1
|
Zhang T, Li S, Yang M, Li Y, Liu X, Shang X, Liu J, Du Z, Yu T. Egg White Protein-Proanthocyanin Complexes Stabilized Emulsions: Investigation of Physical Stability, Digestion Kinetics, and Free Fatty Acid Release Dynamics. Molecules 2024; 29:743. [PMID: 38338486 PMCID: PMC10856577 DOI: 10.3390/molecules29030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Egg white proteins pose notable limitations in emulsion applications due to their inadequate wettability and interfacial instability. Polyphenol-driven alterations in proteins serve as an effective strategy for optimizing their properties. Herein, covalent and non-covalent complexes of egg white proteins-proanthocyanins were synthesized. The analysis of structural alterations, amino acid side chains and wettability was performed. The superior wettability (80.00° ± 2.23°) and rigid structure (2.95 GPa) of covalent complexes established favorable conditions for their utilization in emulsions. Furthermore, stability evaluation, digestion kinetics, free fatty acid (FFA) release kinetics, and correlation analysis were explored to unravel the impact of covalent and non-covalent modification on emulsion stability, dynamic digestion process, and interlinkages. Emulsion stabilized by covalent complex exhibited exceptional stabilization properties, and FFA release kinetics followed both first-order and Korsmeyer-Peppas models. This study offers valuable insights into the application of complexes of proteins-polyphenols in emulsion systems and introduces an innovative approach for analyzing the dynamics of the emulsion digestion process.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Ting Yu
- Department of Nutrition, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
2
|
Santos MAS, Fonseca LR, Okuro PK, Cunha RL. High internal phase emulsion stabilized by sodium caseinate:quercetin complex as antioxidant emulsifier. Food Res Int 2023; 173:113247. [PMID: 37803560 DOI: 10.1016/j.foodres.2023.113247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
High internal phase emulsion (HIPE) was produced and stabilized using a novel antioxidant emulsifier formed by the complexation between sodium caseinate (SC) and quercetin (Q). Colloidal complexes, produced via an alkaline process, showed great ability to reduce the interfacial tension between oil-water phases, promoting stabilization of the HIPEs even at low concentrations (1.5% w/v in the aqueous fraction). HIPEs at 0.80 volume fraction of dispersed phase presented remarkable viscosity due to the high-packing network of oil droplets surrounded by a thin liquid layer. Moreover, the emulsions showed a gel-like behavior and kinetic stability for 45-days at 25 °C. The approach of SC:Q complexes on HIPEs development is promising to reduce lipid oxidation, translated by the formation of hydroperoxides and malondialdehyde during storage, especially for the complex formed with the highest amount of the phenolic compound. In this study, the development of HIPEs with outstanding kinetic and oxidative stability is reported as a potential alternative for the development of healthier products with reduced saturated and trans-fat content.
Collapse
Affiliation(s)
- Matheus A S Santos
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil.
| | - Larissa R Fonseca
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Paula K Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| |
Collapse
|
3
|
Puel E, Coumes CCD, Poulesquen A, Testard F, Thill A. Pickering emulsions stabilized by inside/out Janus nanotubes: Oil triggers an evolving solid interfacial layer. J Colloid Interface Sci 2023; 647:478-487. [PMID: 37271092 DOI: 10.1016/j.jcis.2023.04.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023]
Abstract
HYPOTHESIS In the field of Pickering emulsion, original inside/ouside Janus clays nanoparticles are investigated for their emulsification properties. Imogolite is a tubular nanomineral of the clay family having both inner and outer hydrophilic surfaces. A Janus version of this nanomineral with an inner surface fully covered by methyl groups can be obtained directly by synthesis (Imo-CH3, hybrid imogolite). The hydrophilic/hydrophobic duality of the Janus Imo-CH3 allows the nanotubes to be dispersed in an aqueous suspension and enables emulsification of non-polar compounds due to the hydrophobic inner cavity of the nanotube. EXPERIMENTS Through the combination of Small Angle X-ray Scattering (SAXS), interfacial observations and rheology, the stabilization mechanism of imo-CH3 in oil-water emulsions has been investigated. FINDINGS Here, we show that interfacial stabilization of an oil-in-water emulsion is rapidly obtained at a critical Imo-CH3 concentration as low as 0.6 wt%. Below this concentration threshold, no arrested coalescence is observed, and excess oil is expelled from the emulsion through a cascading coalescence mechanism. The stability of the emulsion above the concentration threshold is reinforced by an evolving interfacial solid layer resulting from the aggregation of Imo-CH3 nanotubes that is triggered by the penetration of confined oil front into the continuous phase.
Collapse
Affiliation(s)
- Estelle Puel
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette Cedex, France
| | - Céline Cau Dit Coumes
- CEA, DES, ISEC, DE2D, Université Montpellier, Marcoule, 30207 Bagnols-Sur-Cèze Cedex, France
| | - Arnaud Poulesquen
- CEA, DES, ISEC, DE2D, Université Montpellier, Marcoule, 30207 Bagnols-Sur-Cèze Cedex, France
| | - Fabienne Testard
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette Cedex, France
| | - Antoine Thill
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette Cedex, France.
| |
Collapse
|
4
|
Li X, Chen W, Hao J, Xu D. Construction of different properties single and double cross-linked binary emulsion filled gels based on rice bran oil body emulsion. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Chen C, Pan Y, Niu Y, Peng D, Huang W, Shen W, Jin W, Huang Q. Modulating interfacial structure and lipid digestion of natural Camellia oil body by roasting and boiling processes. Food Chem 2023; 402:134198. [DOI: 10.1016/j.foodchem.2022.134198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
|
6
|
Decker EA, Villeneuve P. Impact of processing on the oxidative stability of oil bodies. Crit Rev Food Sci Nutr 2023; 64:6001-6015. [PMID: 36600584 DOI: 10.1080/10408398.2022.2160963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
7
|
Pereira WFS, de Figueiredo Furtado G, Feltre G, Hubinger MD. Oleosomes from Buriti (Mauritia flexuosa L. f.): Extraction, characterization and stability study. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Jin W, Yang X, Shang W, Wu Y, Guo C, Huang W, Deng Q, Peng D. Assembled structure and interfacial properties of oleosome-associated proteins from Camellia oleifera as natural surface-active agents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Hao J, Li X, Wang Q, Lv W, Zhang W, Xu D. Recent developments and prospects in the extraction, composition, stability, food applications, and
in vitro
digestion of plant oil bodies. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenguan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|
10
|
Luo X, Hu S, Xu X, Du M, Wu C, Dong L, Wang Z. Improving air-fried squid quality using high internal phase emulsion coating. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Fabrication, characterization and in vitro digestion of camellia oil body emulsion gels cross-linked by polyphenols. Food Chem 2022; 394:133469. [PMID: 35717921 DOI: 10.1016/j.foodchem.2022.133469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
This study was designed to investigate the formation of camellia oil body (OB) emulsion gels covalently cross-linked by oxidized polyphenols: catechin (OCT), caffeic acid (OCF), chlorogenic acid (OCA), and tannic acid (OTA). The structural characteristics, thermal stabilities, antioxidant activities, rheological properties, and lipid digestion kinetics of the cross-linked OB-polyphenol emulsion gels were studied. The results of free sulfhydryl and amino group contents, FT-IR, fluorescence spectroscopy, surface hydrophobicity and thermal stability analyses confirmed the formation of covalent interactions between polyphenols and OB emulsions. Based on the second-order structural kinetic model, OB emulsion gel cross-linked by OTA had stronger intermolecular interactions and more developed 3-D network structures than those of OCA, OCF and OCT. Furthermore, lipid digestion kinetics showed that the cross-linking of polyphenols with the OBs slowed down the disintegration of protein matrix under gastric conditions, resulting in delay the release of free fatty acid, which was confirmed by CLSM observations.
Collapse
|
12
|
Cassen A, Fabre JF, Lacroux E, Cerny M, Vaca-Medina G, Mouloungui Z, Merah O, Valentin R. Aqueous Integrated Process for the Recovery of Oil Bodies or Fatty Acid Emulsions from Sunflower Seeds. Biomolecules 2022; 12:biom12020149. [PMID: 35204650 PMCID: PMC8961559 DOI: 10.3390/biom12020149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
An aqueous integrated process was developed to obtain several valuable products from sunflower seeds. With a high-shear rate crusher, high-pressure homogenization and centrifugation, it is possible to process 600× g of seeds in 1400× g of water to obtain a concentrated cream phase with a dry matter (dm) content of 46%, consisting of 74 (w/w dm) lipids in the form of an oil-body dispersion (droplet size d(0.5): 2.0 µm) rich in proteins (13% w/w dm, with membranous and extraneous proteins). The inclusion of an enzymatic step mediated by a lipase made possible the total hydrolysis of trigylcerides into fatty acids. The resulting cream had a slightly higher lipid concentration, a ratio lipid/water closer to 1, with a dry matter content of 57% consisting of 69% (w/w) lipids, a more complex structure, as observed on Cryo-SEM, with a droplet size slightly greater (d(0.5): 2.5 µm) than that of native oil bodies and a conserved protein concentration (12% w/w dm) but an almost vanished phospholipid content (17.1 ± 4.4 mg/g lipids compared to 144.6 ± 6 mg/g lipids in the oil-body dispersion and 1811.2 ± 122.2 mg/g lipids in the seed). The aqueous phases and pellets were also characterized, and their mineral, lipid and protein contents provide new possibilities for valorization in food or technical applications.
Collapse
|
13
|
Bibat MAD, Ang MJ, Eun JB. Impact of replacing pork backfat with rapeseed oleosomes - Natural pre-emulsified oil - On technological properties of meat model systems. Meat Sci 2022; 186:108732. [PMID: 35026537 DOI: 10.1016/j.meatsci.2021.108732] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
The application of natural oil droplets called oleosomes (OSs) as a potential fat replacer in comminuted meat products was investigated by evaluating the influence of rapeseed OS incorporation at 0, 25, 50, 75 and 100% pork fat substitution levels on the technological properties of meat model systems. The moisture content, pH, L* and b* of meat model systems increased while the fat content and a* decreased with the increasing levels of fat replacement. Treatments prepared with OSs showed improvements in emulsion and oxidative stability of meat batters. Texture profile analysis revealed the production of softer, less gummy and less chewy meat systems, whereas micrographs showed smaller-sized fat globules within compact protein matrices as OS levels were increased. Sensory evaluation results exhibited that treatments with partial replacement (≤ 50%) of pork fat by OSs were generally acceptable. The results demonstrate the possibility of maintaining or improving certain technological properties of meat systems with the use of OSs as fat replacer.
Collapse
Affiliation(s)
- Marie Anna Dominique Bibat
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju 61186, South Korea
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
14
|
Shah BR, Xu W, Mráz J. Fabrication, stability and rheological properties of zein/chitosan particles stabilized Pickering emulsions with antioxidant activities of the encapsulated vit-D 3. Int J Biol Macromol 2021; 191:803-810. [PMID: 34597693 DOI: 10.1016/j.ijbiomac.2021.09.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Pickering emulsions have been known to be promising candidates for encapsulating and delivering a wide range of bioactive compounds with antioxidant potentials. In this work, we formulated and characterized zein (ZN)/chitosan (CS) stabilized Pickering emulsion. The prepared emulsions were firstly characterized by droplet size after preparation and after storage for one month at room temperature as well as after the addition of prebiotic gum Arabic (GA). Rheological measurements were further carried out to see the behavior and stability of these emulsions after storage. Thereafter, vit-D3 was encapsulated, and the antioxidant activity of the emulsions system were evaluated. The results showed that no significant change in the mean droplet diameter of the emulsions was observed after storage for a month. This claim was further confirmed by their rheological measurements particularly, the emulsions prepared with ZN/CS ratio of 1:2 having 50% oil contents exhibited significant stability. GA addition caused a gradual increase in the droplet size up to some level, after which it led to complete destabilization of the emulsion. Finally, to protect and deliver, vit-D3 was successfully loaded in these emulsions. No significant difference in the DPPH radical scavenging activity of the vit-D3 encapsulated emulsions was observed, showing their capability as delivery vehicles irrespective of their composition.
Collapse
Affiliation(s)
- Bakht Ramin Shah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute ofAquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic.
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Jan Mráz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute ofAquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
15
|
Wettlaufer T, Brykczynski H, Flöter E. Wax‐Based Oleogels—Properties in Medium Chain Triglycerides and Canola Oil. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Till Wettlaufer
- Faculty III Process Sciences Department of Food Technology and Food Chemistry Food Process Engineering Technische Universität Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| | - Henriette Brykczynski
- Faculty III Process Sciences Department of Food Technology and Food Chemistry Food Process Engineering Technische Universität Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| | - Eckhard Flöter
- Faculty III Process Sciences Department of Food Technology and Food Chemistry Food Process Engineering Technische Universität Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| |
Collapse
|
16
|
|
17
|
Tunable high internal phase emulsions stabilized by cross-linking/ electrostatic deposition of polysaccharides for delivery of hydrophobic bioactives. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Gao H, Ma L, Cheng C, Liu J, Liang R, Zou L, Liu W, McClements DJ. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021; 10:foods10030600. [PMID: 33809143 PMCID: PMC7999387 DOI: 10.3390/foods10030600] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Meat analogue research and development focuses on the production of sustainable products that recreate conventional meat in its physical sensations (texture, appearance, taste, etc.) and nutritional aspects. Minced products, like burger patties and nuggets, muscle-type products, like chicken or steak-like cuts, and emulsion products, like Frankfurter and Mortadella type sausages, are the major categories of meat analogues. In this review, we discuss key ingredients for the production of these novel products, with special focus on protein sources, and underline the importance of ingredient functionality. Our observation is that structuring processes are optimized based on ingredients that were not originally designed for meat analogues applications. Therefore, mixing and blending different plant materials to obtain superior functionality is for now the common practice. We observed though that an alternative approach towards the use of ingredients such as flours, is gaining more interest. The emphasis, in this case, is on functionality towards use in meat analogues, rather than classical functionality such as purity and solubility. Another trend is the exploration of novel protein sources such as seaweed, algae and proteins produced via fermentation (cellular agriculture).
Collapse
|
20
|
Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza. Foods 2021; 10:foods10030599. [PMID: 33809138 PMCID: PMC7998105 DOI: 10.3390/foods10030599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
A massive amount of chalaza with nearly 400 metric tons is produced annually as waste in the liquid-egg industry. The present study aimed to look for ways to utilize chalaza as a natural emulsifier for high internal phase emulsions (HIPEs) at the optimal production conditions to expand the utilization of such abundant material. To the author’s knowledge, for the first time, we report the usage of hen egg chalaza particles as particulate emulsifiers for Pickering (HIPEs) development. The chalaza particles with partial wettability were fabricated at different pH or ionic strengths by freeze-drying. The surface electricity of the chalaza particles was neutralized when the pH was adjusted to 4, where the chalaza contained a particle size around 1500 nm and held the best capability to stabilize the emulsions. Similarly, the chalaza reaches proper electrical charging (−6 mv) and size (700 nm) after the ionic strength was modified to 0.6 M. Following the characterization of chalaza particles, we successfully generated stable Pickering HIPEs with up to 86% internal phase at proper particle concentrations (0.5–2%). The emulsion contained significant stability against coalescence and flocculation during long term storage due to the electrical hindrance raised by the chalaza particles which absorbed on the oil–water interfaces. Different rheological models were tested on the formed HIPEs, indicating the outstanding stability of such emulsions. Concomitantly, a percolating 3D-network was formed in the Pickering HIPES stabilized by chalaza which provided the emulsions with viscoelastic and self-standing features. Moreover, the current study provides an attractive strategy to convert liquid oils to viscoelastic soft solids without artificial trans fats.
Collapse
|
21
|
Abdullah, Weiss J, Zhang H. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Sun Y, Zhang S, Xie F, Zhong M, Jiang L, Qi B, Li Y. Effects of covalent modification with epigallocatechin-3-gallate on oleosin structure and ability to stabilize artificial oil body emulsions. Food Chem 2020; 341:128272. [PMID: 33031958 DOI: 10.1016/j.foodchem.2020.128272] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to enhance the stability and functional properties of artificial oil body (AOB) emulsions. Herein, we covalently conjugated oleosin (OL) and epigallocatechin-3-gallate (EGCG) under alkaline conditions to obtain OL-EGCG conjugates. The results revealed that the structural characteristics of OL are improved by covalent binding to EGCG, with the OL-EGCG yield maximized at an EGCG concentration of 150 μM. We prepared AOB emulsions using native OL, the OL-EGCG conjugates, phosphatidylcholine (PC), and soybean oil for embedding curcumin. The results show that the protein components and phospholipids are bound in the AOB emulsion by hydrogen bonding and hydrophobic interactions. The covalent OL-EGCG/PC-stabilized emulsions exhibited more uniform droplet distributions, stronger thermal stabilities, and higher curcumin retentions than the other samples. These results indicated that the OL-EGCG/PC complexes are potential stabilizers for AOB emulsions and provided fresh insight into preparing highly stable emulsion embedding systems with good encapsulation efficiencies.
Collapse
Affiliation(s)
- Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
23
|
Yang N, Feng Y, Su C, Wang Q, Zhang Y, Wei Y, Zhao M, Nishinari K, Fang Y. Structure and tribology of κ-carrageenan gels filled with natural oil bodies. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105945] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Romero-Guzmán M, Jung L, Kyriakopoulou K, Boom R, Nikiforidis C. Efficient single-step rapeseed oleosome extraction using twin-screw press. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Zhao Q, Zaaboul F, Liu Y, Li J. Recent advances on protein‐based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Compr Rev Food Sci Food Saf 2020; 19:1934-1968. [DOI: 10.1111/1541-4337.12570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Qiaoli Zhao
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Farah Zaaboul
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Yuanfa Liu
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Jinwei Li
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| |
Collapse
|
26
|
Romero-Guzmán MJ, Köllmann N, Zhang L, Boom RM, Nikiforidis CV. Controlled oleosome extraction to produce a plant-based mayonnaise-like emulsion using solely rapeseed seeds. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Cao Z, Liu Z, Zhang H, Wang J, Ren S. Protein particles ameliorate the mechanical properties of highly polyunsaturated oil-based whipped cream: A possible mode of action. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105350] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Nikiforidis CV. Structure and functions of oleosomes (oil bodies). Adv Colloid Interface Sci 2019; 274:102039. [PMID: 31683192 DOI: 10.1016/j.cis.2019.102039] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Oleosomes are natural oil droplets, abundant in plants and more specifically in seeds, composing 20-50 wt% of their mass. The structure of oleosomes is the mechanism that seeds developed to safely store energy in the form of triacylglycerols and use it during germination. For this, the phospholipid/protein membrane that covers and protects the triacylglycerols has been wisely developed during evolution to grant them extreme stability against physical and chemical stresses. The remarkable property-performance relationships of oleosomes have generated a lot of interest to incorporate them in oil-in-water emulsions and take advantage of their sophisticated membrane. However, the structure-function relationship of the molecular components in the oleosome membrane is still not well understood and requires more attention in order to take complete advantage of their potential functions. The aim of this review is to give insights into the architecture of the oleosomes and to discuss the exploitation of their properties in advanced and broad applications, from carrying and protecting sensitive molecules to bio-catalysis.
Collapse
Affiliation(s)
- Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weillanden 9, P.O. Box 17, 6708WG Wageningen, the Netherlands.
| |
Collapse
|
29
|
Rohman G, Langueh C, Ramtani S, Lataillade JJ, Lutomski D, Senni K, Changotade S. The Use of Platelet-Rich Plasma to Promote Cell Recruitment into Low-Molecular-Weight Fucoidan-Functionalized Poly(Ester-Urea-Urethane) Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2019; 11:E1016. [PMID: 31181822 PMCID: PMC6631166 DOI: 10.3390/polym11061016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023] Open
Abstract
Due to their elastomeric behavior, polyurethane-based scaffolds can find various applications in soft-tissue engineering. However, their relatively inert surface has to be modified in order to improve cell colonization and control cell fate. The present study focuses on porous biodegradable scaffolds based on poly(ester-urea-urethane), functionalized concomitantly to the scaffold elaboration with low-molecular-weight (LMW) fucoidan; and their bio-activation with platelet rich plasma (PRP) formulations with the aim to promote cell response. The LMW fucoidan-functionalization was obtained in a very homogeneous way, and was stable after the scaffold sterilization and incubation in phosphate-buffered saline. Biomolecules from PRP readily penetrated into the functionalized scaffold, leading to a biological frame on the pore walls. Preliminary in vitro assays were assessed to demonstrate the improvement of scaffold behavior towards cell response. The scaffold bio-activation drastically improved cell migration. Moreover, cells interacted with all pore sides into the bio-activated scaffold forming cell bridges across pores. Our work brought out an easy and versatile way of developing functionalized and bio-activated elastomeric poly(ester-urea-urethane) scaffolds with a better cell response.
Collapse
Affiliation(s)
- Géraldine Rohman
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Credson Langueh
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Salah Ramtani
- LBPS team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Unité de Thérapie Cellulaire et Réparation Tissulaire, Site du Centre de Transfusion Sanguine des Armées "Jean Julliard" de Clamart, BP 73, 91223 Brétigny-sur-Orge Cedex, France.
| | - Didier Lutomski
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Karim Senni
- Ecole de biologie Industrielle, 49 avenue des Genottes, 95885 Cergy Cedex, France.
| | - Sylvie Changotade
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| |
Collapse
|
30
|
|
31
|
Zou Y, Yang X, Scholten E. Tuning particle properties to control rheological behavior of high internal phase emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Zhou FZ, Zeng T, Yin SW, Tang CH, Yuan DB, Yang XQ. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate. Food Funct 2018; 9:959-970. [DOI: 10.1039/c7fo01400g] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, we demonstrate for the first time the use of gliadin particles to structure algal oil (rich in DHA) and to exert chemical stability against lipid oxidation via the Pickering high internal phase emulsion (HIPE) strategy.
Collapse
Affiliation(s)
- F. Z. Zhou
- Research and Development Center of Food Proteins
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
- PR China
| | - T. Zeng
- Research and Development Center of Food Proteins
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
- PR China
| | - S. W. Yin
- Research and Development Center of Food Proteins
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
- PR China
| | - C. H. Tang
- Research and Development Center of Food Proteins
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
- PR China
| | - D. B. Yuan
- Haikou Experimental Station
- Chinese Academy of Tropical Agricultural Sciences
- Haikou 570102
- China
| | - X. Q. Yang
- Research and Development Center of Food Proteins
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
- PR China
| |
Collapse
|
33
|
Composite gels structured by a gelatin protein matrix filled with oil bodies. FOOD STRUCTURE-NETHERLANDS 2017. [DOI: 10.1016/j.foostr.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Zeng T, Wu ZL, Zhu JY, Yin SW, Tang CH, Wu LY, Yang XQ. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Food Chem 2017; 231:122-130. [DOI: 10.1016/j.foodchem.2017.03.116] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
|
35
|
Pehlivanoğlu H, Demirci M, Toker OS, Konar N, Karasu S, Sagdic O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit Rev Food Sci Nutr 2017; 58:1330-1341. [PMID: 27830932 DOI: 10.1080/10408398.2016.1256866] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification, and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising ways is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.
Collapse
Affiliation(s)
- Halime Pehlivanoğlu
- a Food Engineering Department , İstanbul Sabahattin Zaim University , Istanbul , Turkey
| | - Mehmet Demirci
- a Food Engineering Department , İstanbul Sabahattin Zaim University , Istanbul , Turkey
| | - Omer Said Toker
- b Food Engineering Department , Chemical and Metallurgical Engineering Faculty, Yıldız Technical University , İstanbul, Turkey
| | - Nevzat Konar
- c Food Engineering Department , Engineering and Architecture Faculty, Siirt University , Siirt , Turkey
| | - Salih Karasu
- b Food Engineering Department , Chemical and Metallurgical Engineering Faculty, Yıldız Technical University , İstanbul, Turkey
| | - Osman Sagdic
- b Food Engineering Department , Chemical and Metallurgical Engineering Faculty, Yıldız Technical University , İstanbul, Turkey
| |
Collapse
|
36
|
Self-assembly in food — A concept for structure formation inspired by Nature. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Tan H, Zhao L, Tian S, Wen H, Gou X, Ngai T. Gelatin Particle-Stabilized High-Internal Phase Emulsions for Use in Oral Delivery Systems: Protection Effect and in Vitro Digestion Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:900-907. [PMID: 28064487 DOI: 10.1021/acs.jafc.6b04705] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential application of Pickering high-internal phase emulsions (HIPEs) in the food and pharmaceutical industries has yet to be fully developed. Herein, we synthesized fairly monodisperse, nontoxic, autofluorescent gelatin particles for use as sole stabilizers for fabricating oil-in-water (O/W) HIPEs in an effort to improve the protection and bioaccessibility of entrapped β-carotene. Our results showed that the concentration of gelatin particles determined the formation, microstructure, droplet size distribution, and digestion profile of the HIPEs. For storage stability, the retention of β-carotene in HIPEs was significantly higher than in dispersion in bulk oil, even after storage for 27 days. In addition, in vitro digestion experiments indicated that the bioaccessibility of β-carotene was improved 5-fold in HIPEs. This study will help establish a correlation between the physicochemical properties of gelatin particle-stabilized HIPEs with their applications in the oral delivery of bioactive nutraceuticals.
Collapse
Affiliation(s)
- Huan Tan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, P. R. China
| | - Lifeng Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, P. R. China
| | - Sisi Tian
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Hui Wen
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Xiaojun Gou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| |
Collapse
|
38
|
Abstract
This review article gives an overview of structural features of composite foods, and its relation to rheological, lubrication and sensory properties.
Collapse
Affiliation(s)
- Elke Scholten
- Physics and Physical Chemistry of Foods
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| |
Collapse
|
39
|
Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs). Food Chem 2016; 213:462-469. [DOI: 10.1016/j.foodchem.2016.06.119] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 01/07/2023]
|
40
|
Hu YQ, Yin SW, Zhu JH, Qi JR, Guo J, Wu LY, Tang CH, Yang XQ. Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.05.028] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Nikiforidis CV, Donsouzi S, Kiosseoglou V. The interplay between diverse oil body extracts and exogenous biopolymers or surfactants. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
|
43
|
Current status on novel ways for stabilizing food dispersions by oleosins, particles and microgels. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|