelatin (0.5%), transglutaminase (3.5%) and cell mass (33.5%). As a result, the transglutaminase application as a cross-linking agent improved the immobilization of Serratia plymuthica cells and the conversion of sucrose into isomaltulose.
Collapse
Affiliation(s)
- Priscila Hoffmann Carvalho
- School of Food Engineering, University of Campinas, 80 Monteiro Lobato St. Campinas, São Paulo, 13083-862, Brazil
| | - Haroldo Yukio Kawaguti
- Center of Biological and Health Sciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hélia Harumi Sato
- School of Food Engineering, University of Campinas, 80 Monteiro Lobato St. Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
49
|
Prebiotic-alginate edible coating on fresh-cut apple as a new carrier for probiotic lactobacilli and bifidobacteria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Fabrication and characterization of probiotic Lactobacillus plantarum loaded sodium alginate edible films. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00619-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|