1
|
Wu D, Zhou B, Liu Y, Zhu X, Li B, Liang H. Tailoring carrier-free nanoparticles based on natural small molecule assembly for synergistic anti-tumor efficacy. Asian J Pharm Sci 2025; 20:100992. [PMID: 39931358 PMCID: PMC11808501 DOI: 10.1016/j.ajps.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 02/13/2025] Open
Abstract
Interfacial modular assemblies of versatile polyphenols have attracted widespread interest in surface and materials engineering. In this study, natural polyphenol (tannic acid, TA) and nobiletin (NOB) can directly form binary carrier-free spherical nanoparticles (NT NPs) through synergistically driven by a variety of interactions (such as hydrogen bonding, oxidative reactions, etc.). The synthesis involves polyphenolic deposition on hydrophobic NOB nanoaggregates, followed by in situ oxidative self-polymerization. Interestingly, the assembled NT NPs exhibit controllable and dynamic changes in particle size during the initial stage. Ultimately, uniform and spherical NT NPs appear stable, with high loading capability, enabling incorporated NOB to preserve their function. Furthermore, in vitro evaluations demonstrate that the rational combination of polyphenol module and NOB can induce apoptosis and inhibit tumor metastasis for both lung cancer H1299 and human fibrosarcoma HT1080 cell lines. Notably, the optimized NT48 NPs were then verified in vivo experiments to achieve a promising synergistic anti-tumor efficacy. These findings not only provide new opportunities for the streamlined and sensible engineering of future polyphenol-based biomaterials, but also open up new prospects for the design of small-molecule nature phytochemicals.
Collapse
Affiliation(s)
- Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Ying Liu
- Department of Gynecology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266033, China
| | - Xiao Zhu
- Research Computing, Purdue University, West Lafayette IN 47905, USA
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Tang Z, Fang P, Tao Y, Huang Q, Xu X, Cheng X, Hussain F, Li X, Liang J, Ye S, Sun Y. Enhancing walnut butter with a pea protein isolate-pectin-pterostilbene complex: Physicochemical properties and stability analysis. Food Res Int 2025; 201:115541. [PMID: 39849688 DOI: 10.1016/j.foodres.2024.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
To explore the potential applications of pea protein isolate-pectin-pterostilbene complex (PPI-PEC-PT) in the sauce industry, its solubility, antioxidant capacity and oxidative stability were measured. The results indicated that PPI-PEC-PT exhibited a solubility of 77.67 %, more than double that of PPI-PT (31.93 %). The DPPH radical scavenging capacity of PPI-PEC-PT reached up to 78.52 % at a concentration of 50 μg/mL. After accelerated oxidation (60 °C, 7 days), the peroxide value (8.15 mmol/L) and malondialdehyde content (11.50 mmol/L) of PPI-PEC-PT emulsion were significantly lower than those of PPI. Additionally, when applied to walnut butter, PPI-PEC-PT significantly enhanced its gel properties. In conclusion, PPI-PEC-PT could not only serve as a natural antioxidant but also be utilized as a food additive to enhance the gelling properties of products in the food industry.
Collapse
Affiliation(s)
- Zonghui Tang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Panchen Fang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Yuting Tao
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Qiuye Huang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Xuefei Xu
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Xiaoyan Cheng
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Faraz Hussain
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Xueling Li
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Jin Liang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yue Sun
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
3
|
Wen C, Tang J, Wu M, Liu H, Lin X, Fan M, Liu G, Zhang J, Liang L, Liu X, Li Y, Duan Y, Xu X. Preparation, characterization, and stability of pectin-whey protein isolate-based nanoparticles with mitochondrial targeting ability. Int J Biol Macromol 2025; 301:140383. [PMID: 39880250 DOI: 10.1016/j.ijbiomac.2025.140383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Quercetin (Que) is a polyhydroxy flavonoid with strong inhibitory activity against cancer cells. However, the poor water solubility and low bioavailability of Que. limit its application in the functional food industry. In the present study, the nanoparticle loaded with Que. was prepared with whey isolate protein (WPI) stabilized by triphenylphosphonium bromide (TPP) and pectin (P) as wall materials. The formation mechanism, release of Que., and antitumor activity of nanoparticles were investigated. The results showed that the optimal ratio of WPI: TPP: Que.: P in the preparation of nanoparticles (WPI-TPP-Que-P) was 50:8:1:20 (w/w/w/w). The encapsulation rate of Que. in the WPI-TPP-Que-P was 82.64 % with a particle size of 261.7 nm and a zeta potential of -42.1 mV. Compared with WPI-TPP-Que, the retention rate of WPI-TPP-Que-P increased by 4.03 % after in vitro digestion. The release kinetic result indicated that WPI-TPP-Que-P release was dominated by non-Fickian diffusion. In addition, WPI-TPP-Que-P was taken in and achieved intracellular targeting to mitochondria and promoted apoptosis (apoptosis rate: 83.6 %) by decreasing mitochondrial membrane potential and IL-10 content and improving the content of TNF-α in HepG-2 cells. This study highlights the promising application of P-modified mitochondria-targeted nanocarriers for enhanced Que. delivery.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Maowei Wu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
4
|
Nie C, Xiang J, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. Changes in the structural, aggregation behavior and gel properties of pork myofibrillar protein induced by theaflavins. Food Res Int 2024; 196:115135. [PMID: 39614527 DOI: 10.1016/j.foodres.2024.115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 12/01/2024]
Abstract
This study explores the effect of different theaflavins (TFs) concentrations (0, 100, 300, 600 and 900 mg/L) on the structure, aggregation behavior and gelation properties of pork myofibrillar protein (MP). The protein structure and aggregation behavior were characterized by free sulfhydryl groups, surface hydrophobicity, fluorescence emission spectra, particle size and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The gel properties of samples were characterized by gel strength, cooking loss, microstructure and gel supernatant SDS-PAGE. The results showed a significant decrease in free thiol content with increasing TFs concentration, suggesting thiol-quinone covalent interaction between TFs and thiol group of MP. Intrinsic fluorescence spectroscopy confirmed a static quenching between TFs and MP. And TFs reduced the particle size of MP suspension and caused no protein aggregation bond in SDS-PAGE. For gel properties, TFs caused a decrease of gel strength from 96.77 g to 21.91 g and an increase in cooking loss from 40.34 % to 71.15 %. The bond of protein aggregates in gel supernatants SDS-PAGE revealed that some protein aggregates formed by disulfide bonding were not involve in gel formation with TFs addition. In conclusion, TFs cause thiol loss of MP and impaired MP gelling ability by interfering with disulfide bond formation during gelation.
Collapse
Affiliation(s)
- Chunlin Nie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Qingyuan Food Inspection Center, Qingyuan 511538, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Fu W, Liu F, Zhang R, Zhao R, He Y, Wang C. Physicochemical Properties, Stability, and Functionality of Non-Covalent Ternary Complexes Fabricated with Pea Protein, Hyaluronic Acid and Chlorogenic Acid. Foods 2024; 13:2054. [PMID: 38998558 PMCID: PMC11241131 DOI: 10.3390/foods13132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to prepare and characterize stable non-covalent ternary complexes based on pea protein (PP, 0.5%), hyaluronic acid (HA, 0.125%), and chlorogenic acid (CA, 0~0.03%). The ternary complexes were comprehensively evaluated for physicochemical attributes, stability, emulsifying capacities, antioxidant properties, and antimicrobial efficacy. PP-HA binary complexes were first prepared at pH 7, and then CA was bound to the binary complexes, as verified by fluorescence quenching. Molecular docking elucidated that PP interacted with HA and CA through hydrogen bonding, hydrophobic and electrostatic interactions. The particle size of ternary complexes initially decreased, then increased with CA concentration, peaking at 0.025%. Ternary complexes demonstrated good stability against UV light and thermal treatment. Emulsifying activity of complexes initially decreased and then increased, with a turning point of 0.025%, while emulsion stability continued to increase. Complexes exhibited potent scavenging ability against free radicals and iron ions, intensifying with higher CA concentrations. Ternary complexes effectively inhibited Staphylococcus aureus and Escherichia coli, with inhibition up to 0.025%, then decreasing with CA concentration. Our study indicated that the prepared ternary complexes at pH 7 were stable and possessed good functionality, including emulsifying properties, antioxidant activity, and antibacterial properties under certain concentrations of CA. These findings may provide valuable insights for the targeted design and application of protein-polysaccharide-polyphenol complexes in beverages and dairy products.
Collapse
Affiliation(s)
| | | | | | | | | | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (W.F.); (F.L.); (R.Z.); (R.Z.); (Y.H.)
| |
Collapse
|
6
|
Zahariev N, Pilicheva B. A Novel Method for the Preparation of Casein-Fucoidan Composite Nanostructures. Polymers (Basel) 2024; 16:1818. [PMID: 39000673 PMCID: PMC11244046 DOI: 10.3390/polym16131818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The aim of the study was to develop casein-fucoidan composite nanostructures through the method of polyelectrolyte complexation and subsequent spray drying. To determine the optimal parameters for the preparation of the composite structures and to investigate the influence of the production and technological parameters on the main structural and morphological characteristics of the obtained structures, 3(k-p) fractional factorial design was applied. The independent variables (casein to fucoidan ratio, glutaraldehyde concentration, and spray intensity) were varied at three levels (low, medium, and high) and their effect on the yield, the average particle size, and the zeta potential were evaluated statistically. Based on the obtained results, models C1F1G1Sp.30, C1F1G2Sp.40, and C1F1G3Sp.50, which have an average particle size ranging from (0.265 ± 0.03) µm to (0.357 ± 0.02) µm, a production yield in the range (48.9 ± 2.9) % to (66.4 ± 2.2) %, and a zeta potential varying from (-20.12 ± 0.9) mV to (-25.71 ± 1.0) mV, were selected as optimal for further use as drug delivery systems.
Collapse
Affiliation(s)
- Nikolay Zahariev
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Ma D, Yang B, Zhao J, Yuan D, Li Q. Advances in protein-based microcapsules and their applications: A review. Int J Biol Macromol 2024; 263:129742. [PMID: 38278389 DOI: 10.1016/j.ijbiomac.2024.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Due to their excellent emulsification, biocompatibility, and biological activity, proteins are widely used as microcapsule wall materials for encapsulating drugs, natural bioactive substances, essential oils, probiotics, etc. In this review, we summarize the protein-based microcapsules, discussing the types of proteins utilized in microcapsule wall materials, the preparation process, and the main factors that influence their properties. Additionally, we conclude with examples of the vital role of protein-based microcapsules in advancing the food industry from primary processing to deep processing and their potential applications in the biomedical, chemical, and textile industries. However, the low stability and controllability of protein wall materials lead to degraded performance and quality of microcapsules. Protein complexes with polysaccharides or modifications to proteins are often used to improve the thermal instability, pH sensitivity, encapsulation efficiency and antioxidant capacity of microcapsules. In addition, factors such as wall material composition, wall material ratio, the ratio of core to wall material, pH, and preparation method all play critical roles in the preparation and performance of microcapsules. The application area and scope of protein-based microcapsules can be further expanded by optimizing the preparation process and studying the microcapsule release mechanism and control strategy.
Collapse
Affiliation(s)
- Donghui Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China.
| |
Collapse
|
8
|
Kang BK, Yu JC, Shin WS. Physical Stability and Antioxidant Ability of a Sustainable Oil-in-Water Emulsion Containing Perilla Skin Extract and Upcycled Aquasoya Powder. Foods 2024; 13:1063. [PMID: 38611367 PMCID: PMC11011918 DOI: 10.3390/foods13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In response to environmental issues, upcycling has become a growing trend in the food industry. Aquasoya is a promising method to upcycle by-product from soybean processing due to its high protein contents and excellent emulsifying ability. In the present research, Aquasoya powder was used an emulsifier to incorporate the antioxidant compounds from perilla skin extract (PSE), namely rosmarinic acid, into oil-in-water (O/W) emulsion system and its physochemical stability was assessed. As a result, droplet size of the emulsion was smaller in PSE-incorporated emulsion (PO, 350.57 ± 9.60 b nm) than the emulsion without PSE (PX, 1045.37 ± 142.63 a nm). Centrifugal photosedimentometry analysis also revealed that the physical stability was significantly improved in PO, and the stability was maintained over 30 d of storage. Furthermore, as PO had a higher ABTS radical scavenging ability and showed slower initial lipid oxidation, it was concluded that PO has a higher antioxidant ability than PX. Conclusively, Aquasoya can be considered as an emulsifier in O/W emulsion with PSE because it can effectively integrate and stabilize the antioxidant substance derived from perilla skin.
Collapse
Affiliation(s)
| | | | - Weon-Sun Shin
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea; (B.-K.K.); (J.-C.Y.)
| |
Collapse
|
9
|
Fierri I, De Marchi L, Chignola R, Rossin G, Bellumori M, Perbellini A, Mancini I, Romeo A, Ischia G, Saorin A, Mainente F, Zoccatelli G. Nanoencapsulation of Anthocyanins from Red Cabbage ( Brassica oleracea L. var. Capitata f. rubra) through Coacervation of Whey Protein Isolate and Apple High Methoxyl Pectin. Antioxidants (Basel) 2023; 12:1757. [PMID: 37760059 PMCID: PMC10525587 DOI: 10.3390/antiox12091757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Encapsulation is a valuable strategy to protect and deliver anthocyanins (ACNs), phenolic compounds with outstanding antioxidant capacity but limited stability. In this study, coacervation was used to encapsulate an ACN-rich red cabbage extract (RCE). Two agri-food by-product polymers, whey protein isolate (WPI) and apple high-methoxyl pectin (HMP), were blended at pH 4.0 in a specific ratio to induce the formation of nanoparticles (NPs). The process optimisation yielded a monodispersed population (PDI < 0.200) of negatively charged (-17 mV) NPs with an average diameter of 380 nm. RCE concentration influenced size, charge, and antioxidant capacity in a dose-dependent manner. NPs were also sensitive to pH increases from 4 to 7, showing a progressive breakdown. The encapsulation efficiency was 30%, with the retention of ACNs within the polymeric matrix being influenced by their chemical structure: diacylated and/or C3-triglucoside forms were more efficiently encapsulated than monoacylated C3-diglucosides. In conclusion, we report a promising, simple, and sustainable method to produce monodispersed NPs for ACN encapsulation and delivery. Evidence of differential binding of ACNs to NPs, dependent on specific acylation/glycosylation patterns, indicates that care must be taken in the choice of the appropriate NP formulation for the encapsulation of phenolic compounds.
Collapse
Affiliation(s)
- Ilaria Fierri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Laura De Marchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Giacomo Rossin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Maria Bellumori
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, Sesto F.no, 50019 Florence, Italy;
| | - Anna Perbellini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Ines Mancini
- Department of Physics, University of Trento, Via Sommarive 14, Povo, 38123 Trento, Italy;
| | - Alessandro Romeo
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Gloria Ischia
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy;
| | - Asia Saorin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Federica Mainente
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Gianni Zoccatelli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| |
Collapse
|
10
|
Song Y, Wang X, Luo H, Wang M, Chen J. Reducing the Flocculation of Milk Tea Using Different Stabilizers to Regulate Tea Proteins. Foods 2023; 12:foods12071484. [PMID: 37048305 PMCID: PMC10094277 DOI: 10.3390/foods12071484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 04/05/2023] Open
Abstract
The regulation of flocs derived from polyphenol–protein formation in milk tea has not been fully explored. In this study, the flocculation of milk tea was regulated by adding 10 kinds of stabilizers with different characteristics. The stability coefficient and centrifugal precipitation rate were used as indexes. The optimal concentration ratio of the complex stabilizer was identified using the response surface methodology (RSM), being 0.04% for Arabic gum, 0.02% for β-cyclodextrin and 0.03% for Agar. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the characteristics of different stabilizers in milk tea, and our findings were as follows: (1) The relative strength of the peaks in different stable systems was different. The absorption peaks were mainly near the wave numbers 3376 cm−1, 2928 cm−1, 1655 cm−1, 1542 cm−1, 1408 cm−1, 1047 cm−1 and 925 cm−1. (2) The milk tea system was an amorphous structure. The diffraction peak of the composite system was observed to be about 20°. The crystallinity of the milk tea in the compound group was 33.16%, which was higher than that of the blank group (9.67%). (3) The compound stabilizer reduced flocculation, and the stabilizing agents improved the surface order of milk tea. These results indicate that the combination of polysaccharide stabilizers (Arabic gum and agar) and oligosaccharide stabilizers (β-CD) in certain proportions can regulate the flocculation of milk tea and improve its stability. The potential research avenues involving polyphenol–protein complex instability systems and their applications in food development are expanded by this work.
Collapse
Affiliation(s)
- Yuqi Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xiaosen Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Haixi Luo
- Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Mingyan Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Structural, Binding and Functional Properties of Milk Protein-Polyphenol Systems: A Review. Molecules 2023; 28:molecules28052288. [PMID: 36903537 PMCID: PMC10005448 DOI: 10.3390/molecules28052288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Polyphenols (PP) are linked to health benefits (e.g., prevention of cancer, cardiovascular disease and obesity), which are mainly attributed to their antioxidant activity. During digestion, PP are oxidised to a significant degree reducing their bio-functionality. In recent years, the potential of various milk protein systems, including β-casein micelles, β-lactoglobulin aggregates, blood serum albumin aggregates, native casein micelles and re-assembled casein micelles, to bind and protect PP have been investigated. These studies have yet to be systematically reviewed. The functional properties of the milk protein-PP systems depend on the type and concentration of both PP and protein, as well as the structure of the resultant complexes, with environmental and processing factors also having an influence. Milk protein systems protect PP from degradation during digestion, resulting in a higher bioaccessibility and bioavailability, which improve the functional properties of PP upon consumption. This review compares different milk protein systems in terms of physicochemical properties, PP binding performance and ability to enhance the bio-functional properties of PP. The goal is to provide a comprehensive overview on the structural, binding, and functional properties of milk protein-polyphenol systems. It is concluded that milk protein complexes function effectively as delivery systems for PP, protecting PP from oxidation during digestion.
Collapse
|
12
|
Huang X, Tu R, Song H, Dong K, Geng F, Chen L, Huang Q, Wu Y. Fabrication and characterization of gelatin-EGCG-pectin ternary complex: formation mechanism, emulsion stability, and structure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1442-1453. [PMID: 36168822 DOI: 10.1002/jsfa.12240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Protein-polyphenol-polysaccharide ternary complex particles have better emulsion interfacial stability compared to protein-polysaccharide binary complexes. However, knowledge is scarce when it comes to the fabrication of protein-polyphenol-polysaccharide ternary complexes as interfacial stabilizers and the interactions between the three substances. In the present work, ternary complexes were prepared using gelatin, high methoxyl pectin, and epigallocatechin gallate (EGCG) as raw materials. The effect of different influencing factors on the formation process of ternary complexes was investigated by varying different parameters. physicochemical stability, emulsifying properties, and structural characteristics were analyzed. RESULTS The ternary complex had a smaller particle size (275 nm) and polydispersity index (0.112) when the mass concentration ratio of gelatin to high methoxyl pectin was 9:1, addition of EGCG was 0.05%, pH value was 3.0, and ionic strength was 10 mmol L-1 . Meanwhile, the complex had the highest emulsifying stability index (691.75 min) and emulsifying activity index (22.96 m2 g-1 ). Scanning electron microscopical observation demonstrated that the addition of EGCG promoted the dispersion of ternary complex more uniformly, and effectively reduced the agglomeration phenomenon. The discrepancy in fluorescence intensity suggested that interactions between EGCG and gelatin occurred, which altered the protein spatial conformation of gelatin. Fourier transform infrared spectroscopic analysis elucidated that hydrogen bond interaction was the primary non-covalent interaction between EGCG and gelatin-high methoxyl pectin binary complex. CONCLUSION The aforementioned results purposed to provide some theoretical reference and basis for the rational design of stable protein-polyphenol-polysaccharide ternary complexes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Huang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Tu
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongbo Song
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kai Dong
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Qun Huang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingmei Wu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
High internal phase Pickering emulsions prepared by globular protein-tannic acid complexes: A hydrogen bonds-based interfacial crosslinking strategy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Jia N, Lin S, Yu Y, Zhang G, Li L, Zheng D, Liu D. The Effects of Ethanol and Rutin on the Structure and Gel Properties of Whey Protein Isolate and Related Mechanisms. Foods 2022; 11:foods11213480. [PMID: 36360094 PMCID: PMC9654987 DOI: 10.3390/foods11213480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The effects of different levels of rutin (0, 0.05%, 0.1%, 0.2% and 0.3% w/v) and ethanol on the structure and gel properties of whey protein isolate (WPI) were examined. The results showed that the addition of ethanol promoted the gel formation of WPI. The addition of rutin increased the gel strength of WPI and maintained the water-holding capacity of the gel. Ethanol caused an increase in thiol content and surface hydrophobicity, but rutin decreased the thiol content and surface hydrophobicity of WPI. The particle size, viscosity and viscoelasticity of WPI increased at rutin levels of 0.2% and 0.3%, indicating that rutin caused cross-linking and aggregation of WPI, but rutin had no significant effect on the zeta-potential, indicating that electrostatic interactions were not the main force causing the changes in protein conformation and gel properties. Ethanol and rutin improved the gel properties of WPI possibly by inducing cross-linking of WPIs via hydrophobic and covalent interactions.
Collapse
|
15
|
Dong H, Wang P, Yang Z, Li R, Xu X, Shen J. Dual improvement in curcumin encapsulation efficiency and lyophilized complex dispersibility through ultrasound regulation of curcumin-protein assembly. ULTRASONICS SONOCHEMISTRY 2022; 90:106188. [PMID: 36209635 PMCID: PMC9562415 DOI: 10.1016/j.ultsonch.2022.106188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound has a recognized ability to modulate the structure and function of proteins. Discovering the influential mechanism of ultrasound on the intramolecular interactions of egg-white protein isolate-curcumin (EPI-Cur) nanoparticles and their intermolecular interaction during freeze drying and redispersion is meaningful. In this study, under the extension of pre-sonication time, the protein solubility, surface hydrophobicity, and curcumin encapsulation rate showed an increasing trend, reaching the highest value at 12 min of treatment. However, the values decreased under the followed extension of ultrasound time. After freeze drying and redispersion were applied, the EPI-Cur sample under 12 min of ultrasound treatment exhibited minimal aggregation degree and loss of curcumin. The retention and loading rates of curcumin in the lyophilized powder reached 96 % and 33.60 mg/g EPI, respectively. However, under excessive ultrasound of >12 min, scanning electron microscopy showed distinct blocky aggregates. Overexposure of the hydrophobic region of the protein triggered protein-mediated hydrophobic aggregation after freeze drying. X-ray diffraction patterns showed the highest crystallinity, indicating that the free curcumin-mediated hydrophobic aggregation during freeze drying was enhanced by the concentration effect and intensified the formation of larger aggregates. This work has practical significance for developing the delivery of hydrophobic active substances. It provides theoretical value for the dynamic dispersity change in protein-hydrophobic active substances during freeze drying and redissolving.
Collapse
Affiliation(s)
- Hualin Dong
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Wang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Zongyun Yang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ru Li
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Juan Shen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
16
|
Stoica F, Condurache NN, Aprodu I, Andronoiu DG, Enachi E, Stănciuc N, Bahrim GE, Croitoru C, Râpeanu G. Value-added salad dressing enriched with red onion skin anthocyanins entrapped in different biopolymers. Food Chem X 2022; 15:100374. [PMID: 35782960 PMCID: PMC9240365 DOI: 10.1016/j.fochx.2022.100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
The microencapsulation of ROS extract was performed by gelation and freeze-drying. The powders were rich in valuable antioxidants, with over 80% EE for anthocyanins. Good stability of phytochemicals over storage and digestion was noticed. V2 powder’s functionality was tested by its addition to salad dressing. Our results are promising in developing multifunctional ingredients for foods.
In this study, red onion skin extract was used to obtain food ingredients. Complex biopolymeric matrices were dissolved in the anthocyanin-rich aqueous extract, followed by gelation and freeze-drying. Powders were characterized regarding encapsulation efficiency (EE), phytochemical content, color, antioxidant activity, and microstructure. Storage and simulated digestion stability were also assessed. Two powders with high contents of bioactives and antioxidant activity were obtained. The highest EE was acquired for the powder with a higher polysaccharides concentration (V2). In addition, V2 exhibited the best storage stability. The in vitro studies demonstrated that increased carbohydrate concentration delivers the best anthocyanins protection. To prove its functionality, V2 was added to a salad dressing. The addition of powder has improved the concentration of biologically active compounds and the antioxidant activity of the salad dressings. These results support the assumption that microencapsulation may deliver bioactives from red onion skin as functional ingredients for value-added foods.
Collapse
Affiliation(s)
- Florina Stoica
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Nina Nicoleta Condurache
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Iuliana Aprodu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Doina Georgeta Andronoiu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Elena Enachi
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Gabriela Elena Bahrim
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Constantin Croitoru
- Academy of Agricultural and Forestry Sciences, 61 Marasti Blvd, 011464 Bucharest, Romania
| | - Gabriela Râpeanu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
- Corresponding author at: Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, Building E, Room 202, 800201 Galati, Romania.
| |
Collapse
|
17
|
Lutein-Loaded Emulsions Stabilized by Egg White Protein-Dextran-Catechin Conjugates: Cytotoxicity, Stability, and Bioaccessibility. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Dermengiu NE, Milea ȘA, Burada BP, Stanciu S, Cîrciumaru A, Râpeanu G, Stănciuc N. A dark purple multifunctional ingredient from blueberry pomace enhanced with lactic acid bacteria for various applications. J Food Sci 2022; 87:4725-4737. [PMID: 36124384 DOI: 10.1111/1750-3841.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
Abstract
Nowadays, large quantities of berries are still being dumped or used for composting and animal feeding. The objective of this study was to customize a technological design for appropriate valorization of blueberry pomace into a shelf-life-stable, dark purple multifunctional ingredient, containing lactic acid bacteria (Lactobacillus casei), by freeze-drying. The main anthocyanins in blueberries freeze-dried inoculated pomace are malvidin 3-O-glucoside, peonidin 3-O-glucoside, and cyanidin 3-O-glucoside. A viable cells content of 4.75×108 CFU/g DW was found after freeze-drying and the ability of the freeze-dried powder to inhibit the DPPH radical was 171.98 ± 1.73 mMol Trolox/g DW. The results obtained from CIElab analysis show a tendency to red and blue, characteristic of blueberry anthocyanins. The bioaccesibility of anthocyanins from blueberry powder was 37.8% and the probiotic survival rate after passing through the digestion process was 49.56%. The inhibitory potential of the obtained powder on α-amylase, pancreatic lipase, and α-glucosidase and tyrosinase was assessed. A significant antidiabetic potential of the powder was found, with IC50 values for α-amylase of 2.61 ± 0.24 mg/ml and for α-glucosidase of 1.37 ± 0.01 mg/ml, significantly lower when compared to corresponding drugs used in current practices. The powder also showed a significant potential to inhibit tyrosinase, supporting the hypothesis that the pomace resulting from juice and wine manufacturing may be successfully used to develop multifunctional ingredients with significant health benefits. PRACTICAL APPLICATION: Nowadays, food scientists and industry are seeking technological alternatives to obtain functional ingredients, due to the global interest in translating and applying scientific knowledge to address consumers' health issues. In our study, a freeze-drying customized design involving the use of the blueberry pomace, pectin, and Lactobacillus casei was applied to develop an ingredient with multiple functions. Besides a remarkable color, the powder showed good antioxidant activity, in vitro cells viability, and inhibitory activity against some metabolic syndrome-associated enzymes.
Collapse
Affiliation(s)
| | - Ștefania Adelina Milea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Bogdan Păcularu Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Silvius Stanciu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Adrian Cîrciumaru
- Cross-Border Faculty, Dunarea de Jos University of Galati, Galați, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| |
Collapse
|
19
|
Guo Q, Li S, Du G, Chen H, Yan X, Chang S, Yue T, Yuan Y. Formulation and characterization of microcapsules encapsulating carvacrol using complex coacervation crosslinked with tannic acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Effect of change in pH, heat and ultrasound pre-treatments on binding interactions between quercetin and whey protein concentrate. Food Chem 2022; 384:132508. [DOI: 10.1016/j.foodchem.2022.132508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
|
21
|
Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, Abedi A, Izadifar Z, Mohammadinejad R, Varma RS, Shavandi A. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B 2022; 10:5873-5912. [PMID: 35880440 DOI: 10.1039/d2tb01056a] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tannic acid (TA), a natural polyphenol, is a hydrolysable amphiphilic tannin derivative of gallic acid with several galloyl groups in its structure. Tannic acid interacts with various organic, inorganic, hydrophilic, and hydrophobic materials such as proteins and polysaccharides via hydrogen bonding, electrostatic, coordinative bonding, and hydrophobic interactions. Tannic acid has been studied for various biomedical applications as a natural crosslinker with anti-inflammatory, antibacterial, and anticancer activities. In this review, we focus on TA-based hydrogels for biomaterials engineering to help biomaterials scientists and engineers better realize TA's potential in the design and fabrication of novel hydrogel biomaterials. The interactions of TA with various natural or synthetic compounds are deliberated, discussing parameters that affect TA-material interactions thus providing a fundamental set of criteria for utilizing TA in hydrogels for tissue healing and regeneration. The review also discusses the merits and demerits of using TA in developing hydrogels either through direct incorporation in the hydrogel formulation or indirectly via immersing the final product in a TA solution. In general, TA is a natural bioactive molecule with diverse potential for engineering biomedical hydrogels.
Collapse
Affiliation(s)
- Hafez Jafari
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Pejman Ghaffari-Bohlouli
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71345-1978, Iran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
22
|
Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. Mar Drugs 2022; 20:md20070445. [PMID: 35877738 PMCID: PMC9319038 DOI: 10.3390/md20070445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Driven by consumer demand and government policies, synthetic additives in aquafeed require substitution with sustainable and natural alternatives. Seaweeds have been shown to be a sustainable marine source of novel bioactive phenolic compounds that can be used in food, animal and aqua feeds, or microencapsulation applications. For example, phlorotannins are a structurally unique polymeric phenolic group exclusively found in brown seaweed that act through multiple antioxidant mechanisms. Seaweed phenolics show high affinities for binding proteins via covalent and non-covalent bonds and can have specific bioactivities due to their structures and associated physicochemical properties. Their ability to act as protein cross-linkers means they can be used to enhance the rheological and mechanical properties of food-grade delivery systems, such as microencapsulation, which is a new area of investigation illustrating the versatility of seaweed phenolics. Here we review how seaweed phenolics can be used in a range of applications, with reference to their bioactivity and structural properties.
Collapse
|
23
|
Chen H, Wang Z, Guo X, Yu S, Zhang T, Tang X, Yang Z, Meng H. Tannic Acid-Aminated Sugar Beet Pectin Nanoparticles as a Stabilizer of High-Internal-Phase Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8052-8063. [PMID: 35732030 DOI: 10.1021/acs.jafc.1c04865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pickering stabilizers with additional antioxidant, photostabilizing, and metal-chelating properties are suitable for structuring multifunctional Pickering emulsion systems. Tannic acid (TA) is a potential material which when adsorbed onto the interface may impart antioxidant, UV-light-shielding, and chelating properties to Pickering stabilizers. Herein, we report a type of TA polyelectrolyte nanoparticles (NPs) fabricated following a complexation between TA and aminated sugar beet pectin (SBP-NH2). This study is geared toward investigating the performance of TA/SBP-NH2 NPs in stabilizing Pickering emulsions and protecting β-carotene from degradation. TA/SBP-NH2 NPs formed under optimum conditions had a mean diameter of 82 nm with a sphere-like shape. Because of their favorable surface wettability (91.2°), TA/SBP-NH2 NPs promoted formation of the low-, medium-, and high-internal-phase Pickering emulsions (HIPEs) in an oil volume fraction (φ)-dependent manner; the TA/SBP-NH2 NP-stabilized HIPE demonstrated viscoelastic properties increasing with the increasing concentration (c) of nanoparticles. Due to the excellent storage stability and UV light-absorbing capacity, the photostability of β-carotene was significantly improved by a TA/SBP-NH2 NP-stabilized HIPE (φ = 0.75; c = 3 mg/mL). Altogether, this study highlights that TA/SBP-NH2 NPs have potential applications in structuring Pickering emulsions with improved protective effects on loaded lipophilic compounds.
Collapse
Affiliation(s)
- Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shujuan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Tao Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangyi Tang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanwei Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hecheng Meng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
24
|
Cao J, Li Y, Li F, Liao X, Hu X, Zhang Y. Effect of high hydrostatic pressure on chlorophyll/soybean protein isolate interaction and the mixtures properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Polysaccharides improved the viscoelasticity, microstructure, and physical stability of ovalbumin-ferulic acid complex stabilized emulsion. Int J Biol Macromol 2022; 211:150-158. [PMID: 35568148 DOI: 10.1016/j.ijbiomac.2022.05.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
This study explored the mechanism underlying the interactions between polysaccharides and ovalbumin-ferulic acid (OVA-FA) and the effect of polysaccharides on OVA-FA-stabilized emulsions. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to study the polysaccharide OVA-FA interactions mechanism and to resolve the changes in the protein secondary structure and crystal structure. OVA-FA-polysaccharide-stabilized emulsions were studied using confocal laser scanning microscopy (CLSM), and their rheological properties and stability were determined. The results showed that the non-covalent interactions between polysaccharides and OVA-FA led to an increase in the β-sheet content of OVA and a decrease in the α-helix and random coil contents. The stability of the OVA-FA-polysaccharide-stabilized emulsions was better compared with that of the OVA-FA-stabilized emulsions. By comparing the different OVA-FA-polysaccharide-stabilized emulsions, we observed that OVA-FA-agar did not stabilize the emulsion well, while the OVA-FA-SA- and OVA-FA-KC-stabilized emulsions had good elasticity, and the microstructure and storage stability of the OVA-FA-KC-stabilized emulsion were better. Our findings provide a new perspective for the application of OVA-FA-KC in complex food emulsions.
Collapse
|
26
|
Complexation of Anthocyanin-Bound Blackcurrant Pectin and Whey Protein: Effect of pH and Heat Treatment. Molecules 2022; 27:molecules27134202. [PMID: 35807448 PMCID: PMC9268037 DOI: 10.3390/molecules27134202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
A complexation study between blackcurrant pectin (BCP) and whey protein (WP) was carried out to investigate the impact of bound anthocyanins on pectin−protein interactions. The effects of pH (3.5 and 4.5), heating (85 °C, 15 min), and heating sequence (mixed-heated or heated-mixed) were studied. The pH influenced the color, turbidity, particle size, and zeta-potential of the mixtures, but its impact was mainly significant when heating was introduced. Heating increased the amount of BCP in the complexes—especially at pH 3.5, where 88% w/w of the initial pectin was found in the sedimented (insoluble) fraction. Based on phase-separation measurements, the mixed-heated system at pH 4.5 displayed greater stability than at pH 3.5. Heating sequence was essential in preventing destabilization of the systems; mixing of components before heating produced a more stable system with small complexes (<300 nm) and relatively low polydispersity. However, heating WP before mixing with BCP prompted protein aggregation—producing large complexes (>400 nm) and worsening the destabilization. Peak shifts and emergence (800−1200 cm−1) in infrared spectra confirmed that BCP and WP functional groups were altered after mixing and heating via electrostatic, hydrophobic, and hydrogen bonding interactions. This study demonstrated that appropriate processing conditions can positively impact anthocyanin-bound pectin−protein interactions.
Collapse
|
27
|
The non-covalent interactions between whey protein and various food functional ingredients. Food Chem 2022; 394:133455. [PMID: 35732088 DOI: 10.1016/j.foodchem.2022.133455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
In daily diet, Whey protein (WP) is often coexisted with various Food functional ingredients (FFI) such as proteins, polyphenols, polysaccharides and vitamins, which inevitably affect or interact with each other. Generally speaking, they may be interact by two different mechanisms: non-covalent and covalent interactions, of which the former is more common. We reviewed the non-covalent interactions between WP and various FFI, explained the effect of each WP-FFI interaction, and provided possible applications of WP-FFI complex in the food industry. The biological activity, physical and chemical stability of FFI, and the structure and functionalities of WP were enhanced through the non-covalent interactions. The development of non-covalent interactions between WP and FFI provides opportunities for the design of new ingredients and biopolymer complex, which can be applied in different fields. Future research will further focus on the influence of external or environmental factors in the food system and processing methods on interactions.
Collapse
|
28
|
Amphiphilic nano-delivery system based on modified-chitosan and ovalbumin: Delivery and stability in simulated digestion. Carbohydr Polym 2022; 294:119779. [DOI: 10.1016/j.carbpol.2022.119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
29
|
Stoica F, Condurache NN, Horincar G, Constantin OE, Turturică M, Stănciuc N, Aprodu I, Croitoru C, Râpeanu G. Value-Added Crackers Enriched with Red Onion Skin Anthocyanins Entrapped in Different Combinations of Wall Materials. Antioxidants (Basel) 2022; 11:antiox11061048. [PMID: 35739945 PMCID: PMC9219925 DOI: 10.3390/antiox11061048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to encapsulate anthocyanins from red onion skins into different biopolymeric matrices as a way to develop powders with multifunctional activities. Two different variants of powders were obtained using a combination of gelation and freeze-drying techniques and characterized by encapsulation efficiency, antioxidant activity, phytochemical content, and color. Stability during storage and the bioavailability of anthocyanins in the in vitro simulated digestion were also examined. Powder V2, with a higher concentration of polysaccharides than V1, allowed a better encapsulation efficiency (90.53 ± 0.29%) and good stability during storage. Both variants had a high content of phytochemicals and antioxidant activity. In vitro investigations proved that an increased polysaccharides concentration offers the best protection for anthocyanins. Thus, a controlled release of the anthocyanins in the intestinal medium was achieved. The powder with the highest encapsulation efficiency was added to crackers, followed by phytochemical characterization to assess its potential added value. The addition of the micro-particles improved the functional characteristics such as antioxidant activity, showing its suitability for the development of bakery products. The attained results may bring implicit benefits to consumers, who can benefit from improved bioactive concentrations in foodstuffs, with significant health benefits.
Collapse
Affiliation(s)
- Florina Stoica
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
| | - Nina Nicoleta Condurache
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
| | - Georgiana Horincar
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
| | - Oana Emilia Constantin
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
| | - Mihaela Turturică
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
| | - Nicoleta Stănciuc
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
| | - Iuliana Aprodu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
| | - Constantin Croitoru
- Academy of Agricultural and Forestry Sciences, 61 Marasti Blvd, 011464 Bucharest, Romania
- Correspondence: (C.C.); (G.R.); Tel.: +4-0336-130177 (G.R.)
| | - Gabriela Râpeanu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (F.S.); (N.N.C.); (G.H.); (O.E.C.); (M.T.); (N.S.); (I.A.)
- Correspondence: (C.C.); (G.R.); Tel.: +4-0336-130177 (G.R.)
| |
Collapse
|
30
|
|
31
|
The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Zhang Y, Li S, Yang Y, Wang C, Zhang T. Formation and characterization of noncovalent ternary complexes based on whey protein concentrate, high methoxyl pectin, and phenolic acid. J Dairy Sci 2022; 105:2963-2977. [DOI: 10.3168/jds.2021-21088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
|
33
|
Developing microencapsulated powders containing polyphenols and pectin extracted from Georgia-grown pomegranate peels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Du Q, Zhou L, Lyu F, Liu J, Ding Y. The complex of whey protein and pectin: Interactions, functional properties and applications in food colloidal systems - A review. Colloids Surf B Biointerfaces 2021; 210:112253. [PMID: 34883341 DOI: 10.1016/j.colsurfb.2021.112253] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
This review describes the mechanism of non-covalent/covalent interaction of whey protein-pectin (WPP) complexes, including electrostatic interaction, steric hindrance, cross-linking and Maillard reaction. The interaction between whey protein and pectin determines the form of the complex in the system, i.e. co-dissolution, precipitation, separation, complex coacervation and compounding. The interaction of WPP is affected by environmental conditions and its own properties, including several factors such as pH, polymer concentration and ratio, temperature, and ionic strength. In addition, the functional properties of WPP complexes are discussed through illustrative examples. The complexes with good emulsification, heat stability, gelling properties and biological activity have promising application prospects. WPP complexes have been widely studied for application in food colloidal systems, including protein beverages, delivery systems for bioactive substances, fat substitutes and food preservation films/coatings. The understanding of the interaction and functional properties of WPP complexes provides theoretical support for the improvement and design of new food colloidal systems.
Collapse
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China
| | - Linhui Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China.
| |
Collapse
|
35
|
Dehghan B, Kenari RE, Amiri ZR. Stabilization of whey-based pina colada beverage by mixed Iranian native gums: a mixture design approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Meng L, Li K, Li J, Shang Y, Cui F, Hou C, Wang Q, Hang F, Li W, Shi C, Xie C, Doherty WO. Understanding the pathways for irreversible aggregate clusters formation in concentrated sugarcane juice derived from the membrane clarification process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Lin D, Xiao L, Wen Y, Qin W, Wu D, Chen H, Zhang Q, Zhang Q. Comparison of apple polyphenol-gelatin binary complex and apple polyphenol-gelatin-pectin ternary complex: Antioxidant and structural characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Encapsulant-bioactives interactions impact on physico-chemical properties of concentrated dispersions. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
40
|
Chen W, Yu H, Shi R, Chenglong Ma, Gantumur MA, Qayum A, Bilawal A, Liang G, Oh KC, Jiang Z, Hou J. Comparison of carrying mechanism between three fat-soluble vitamins and alpha-lactalbumin: Effects on structure and physicochemical properties of alpha-lactalbumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Alexandraki S, Leontidis E. Towards the systematic design of multilayer O/W emulsions with tannic acid as an interfacial antioxidant. RSC Adv 2021; 11:23616-23626. [PMID: 35479771 PMCID: PMC9036574 DOI: 10.1039/d1ra03512f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
This work discusses the possibility of designing multilayer oil-in-water emulsions to introduce the maximum possible amount of an antioxidant at the droplet interfaces for the optimal protection of a linseed oil core against oxidation, using a systematic three-step colloidal procedure. An antioxidant (here Tannic Acid - TA) is chosen and its interactions with a primary emulsifier (here Bovine Serum Albumin - BSA) and several polysaccharides are first examined in solution using turbidity measurements. As a second step, LbL deposition on solid surfaces is used to determine which of the polysaccharides to combine with BSA and tannic acid in a multilayer system to ensure maximum presence of tannic acid in the films. From UV-vis and polarization modulation infrared reflection-absorption (PM-IRRAS) spectroscopic measurements it is suggested that the best components to use in a multilayer emulsion droplet, together with BSA and TA, are chitosan and pectin. BSA, chitosan and pectin are subsequently used for the formation of three-layer linseed oil emulsions, and tannic acid is introduced into any of the three layers as an antioxidant. The effect of the exact placement of tannic acid on the oxidative stabilization of linseed oil is assessed by monitoring the fluorescence of Nile red, dissolved in the oil droplets, under the attack of radicals generated in the aqueous phase of the emulsion. From the results it appears that the three-stage procedure presented here can serve to identify successful combinations of interfacial components of multilayer emulsions. It is also concluded that the exact interfacial placement of the antioxidant plays an important role in the oxidative stabilization of the valuable oil core.
Collapse
Affiliation(s)
- Savvia Alexandraki
- Department of Chemistry, University of Cyprus P. O Box 20537 Nicosia 1678 Cyprus
| | | |
Collapse
|
42
|
Whey Protein Isolate Microgel Properties Tuned by Crosslinking with Organic Acids to Achieve Stabilization of Pickering Emulsions. Foods 2021; 10:foods10061296. [PMID: 34199941 PMCID: PMC8226977 DOI: 10.3390/foods10061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Whey protein isolate (WPI) can be used effectively to produce food-grade particles for stabilizing Pickering emulsions. In the present study, crosslinking of WPI microgels using organic acids (tannic and citric acids) is proposed to improve their functionality in emulsions containing roasted coffee oil. It was demonstrated that crosslinking of WPI by organic acids reduces the microgels’ size from ≈1850 nm to 185 nm and increases their contact angle compared to conventional WPI microgels, achieving values as high as 60°. This led to the higher physical stability of Pickering emulsions: the higher contact angle and smaller particle size of acid-crosslinked microgels contribute to the formation of a thinner layer of particles on the oil/water (O/W) interface that is located mostly in the water phase, thus forming an effective barrier against droplet coalescence. Particularly, emulsions stabilized by tannic acid-crosslinked WPI microgels presented neither creaming nor sedimentation up to 7 days of storage. The present work demonstrates that the functionality of these crosslinked WPI microgels can be tweaked considerably, which is an asset compared to other food-grade particles that mostly need to be used as such to comply with the clean-label policy. In addition, the applications of these particles for an emulsion are much more diverse as of the starting material.
Collapse
|
43
|
Liang T, Jiao S, Jing P. Molecular interaction between pectin and catechin/procyanidin in simulative juice model: Insights from spectroscopic, morphology, and antioxidant activity. J Food Sci 2021; 86:2445-2456. [PMID: 33963549 DOI: 10.1111/1750-3841.15743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/12/2021] [Accepted: 03/28/2021] [Indexed: 11/30/2022]
Abstract
The interactions between polysaccharides and phenolics in foods affect their physicochemical properties and bioactivity. Pectin and catechin/procyanidin present in plants ubiquitously and attracting more attentions for the potential health benefits. This work investigates the interactions between high methoxyl pectin and catechin/procyanidin in a simulative juice model using multiple microscopic and spectroscopic approaches and their influences on the antioxidant activity of phenolics were evaluated in the Caco-2 cells model. The results showed that pectin with either of phenolic compunds exhibited lower transmittance, zeta potential, viscosity, and larger particle size than it alone. The morphology of pectin complexes with either of phenolics under experimental conditions (pH = 3.5) was observed. The ΔH° (-6.821 kJ mol-1 ) and ΔS° (6.357×10-2 kJ mol-1 ) indicated that pectin interacts with procyanidin via electrostatic interaction, whereas hydrophobic interaction was the dominant drive force between pectin and catechin (ΔH° = 1.422 kJ mol-1 ; ΔS° = 13.048 × 10-2 kJ mol-1 ). The antioxidant activities of catechin/procyanidin decreased while binding with pectin based on indexes of glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and malondialdehyde. PRACTICAL APPLICATION: The findings of this work indicated that the physicochemical property of pectin and the antioxidant activity of catechin/procyanidin were influenced by the interactions between pectin and catechin/procyanidin in a simulative food system. This study provides insights into the molecular interactions between pectin and phenolics in a simulative food system.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Hydrophobic interaction driving the binding of soybean protein isolate and chlorophyll: Improvements to the thermal stability of chlorophyll. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Yu D, Zhang X, Zou W, Tang H, Yang F, Wang L, Elfalleh W. Raman spectroscopy analysis of the effect of electrolysis treatment on the structure of soy protein isolate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00716-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
47
|
Wang X, Feng T, Xia S. Saltiness perception related to salt release of surimi emulsified sausages: modulation in texture and microstructure by polysaccharides. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuejiao Wang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
- School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Tingting Feng
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
- School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
- School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| |
Collapse
|
48
|
Sun C, Wang C, Xiong Z, Fang Y. Properties of binary complexes of whey protein fibril and gum arabic and their functions of stabilizing emulsions and simulating mayonnaise. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Ming Y, Chen L, Khan A, Wang H, Wang C. Effects of tea polyphenols on physicochemical and antioxidative properties of whey protein coating. Food Sci Biotechnol 2020; 29:1655-1663. [PMID: 33282432 DOI: 10.1007/s10068-020-00824-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/25/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
Effects of tea polyphenols (TP) incorporation on physicochemical and antioxidative properties of whey protein isolate (WPI) coating were studied. Two WPI coating solutions were prepared by heating WPI solutions (pH 8, 90 °C) for 30 min and then TP was incorporated. TP addition could increase the negative zeta potential of 5% solution. The surface hydrophobicity index of both solutions was increased and intrinsic fluorescence intensity decreased greatly after addition of TP. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (2 ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging capacities of both solutions increased with increasing TP. Compared with apple pieces coated with whey protein only, those with TP containing whey protein coatings showed lower browning index and slight changes in weight loss during 24 h storage. Data indicated that TP could influence the physicochemical properties and improve the antioxidant activity of WPI coating solutions and can be used to retard the enzymatic browning of fruit during storage.
Collapse
Affiliation(s)
- Yao Ming
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| | - Lu Chen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| | - Abbas Khan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| | - Hao Wang
- Department of Food Science, Northeast Agriculture University, Harbin, 150001 Heilongjiang China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| |
Collapse
|
50
|
Zhang L, Sun J, Qi Y, Song Y, Yang Z, Li Z, Liu L, Wang P, Xu X, Zhou G. Forming nanoconjugates or inducing macroaggregates, curcumin dose effect on myosin assembling revealed by molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|