1
|
Saporittis K, Morales R, Martinez MJ. High pressure homogenization: A promising approach to expand food applications of chia mucilage. Int J Biol Macromol 2024; 263:129787. [PMID: 38296145 DOI: 10.1016/j.ijbiomac.2024.129787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Two chia mucilages with different viscosities, obtained by extraction conditions optimized in a previous work, were homogenized by high pressure homogenization (HPH). Particle size, molecular weight, zeta potential, FTIR spectrum, rheological properties, water absorption capacity, water holding capacity and iron binding capacity were determined on both mucilages treated and without treatment. Homogenization led to a significant reduction in viscosity respect to chia mucilage controls, which can be related to the decrease in particle size and molecular weight. A high iron binding capacity was obtained for both mucilages. FTIR spectra of both mucilages with iron showed displacements in bands related with stretching of carboxylic uronic acids, suggesting the interaction site with this mineral. This interaction was also verified by particle size determination with a displacement to higher sizes in the presence of iron. Potential zeta showed a significant reduction in the presence of iron. A model to explain the binding between chia mucilage and iron is proposed. HPH appears as an alternative to expand chia mucilage functionality reducing the viscosity of chia mucilage solutions for the offer of a new ingredient also with optimal levels of hydration and iron binding capacity.
Collapse
Affiliation(s)
- Karen Saporittis
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - Rocío Morales
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - María Julia Martinez
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R. Fractionation and physicochemical characterization of dietary fiber of kenaf (Hibiscus cannabinus L.) seed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3216-3227. [PMID: 38072678 DOI: 10.1002/jsfa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Kenaf seeds are underutilized kenaf plant by-products, containing essential nutrients including dietary fiber (DF), which can be potentially utilized as food ingredients. The present study aimed to evaluate the physicochemical characteristics of kenaf seed fiber fractions extracted from kenaf seed. RESULTS Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions. CONCLUSION These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gita Addelia Nevara
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Nutrition, Faculty of Health Science, Universitas Mohammad Natsir Bukittinggi, Bukittinggi, Indonesia
| | | | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nor Afizah Mustapha
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Roselina Karim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Nsengiyumva EM, Heitz MP, Alexandridis P. Carboxymethyl hydroxypropyl guar gum physicochemical properties in dilute aqueous media. Int J Biol Macromol 2024; 262:129775. [PMID: 38423913 DOI: 10.1016/j.ijbiomac.2024.129775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
We investigate carboxymethyl hydroxypropyl guar gum (CMHPG) solution properties in water and NaCl, KCl, and CaCl2 aqueous solutions. The Huggins, Kraemer, and Rao models were applied by fitting specific and relative viscosity of CMHPG/water and CMHPG/salt/water to determine the intrinsic viscosity [η]. The Rao models yielded better results (R2 = 0.779-0.999) than Huggins and Kraemer equations. [η] decreased up to 84% in salt solution over the range 0.9-100 mM compared to water. Salt effects screened the CMHPG charged side groups chains leading to a compacted structure. In 0.9 mM NaCl(aq), the hydrodynamic coil radius (Rcoil) was 28% smaller and 45% smaller in 100 mM NaCl solution relative to water. Similar decreases were seen in KCl and CaCl2 solutions. KCl and CaCl2 were more effective than NaCl. CMHPG is salt-tolerant and shows comparatively less viscosity change than native guar gum, with modest reduced viscosity increases with CMHPG dilution at all salt concentrations. The electrostatic interactions were effective up to 100 mM salt. The activation energy of viscous flow for CMHPG solutions was computed and compared to measured xanthan gum and several literature values. These data show that the barrier to CMHPG flow is higher than for xanthan gum.
Collapse
Affiliation(s)
- Emmanuel M Nsengiyumva
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA; Department of Chemistry and Biochemistry, The State University of New York (SUNY) Brockport, Brockport, NY 14420, USA
| | - Mark P Heitz
- Department of Chemistry and Biochemistry, The State University of New York (SUNY) Brockport, Brockport, NY 14420, USA.
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
4
|
Gohari AS, Nateghi L, Rashidi L, Berenji S. Preparation and characterization of sodium caseinate-apricot tree gum/gum Arabic nanocomplex for encapsulation of conjugated linoleic acid (CLA). Int J Biol Macromol 2024; 261:129773. [PMID: 38296128 DOI: 10.1016/j.ijbiomac.2024.129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Nanocomplexes (NCs) were formed through electrostatic complexation theory using Na-caseinate (NaCa), gum Arabic (GA), and Prunus armeniaca L. gum exudates (PAGE), aimed to encapsulate Conjugated linoleic acid (CLA). Encapsulation was optimized using NaCa (0.1 %-0.5 %), GA/PAGE (0.1 %-0.9 %) and CLA (1 %-5 %), and central composite design (CCD) was employed for numerical optimization. The optimum conditions for NC containing GA (NCGA) were 0.336 %, 0.437 %, and 3.10 % and for NC containing PAGE (NCPAGE) were 0.403 %, 0.730 %, and 4.177 %, of NaCa, GA/PAGE, and CLA, respectively. EE and particle size were 92.46 % and 52.89 nm for NCGA while 88.23 % and 54.76 nm for NCPAGE, respectively. Fourier transform infrared spectroscopy (FTIR) indicated that CLA was physically entrapped. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the electrostatic complex formation. The elastic modulus was predominant for NCGA and NCPAGE dispersions while the complex viscosity of NCPAGE suspension was slightly higher than that of NCGA. The CLA in NCGA-CLA and NCPAGE-CLA exhibited higher oxidative stability than free CLA during 30 days of storage without a significant difference between the results of CLA oxidative stability tests obtained for NCs. Consequently, NCPAGE and NCGA could be applied for the entrapment and protection of nutraceuticals in the food industry.
Collapse
Affiliation(s)
- Alireza Saeed Gohari
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran.
| | - Shila Berenji
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
5
|
Nsengiyumva EM, Heitz MP, Alexandridis P. Salt and Temperature Effects on Xanthan Gum Polysaccharide in Aqueous Solutions. Int J Mol Sci 2023; 25:490. [PMID: 38203659 PMCID: PMC10778890 DOI: 10.3390/ijms25010490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Xanthan gum (XG) is a carbohydrate polymer with anionic properties that is widely used as a rheology modifier in various applications, including foods and petroleum extraction. The aim was to investigate the effect of Na+, K+, and Ca2+ on the physicochemical properties of XG in an aqueous solution as a function of temperature. Huggins, Kraemer, and Rao models were applied to determine intrinsic viscosity, [η], by fitting the relative viscosity (ηrel) or specific viscosity (ηsp) of XG/water and XG/salt/water solutions. With increasing temperature in water, Rao 1 gave [η] the closest to the Huggins and Kraemer values. In water, [η] was more sensitive to temperature increase (~30% increase in [η], 20-50 °C) compared to salt solutions (~15-25% increase). At a constant temperature, salt counterions screened the XG side-chain-charged groups and decreased [η] by up to 60% over 0.05-100 mM salt. Overall, Ca2+ was much more effective than the monovalent cations in screening charge. As the salt valency and concentration increased, the XG coil radius decreased, making evident the effect of shielding the intramolecular and intermolecular XG anionic charge. The reduction in repulsive forces caused XG structural contraction. Further, higher temperatures led to chain expansion that facilitated increased intermolecular interactions, which worked against the salt effect.
Collapse
Affiliation(s)
- Emmanuel M. Nsengiyumva
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA;
- Department of Chemistry and Biochemistry, The State University of New York (SUNY) Brockport, Brockport, NY 14420, USA
| | - Mark P. Heitz
- Department of Chemistry and Biochemistry, The State University of New York (SUNY) Brockport, Brockport, NY 14420, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA;
| |
Collapse
|
6
|
Tahmouzi S, Meftahizadeh H, Eyshi S, Mahmoudzadeh A, Alizadeh B, Mollakhalili‐Meybodi N, Hatami M. Application of guar ( Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action. Food Sci Nutr 2023; 11:4869-4897. [PMID: 37701200 PMCID: PMC10494631 DOI: 10.1002/fsn3.3383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 09/14/2023] Open
Abstract
With the world continuing to push toward modernization and the consumption of processed foods growing at an exponential rate, the demand for texturizing agents and natural additives has also risen as a result. It has become increasingly common to use thickening agents in food products to modify their rheological and textural properties and enhance their quality characteristics. They can be divided into (1) animal derived (chitosan and isinglass), (2) fermentation produced (xanthan and curdlan), (3) plant fragments (pectin and cellulose), (4) seaweed extracts (agar and alginate), and (5) seed flours (guar gum and locust bean gum). The primary functions of these materials are to improve moisture binding capacity, modify structural properties, and alter flow behavior. In addition, some have another responsibility in the food sector, such as the main ingredient in the delivery systems (encapsulation) and nanocomposites. A galactomannan polysaccharide extracted from guar beans (Cyamopsis tetragonolobus), known as guar gum (GG), is one of them, which has a wide range of utilities and possesses popularity among scientists and consumers. In the world of modernization, GG has found its way into numerous industries for use in food, cosmetics, pharmaceuticals, textiles, and explosives. Due to its ability to form hydrogen bonds with water molecules, it imparts significant thickening, gelling, and binding properties to the solution as well as increases its viscosity. Therefore, this study is aimed to investigate the characteristics, mechanisms, and applications of GG in different food technologies.
Collapse
Affiliation(s)
- Sima Tahmouzi
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Heidar Meftahizadeh
- Department of Nature EngineeringFaculty of Agriculture & Natural ResourcesArdakan UniversityArdakanIran
| | - Saba Eyshi
- Department of Food Sciences and TechnologySchool of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Amin Mahmoudzadeh
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Behnam Alizadeh
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mehrnaz Hatami
- Department of Medicinal PlantsFaculty of Agriculture and Natural ResourcesArak UniversityArakIran
| |
Collapse
|
7
|
da Silva DA, Brasil DDSB, Cunha EJDS, Aires GCM, da Costa RA, do Rego JDAR, Pena RDS. Structural and Thermal Characteristics of Buriti Tree Gum (Mauritia flexuosa). Polymers (Basel) 2023; 15:polym15071662. [PMID: 37050276 PMCID: PMC10097139 DOI: 10.3390/polym15071662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
A polysaccharide was isolated from the exudate of a buriti tree trunk (Mauritia flexuosa). The molecular structure, thermal stability, morphology, crystallinity, and elemental composition of the product were investigated through spectroscopic techniques, such as Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR 1H and 13C), and energy-dispersive X-ray spectroscopy (EDS); thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In addition to NMR molecular modeling studies, were performed to confirm the 1H and 13C chemical shifts to Gal and Xyl conformers. Buriti tree gum (BG) is an arabinogalactan, containing Rha, Ara, Xyl, and Gal, and degrades almost completely (98.5%) at 550 °C and has a maximum degradation peak at 291.97 °C, with a mass loss of 56.33%. In the temperature range of 255–290 °C, the energy involved in the BG degradation process was approximately 17 J/g. DSC indicated a glass transition temperature of 27.2 °C for BG, which had an irregular and heterogeneous morphology, with smooth or crumbling scaly regions, demonstrating the amorphous nature of BG that was confirmed by the XRD standard. EDS revealed the presence of carbon and oxygen, as well as calcium, magnesium, aluminum, silicon, chlorine, and potassium, in the BG composition.
Collapse
|
8
|
Xu W, Han M, Liu Y, Zhu Y, Zhang F, Lei F, Wang K, Ji L, Jiang J. Changes in structure and physicochemical properties of Sophora japonica f. pendula galactomannan in late growth stage. Carbohydr Polym 2023; 304:120496. [PMID: 36641164 DOI: 10.1016/j.carbpol.2022.120496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Galactomannan (GM) has been widely applied in food and other fields due to its appealing physicochemical properties. In this work, considering the changes in structural and physicochemical properties of Sophora japonica f. pendula (SJ-GM) with very high mannose to galactose (M/G) ratio in the late deposition stage, extensive exploration is conducted. The core of structural change is the change of M/G ratio (4.94-5.68), which is caused by the loss of galactose side residues modulated by α-d-galactosidase during seed maturation. Afterwards, the more compact conformation, the higher molecular weight, the increased hydrophobicity, and the greater solution viscosity of SJ-GM can be caused. Notably, the gel strength of SJ-GM with the highest M/G surpasses other GMs, including fenugreek gum (M/G = 1.20), guar gum (M/G = 1.80), Gleditsia microphylla gum (M/G = 2.77), and LBG (M/G = 4.00). Finally, SJ-GM is proven to be an attractive alternative to other GMs.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Minghui Han
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yana Zhu
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Effects of Abelmoschus manihot gum content, heating temperature and salt ions on the texture and rheology properties of konjac gum/Abelmoschus manihot gum composite gel. Int J Biol Macromol 2023; 236:123970. [PMID: 36906206 DOI: 10.1016/j.ijbiomac.2023.123970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
To improve the gelling property of konjac gum (KGM) and enhance the application value of Abelmoschus manihot (L.) medic gum (AMG), a novel type of gel was prepared using KGM and AMG in this study. The effects of AMG content, heating temperature and salt ions on the characteristics of KGM/AMG composite gels were studied by Fourier transform infrared spectroscopy (FTIR), zeta potential, texture analysis and dynamic rheological behavior analysis. The results indicated that the AMG content, heating temperature and salt ions could affect the gel strength of KGM/AMG composite gels. Hardness, springiness, resilience, G', G* and η* of KGM/AMG composite gels increased when AMG content increased from 0 to 2.0 %, but they decreased when AMG increased from 2.0 % to 3.5 %. High-temperature treatment significantly enhanced the texture and rheological properties of KGM/AMG composite gels. The addition of salt ions reduced the zeta potential absolute value and weakened the texture and rheological properties of KGM/AMG composite gels. Furthermore, the KGM/AMG composite gels could be classified as non-covalent gels. The non-covalent linkages included hydrogen bonding and electrostatic interactions. These findings would help understand the properties and formation mechanism of KGM/AMG composite gels and help improve the application value of KGM and AMG.
Collapse
|
10
|
Yousefi A, Elmarhoum S, Khodabakhshaghdam S, Ako K, Hosseinzadeh G. Study on the impact of temperature, salts, sugars and pH on dilute solution properties of Lepidium perfoliatum seed gum. Food Sci Nutr 2022; 10:3955-3968. [PMID: 36348799 PMCID: PMC9632227 DOI: 10.1002/fsn3.2991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022] Open
Abstract
The functional properties of food gums are remarkably affected by the quality of solvent/cosolutes and temperature in a food system. In this work, for the first time, the chemical characterizations and dilute solution properties of Lepidium perfoliatum seed gum (LPSG), as an emerging carbohydrate polymer, were investigated. It was found that xylose (14.27%), galacturonic acid (10.70%), arabinose (9.07%) and galactose (8.80%) were the main monosaccharaide components in the LPSG samples. The uronic acid content of LPSG samples was obtained to be 14.83%. The average molecular weight and polydispersity index of LPSG were to be 2.34 × 105 g/mol and 3.3, respectively. As the temperature was increased and the pH was decreased and the concentration of cosolutes (Na+, Ca2+, sucrose and lactose) presented in the LPSG solutions was enhanced, the intrinsic viscosity [η] and coil dimension (R coil , V coil , υ s ) of LPSG molecular chains decreased. Activation energy and chain flexibility of LPSG were estimated to be 0.46 × 107 J/kg.mol and 553.08 K, respectively. The relative stiffness parameter (B) of LPSG in the presence of Ca2+ (0.079) was more than that of Na+ (0.032). Incorporation of LPSG into deionized water (0.2%, w/v) diminished the surface activity from 76.75 mN/m to 75.70 mN/m. Zeta potential (ζ) values (-46.85 mV--19.63 mV) demonstrated that dilute solutions of LPSG had strong anionic nature in the pH range of 3-11. The molecular conformation of LPSG was random coil in all the selected solution conditions. It can be concluded that temperature and presence of cosolutes can significantly influence on the LPSG properties in the dilute systems.
Collapse
Affiliation(s)
- Alireza Yousefi
- Department of Chemical Engineering, Faculty of EngineeringUniversity of BonabBonabIran
| | | | | | - Komla Ako
- CNRS, LRPUniversité Grenoble AlpesGrenobleFrance
| | - Ghader Hosseinzadeh
- Department of Chemical Engineering, Faculty of EngineeringUniversity of BonabBonabIran
| |
Collapse
|
11
|
Advances in plant gum polysaccharides; Sources, techno-functional properties, and applications in the food industry - A review. Int J Biol Macromol 2022; 222:2327-2340. [DOI: 10.1016/j.ijbiomac.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
12
|
Mousaie M, Khodadadi M, Tadayoni M. Hydrolysate protein from brown macroalgae (
Sargassum illicifolium
): antioxidant, antitumor, antibacterial and
ACE
‐inhibitory activities. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahshid Mousaie
- Department of Food Science and Technology, Ahvaz Branch Islamic Azad University Ahvaz Iran
| | - Mojgan Khodadadi
- Department of Marine Biology, Ahvaz Branch Islamic Azad University Ahvaz Iran
| | - Mehrnoosh Tadayoni
- Department of Food Science and Technology, Ahvaz Branch Islamic Azad University Ahvaz Iran
| |
Collapse
|
13
|
Ahmed HGMD, Zeng Y, Shah AN, Yar MM, Ullah A, Ali M. Conferring of drought tolerance in wheat ( Triticum aestivum L.) genotypes using seedling indices. FRONTIERS IN PLANT SCIENCE 2022; 13:961049. [PMID: 35937360 PMCID: PMC9355593 DOI: 10.3389/fpls.2022.961049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Wheat is the most widely grown and consumed crop because of its economic and social benefits. This crop is more important globally for food and feed, and its productivity is particularly vulnerable to abiotic factors. In this study, 40 wheat genotypes were studied to access the drought tolerance level using completely randomized design (CRD) in 250 ml disposable cups through morpho-physiological attributes at seedling stage. The wheat germplasm was tested under normal and two drought stress level D1 (50% field capacity) and D2 (75% field capacity) for different seedling attributes such as germination percentage (GP), chlorophyll content (CC), shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), seedling fresh weight (SDFW), shoot dry weight (SDW), root dry weight (RDW), relative water content (RWC), root/shoot ratio (RS), and seedling dry weight (SeDW). The results of analysis of variance (ANOVA) and spider analysis indicate that significant amount of genetic variation was present and behavior of studied germplasm showed different behavior in different environment. The correlation analysis showed that root length has significantly positive association with root/shoot ratio, dry weight, and fresh weight while negatively correlated with shoot length and relative water content. Based on the positively associated traits, the studied genetic material would improve genetic gain for drought tolerance. The multivariate analysis showed that out 13 principal components only five PCs were significant and has eigenvalue > 1, cumulatively showed 82.33, 83.07, and 97.34% of total variation under normal, D1 and D2 conditions, respectively. Significantly, the result of spider graph and multivariate analysis showed that genotypes G47, G48, G65, G68, and G80 performed well in all drought stress conditions and considered as drought-tolerant genotypes. The best performing genotypes can be used in future breeding programs. The selection on the bases of studied attributes is effective for development of drought-tolerant and high-yielding varieties for sustainable food security.
Collapse
Affiliation(s)
- Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Majid Yar
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aziz Ullah
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ali
- Department of Environmental Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
14
|
Noureen S, Noreen S, Ghumman SA, Batool F, Hameed H, Hasan S, Noreen F, Elsherif MA, Bukhari SNA. Prunus armeniaca Gum-Alginate Polymeric Microspheres to Enhance the Bioavailability of Tramadol Hydrochloride: Formulation and Evaluation. Pharmaceutics 2022; 14:pharmaceutics14050916. [PMID: 35631501 PMCID: PMC9144292 DOI: 10.3390/pharmaceutics14050916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Combinations of polymers can improve the functional properties of microspheres to achieve desired therapeutic goals. Hence, the present study aimed to formulate Prunus armeniaca gum (PAG) and sodium alginate microsphere for sustained drug release. Blended and coated microspheres were prepared using the ionotropic gelation technique. The effect of polymer concentration variation was studied on the structural and functional properties of formulated microspheres. FTIR, XRD, and thermal analysis were performed to characterize the microspheres. All the formulations were well-formed spherical beads having an average diameter from 579.23 ± 07.09 to 657.67 ± 08.74 μm. Microspheres entrapped drugs within the range 65.86 ± 0.26–83.74 ± 0.79%. The pH-dependent swelling index of coated formulations was higher than blended. FTIR spectra confirmed the presence of characteristic peaks of entrapped Tramadol hydrochloride showing no drug-polymer interaction. In vitro drug release profile showed sustained release following the Korsmeyer-Peppas kinetic model with an R2 value of 0.9803–0.9966. An acute toxicology study employing the oral route in Swiss albino mice showed no signs of toxicity. It can be inferred from these results that blending PAG with sodium alginate can enhance the stability of alginate microspheres and improve its drug release profile by prolonging the release time.
Collapse
Affiliation(s)
- Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Fozia Noreen
- Department of Chemistry, University of Sialkot, Sialkot 51010, Pakistan;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| |
Collapse
|
15
|
Structural, physicochemical and functional properties of an exudate gum: opopanax gum. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Li J, Yang Z, Zhang Y, Gao B, Niu Y, Lucy Yu L. The structural and functional characteristics of soluble dietary fibers modified from tomato pomace with increased content of lycopene. Food Chem 2022; 382:132333. [PMID: 35149462 DOI: 10.1016/j.foodchem.2022.132333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
Abstract
The tomato pomace, a by-product of tomato processing, was rich in nutrients such as lycopene (Lyc), vitamins, phenols and soluble dietary fibers (SDF). Homogenization combined with enzymatic hydrolysis (HE) was firstly applied to obtain HE-pomace. The yield of Lyc was raised by 57.2% after HE treatment by the optimal condition. The extraction rate of HE-SDF was increased by 73.4%. In order to clarify the relationship between the SDF and the release of Lyc, SDFs were characterized by structural analysis and morphological determination. The results suggested that HE-SDF possessed smaller molecular weight and loose microstructure with shorter chains. It implied that the degradation of dietary fiber led to the release of Lyc molecules. Besides, HE-SDF exhibited stronger capacity of water-holding, glucose adsorption and bile acid binding. In conclusion, HE treatment possessed the potential to be applied as an excellent modification method, which improved the nutritional and economic value of tomato pomace.
Collapse
Affiliation(s)
- Jiaoyong Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyuan Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufan Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuge Niu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
17
|
Xiang J, Wang Y, Yang L, Zhang X, Hong Y, Shen L. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation. Int J Biol Macromol 2022; 196:1-12. [PMID: 34843815 DOI: 10.1016/j.ijbiomac.2021.11.166] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023]
Abstract
The purpose of this study is to develop a new polysaccharide-based hydrogel. The Box-Behnken design was used to optimize the optimal synthesis conditions of the hydrogel, with the swelling parameters as indicators. The findings of rheologic tests confirm that free radical polymerization and the introduction of linear polymers improved the mechanical strength of the hydrogel. Combined with the characterization results, the gel mechanism of BSP-g-PAA/PVA DN hydrogel was proposed. The intermolecular association and entanglement increase, which effectively dissipates energy, thereby enhancing the mechanical properties of the hydrogel. In vitro blood compatibility experiments show that DN hydrogel has a low hemolysis rate and a good coagulation effect. The material is non-cytotoxic to L929 cells. The hepatic haemorrhage and mouse-tail amputation models of rats and mice were used to further evaluate the in vivo wound sealing and hemostatic properties of the hydrogel. The blood loss and hemostatic time were significantly lower than those of the control group, indicating that the hydrogel has excellent hemostatic effects. Therefore, the obtained BSP-g-PAA/PVA DN network hydrogel has good comprehensive properties and is expected to be used as a hemostatic material or a precursor of a drug carrier and a tissue engineering scaffold.
Collapse
Affiliation(s)
- Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Youjie Wang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese medicine of Ministry of Education, Shanghai University of TraditionalChinese Medicine, Shanghai 201203, China
| | - Luping Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai University of Traditional Chinese Medicine, Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai 201203,China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Modern Preparation Technology of Traditional Chinese medicine of Ministry of Education, Shanghai University of TraditionalChinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Enrichment of yogurt with carrot soluble dietary fiber prepared by three physical modified treatments: Microstructure, rheology and storage stability. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
KUTLU G, AKCICEK A, BOZKURT F, KARASU S, TEKIN-CAKMAK ZH. Rocket seed (Eruca sativa Mill) gum: physicochemical and comprehensive rheological characterization. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.69620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Sharma A, Bhushette PR, Annapure US. Physicochemical and rheological properties of Acacia Catechu exudate gum. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Hedayati S, Niakousari M, Babajafari S, Mazloomi SM. Ultrasound-assisted extraction of mucilaginous seed hydrocolloids: Physicochemical properties and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Structural and physicochemical characterization of a novel water-soluble polysaccharide isolated from Dorema ammoniacum. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Physical modification of Lepidium perfoliatum seed gum using cold atmospheric-pressure plasma treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Yao YT, Wang WY, Liu HM, Hou LX, Wang XD. Emulsifying properties of Chinese quince seed gum in oil-in-water emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Saeidy S, Petera B, Pierre G, Fenoradosoa TA, Djomdi D, Michaud P, Delattre C. Plants arabinogalactans: From structures to physico-chemical and biological properties. Biotechnol Adv 2021; 53:107771. [PMID: 33992708 DOI: 10.1016/j.biotechadv.2021.107771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Arabinogalactans (AGs) are plant heteropolysaccharides with complex structures occasionally attached to proteins (AGPs). AGs in cell matrix of different parts of plant are freely available or chemically bound to pectin rhamnogalactan. Type I with predominantly β-d-(1 → 4)-galactan and type II with β-d-(1 → 3) and/or (1 → 6)-galactan structural backbones construct the two main groups of AGs. In the current review, the chemical structure of AGs is firstly discussed focusing on non-traditional plant sources and not including well known industrial gums. After that, processes for their extraction and purification are considered and finally their techno-functional and biological properties are highlighted. The role of AG structure and function on health advantages such as anti-tumor, antioxidant, anti-ulcer- anti-diabetic and other activites and also the immunomodulatory effects on in-vivo model systems are overviewed.
Collapse
Affiliation(s)
- S Saeidy
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - B Petera
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - G Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - T A Fenoradosoa
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| | - P Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - C Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
26
|
Akarca G, Istek Ö, Tomar O. The effect of resin coating on the quality characteristics of chicken eggs during storage. J Food Sci 2021; 86:1243-1257. [PMID: 33761140 DOI: 10.1111/1750-3841.15686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/26/2022]
Abstract
In this study, after washing, changes in the quality characteristics of chicken eggs coated with apricot, almond, and sour cherry tree resins were examined during two different temperatures (4 °C and 22 °C) storage for 60 days. While air cell height, weight loss, albumen and yolk pH and a* (redness) values increased in all samples during storage, Haugh unit, albumen and yolk index, shell fracture and vitelline membrane strength, albumen and yolk L* (lightness) and b* (yellowness) values decreased (P < 0.05). The lowest weight loss (0.54 g) and air cell height (2.89 mm), highest Haugh unit (73.95 HU), albumen index (8.81%), and yolk index (40.37%) were found in the samples coated with sour cherry wood resin stored at 4 °C. The shell breakage and vitelline membrane strength of the coated samples were determined to be higher than the control samples and the samples stored after washing. Higher weight loss, air cell height, and pH values, while lower Haugh unit, Albumen and yolk index were found in samples stored at 22 °C (P < 0.05). At the end of storage, the maximum increase in the counts of total aerobic mesophilic and psychrophilic bacteria was found in the albumin and egg yolk of washed samples stored at ambient temperature. As a result, the coating materials prepared with the resin of apricot, almond, and sour cherry trees were suitable for eggshell's shelf life extension. PRACTICAL APPLICATION: The consumers demand the eggs be in their freshest condition, but the currently available storage conditions are not sufficient to maintain freshness in many regions of Turkey. The physical, chemical and, microbiological qualities of the eggs coated with wood resins were determined to be superior compared to other samples. Because resins have good barrier properties, it is recommended to conduct extensive studies on their applicability in different products.
Collapse
Affiliation(s)
- Gökhan Akarca
- Department of Food Engineering, Faculty of Engineering, Afyon Kocatepe University, Afyonkarahisar, 03200, Turkey
| | - Ömer Istek
- Department of Food Engineering, Faculty of Engineering, Afyon Kocatepe University, Afyonkarahisar, 03200, Turkey
| | - Oktay Tomar
- Faculty of Agriculture and Natural Science, Arslanbey Campus, Kocaeli University, Kocaeli, 41285, Turkey
| |
Collapse
|
27
|
Salarbashi D, Jahanbin K, Tafaghodi M, Fahmideh‐Rad E. Prunus armeniaca gum exudates: An overview on purification, structure, physicochemical properties, and applications. Food Sci Nutr 2021; 9:1240-1255. [PMID: 33598208 PMCID: PMC7866599 DOI: 10.1002/fsn3.2107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Prunus armeniaca gum exudate (PAGE) is obtained from the trunk branches of apricot trees. PAGE is a high-molecular-weight polysaccharide with arabinogalactan structure. The physicochemical and rheological characteristics of this gum have been investigated in various researches. PAGE offers a good potential for use as an emulsifying, binding, and stabilizing agent in food and pharmaceutical industries. It also can be used as an organic additive in tissue culture media, synthesizing of metallic nanoparticles, binding potential in tablets, antioxidant agent, and corrosion inhibitor. For desirable emulsifying, stabilizing, shelf life-enhancing properties, and antioxidant activity of PAGE, it can be used as additive in many foods. We present here a comprehensive review on the existing literatures on characterization of this source of polysaccharide to explore its potential applications in various systems.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterGonabad University of Medical SciencesGonabadIran
- Department of Food science and NutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Kambiz Jahanbin
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Elham Fahmideh‐Rad
- Applied Sciences Department, Applied Chemistry SectionHigher College of Technology (HCT)MuscatSultanate of Oman
| |
Collapse
|
28
|
Ornithogalum cuspidatum mucilage as a new source of plant-based polysaccharide: Physicochemical and rheological characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00814-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Sun X, Wang L, Fu R, Yang Y, Cheng R, Li J, Wang S, Zhang J. The chemical properties and hygroscopic activity of the exopolysaccharide lubcan from Paenibacillus sp. ZX1905. Int J Biol Macromol 2020; 164:2641-2650. [DOI: 10.1016/j.ijbiomac.2020.08.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
|
30
|
Purification and physicochemical characterization of Prunus domestica exudate gum polysaccharide. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
De A, Malpani D, Das B, Mitra D, Samanta A. Characterization of an arabinogalactan isolated from gum exudate of Odina wodier Roxb.: Rheology, AFM, Raman and CD spectroscopy. Carbohydr Polym 2020; 250:116950. [DOI: 10.1016/j.carbpol.2020.116950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/09/2023]
|
32
|
Characterization of Novel Edible Films and Coatings for Food Preservation Based on Gum Cordia. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8883916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As a pharmaceutical component, gum Cordia has been applied to improve crop resistance against many diseases. A large amount of gum appears around the fruit after soaking in an aqueous system. The mucilage possesses outstanding technofunctional properties as an emulsifier, thickening agent, and binding and stabilizing component in food and drug industries. The backbone of gum Cordia is composed of (1-2)-linked L-arabinofuranosyl and (1–6)-linked D-glucopyranosyl residues. This manuscript reviews the technofunctional properties and applications of gum Cordia in food systems. Particularly, our focus has been given to its application as a natural source for the formation of edible films and coatings for increasing the shelf life of food products and for the food preservation as a potential ingredient in formulation. The future research perspectives are also highlighted.
Collapse
|
33
|
Ebrahimi B, Homayouni Rad A, Ghanbarzadeh B, Torbati M, Falcone PM. The emulsifying and foaming properties of Amuniacum gum ( Dorema ammoniacum) in comparison with gum Arabic. Food Sci Nutr 2020; 8:3716-3730. [PMID: 32724634 PMCID: PMC7382130 DOI: 10.1002/fsn3.1658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022] Open
Abstract
In this study, the emulsifying and foaming properties of a novel exudate gum from Dorema ammoniacum (AMG) were assessed in comparison with the well-known gum Arabic from Acacia tree (GAC). The sunflower oil-based emulsion (10% v/v) containing various concentrations (5%-15% w/v) of AMG and GAC was prepared. At all concentrations, AMG showed higher surface and interface activity than GAC. Increasing in AMG and GAC concentrations caused to increase and decrease in Z average, respectively. Overall, the GAC-stabilized emulsion showed lower Z average and PDI value than the AMG-stabilized emulsion during storage time. The sample containing AMG showed higher emulsion capacity and lower emulsion stability in comparison with the one containing GAC at all concentrations. The storage stability decreased and increased with increasing in AMG and GAC concentrations, respectively. After two-week storage, the emulsions containing 10 and 15% AMG showed higher phase separation than those containing GAC; however, this was opposite about sample containing 5% AMG. At thermal, centrifuge, and freezing conditions, the emulsion containing 5% AMG indicated significantly higher stability than GAC samples; however, at higher concentration, opposite effect could be observed. The foaming capacity of the samples containing AMG increased from 81% to 93% by increasing gum concentration from 5% to 15%. The solutions containing AMG showed higher foam capacity than control samples (without gum) and those containing GAC at all concentrations. Increasing in AMG and GAC concentrations slightly improved foam stability, and the highest value (92%) belonged to 15% AMG solution.
Collapse
Affiliation(s)
- Behzad Ebrahimi
- Department of Food Science and TechnologyFaculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Aziz Homayouni Rad
- Department of Food Science and TechnologyFaculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Babak Ghanbarzadeh
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
- Department of Food EngineeringFaculty of EngineeringNear East UniversityNicosiaTurkey
| | - Mohammadali Torbati
- Department of Food Science and TechnologyFaculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental SciencesUniversity Polytechnical of MarcheAnconaItaly
| |
Collapse
|
34
|
Salarbashi D, Bazeli J, Fahmideh-Rad E. Fenugreek seed gum: Biological properties, chemical modifications, and structural analysis– A review. Int J Biol Macromol 2019; 138:386-393. [DOI: 10.1016/j.ijbiomac.2019.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/16/2023]
|
35
|
Sources, structure, properties and health benefits of plant gums: A review. Int J Biol Macromol 2019; 135:46-61. [DOI: 10.1016/j.ijbiomac.2019.05.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/20/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
36
|
Wang L, Liu HM, Zhu CY, Xie AJ, Ma BJ, Zhang PZ. Chinese quince seed gum: Flow behaviour, thixotropy and viscoelasticity. Carbohydr Polym 2019; 209:230-238. [DOI: 10.1016/j.carbpol.2018.12.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
|
37
|
Gong J, Wang L, Wu J, Yuan Y, Mu RJ, Du Y, Wu C, Pang J. The rheological and physicochemical properties of a novel thermosensitive hydrogel based on konjac glucomannan/gum tragacanth. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Rezagholi F, Hashemi SMB, Gholamhosseinpour A, Sherahi MH, Hesarinejad MA, Ale MT. Characterizations and rheological study of the purified polysaccharide extracted from quince seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:143-151. [PMID: 29802725 DOI: 10.1002/jsfa.9155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The functional characteristics of hydrocolloids are mainly dependent on their physicochemical properties. Thus, it is essential to characterize the new sources of hydrocolloids. RESULTS Quince seed gum (QSG) is a high-molecular-weight polysaccharide (9.61 × 106 g mol-1 ) composed of 85.04 ± 2.87% carbohydrate (6.39% l-arabinose, 40.43% d-xylose, 5.60% d-galactose, 5.75% d-glucose and 31.11% d-mannose), 13.16 ± 1.73% uronic acid, 5.77 ± 0.83% moisture, 2.78 ± 0.21% protein, 5.64 ± 0.21% ash, and 0.75 ± 0.09% fat. Our findings indicated that this gum could be introduced as a value-added by-product in the food and pharmaceutical industries. Carbon-13 nuclear magnetic resonance and Fourier transform infrared spectroscopy suggested a highly substituted xylan structure for QSG. In the dilute regime, an increase in the ion concentration was accompanied by a decrease in intrinsic viscosity of QSG. When the salt concentration increased from 0 to 50 mmol L-1 , the consistency coefficient (as a measure of apparent viscosity) declined. On the other hand, with further increasing of salt concentration, the consistency coefficient (as a measure of apparent viscosity) values increased. Similarly, the G' and G″ values for 10 and 50 mmol L-1 calcium chloride concentrations were less than in control samples. CONCLUSION The rheological behavior of the QSG studied in this paper can provide insight into its potential application in food and pharmaceutical industries. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatemeh Rezagholi
- Department of Food Engineering, Near East University, Nicosia, Turkey
| | | | | | | | - Mohammad Ali Hesarinejad
- Department of Food Processing, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Marcel T Ale
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
39
|
Salarbashi D, Tafaghodi M. An update on physicochemical and functional properties of newly seed gums. Int J Biol Macromol 2018; 119:1240-1247. [DOI: 10.1016/j.ijbiomac.2018.06.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
40
|
Keshani-Dokht S, Emam-Djomeh Z, Yarmand MS, Fathi M. Extraction, chemical composition, rheological behavior, antioxidant activity and functional properties of Cordia myxa mucilage. Int J Biol Macromol 2018; 118:485-493. [DOI: 10.1016/j.ijbiomac.2018.06.069] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
|
41
|
Qiu L, Shen Y, Wang T, Wang C. Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum. Int J Biol Macromol 2018; 117:974-982. [DOI: 10.1016/j.ijbiomac.2018.05.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/05/2018] [Accepted: 05/12/2018] [Indexed: 11/25/2022]
|
42
|
Rheological and functional properties of asafoetida gum. Int J Biol Macromol 2018; 118:1168-1173. [DOI: 10.1016/j.ijbiomac.2018.06.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022]
|
43
|
Carboxymethyl fenugreek gum: Rheological characterization and as a novel binder for silicon anode of lithium-ion batteries. Int J Biol Macromol 2018; 115:672-679. [DOI: 10.1016/j.ijbiomac.2018.04.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
|
44
|
Niknezhad SV, Morowvat MH, Najafpour Darzi G, Iraji A, Ghasemi Y. Exopolysaccharide from Pantoea sp. BCCS 001 GH isolated from nectarine fruit: production in submerged culture and preliminary physicochemical characterizations. Food Sci Biotechnol 2018; 27:1735-1746. [PMID: 30483438 DOI: 10.1007/s10068-018-0409-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022] Open
Abstract
Exopolysaccharide (EPS), as potential microbial base polysaccharide source, has plenty of applications due to its unique physicochemical structure. A Pantoea sp. BCCS 001 GH bacterium with the ability to produce a high amount of EPS was identified by 16S rRNA gene sequencing and biochemical tests. The synthesis of EPS by Pantoea sp. BCCS 001 GH was 13.50 g/L in 48 h when sucrose was used as substrate. The proposed protocol was desirably rapid for massive prodcution of EPS and showed the remarkable impact of sucrose and disodium hydrogen phosphate, peptone, Triton x-100 and 2% (v/v) inoculum size on the yields of EPS production. The EPS was mainly composed of glucose and galactose in a relative molar ration (glucose/galactose) of 85.18:14.82, respectively. The preliminary characterization showed the average molecular-weight of EPS is about 2.522 × 106 Da. The microscopics morphology of polymer was formed irregularly shaped structures.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- 1Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran.,2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.,3Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Ghasem Najafpour Darzi
- 1Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran
| | - Aida Iraji
- 4Central Research Laboratory, Shiraz University of Medical Science, Shiraz, Iran
| | - Younes Ghasemi
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.,3Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
45
|
Salarbashi D, Tafaghodi M, Bazzaz BSF, Jafari B. Characterization of soluble soybean (SSPS) polysaccharide and development of eco-friendly SSPS/TiO 2 nanoparticle bionanocomposites. Int J Biol Macromol 2018; 112:852-861. [PMID: 29410370 DOI: 10.1016/j.ijbiomac.2018.01.182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/15/2018] [Accepted: 01/28/2018] [Indexed: 11/30/2022]
Abstract
This research aims to characterization of soluble soybean polysaccharide (SSPS) and development of a biodegradable SSPS nanocomposites prepared using various concentrations of TiO2 nanoparticles. 13C NMR suggested that backbone of SSPS is rhamnogalacturonan [1→4)-α-GalAp-(1/2)-α Rhap(1→]. Weight average molecular weight, number average molecular weight (Mn) and polydispersity index (PDI) of SSPS were found to be 2.54×106g/mol, 5.54×106g/mol, and 4.5, respectively. The intrinsic viscosity of SSPS (0.33) was lower than most of hydrocolloids. With increasing TiO2 concentration, the water solubility, moisture content and water-vapor permeability (WVP) of SSPS-based nanocomposite films decreased. TiO2 addition led to an increase in the melting temperature to a maximum of 132°C for the SSPS nanocomposite with 5wt% TiO2. With increasing TiO2 concentrations from 5 to 15wt%, the melting temperature declined from 24 to 19°C. There were no significant agglomerates when the TiO2 concentrations were increased to 5wt%; however, when the concentration reached 15wt%, agglomerations were observed. With addition of TiO2 nanoparticles, tensile strength increased but elongation at break decreased. SSPS-based nanocomposite films demonstrated a promising range of antimicrobial activity. The current research clearly introduces a new antimicrobial composite which is potentially useful to prevent and treat infections.
Collapse
Affiliation(s)
- Davoud Salarbashi
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behrouz Jafari
- Zabol University of Medical Sciences, Zabol, Iran; Chemical Engineering Department, Faculty of Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
46
|
Sherahi MH, Shadaei M, Ghobadi E, Zhandari F, Rastgou Z, Hashemi SMB. Effect of temperature, ion type and ionic strength on dynamic viscoelastic, steady-state and dilute-solution properties of Descurainia sophia seed gum. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Alaeddini B, Koocheki A, Mohammadzadeh Milani J, Razavi SMA, Ghanbarzadeh B. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2713-2720. [PMID: 29083478 DOI: 10.1002/jsfa.8765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. RESULTS The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. CONCLUSION AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Behzad Alaeddini
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jafar Mohammadzadeh Milani
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran
| | | | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
48
|
Physicochemical, functional and rheological investigation of Soymida febrifuga exudate gum. Int J Biol Macromol 2018; 111:1116-1123. [DOI: 10.1016/j.ijbiomac.2018.01.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 11/20/2022]
|
49
|
Golkar A, Taghavi SM, Aghili Dehnavi F. The emulsifying properties of Persian gum (Amygdalus scoparia Spach) as compared with gum Arabic. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1454464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Abdolkhalegh Golkar
- Department of Food Science and Technology, Sari Agricultural and Natural Resources University, Mazandaran, Iran
- Isfahan Science and Technology Town (ISTT), Isfahan University of Technology, Isfahan, Iran
| | - Seyed Masoud Taghavi
- Isfahan Science and Technology Town (ISTT), Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
50
|
Salarbashi D, Tafaghodi M, Bazzaz BSF. Soluble soybean polysaccharide/TiO 2 bionanocomposite film for food application. Carbohydr Polym 2018; 186:384-393. [PMID: 29456001 DOI: 10.1016/j.carbpol.2017.12.081] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022]
Abstract
In the current study, a set of biodegradable soybean polysaccharide (SSPS) nanocomposites containing different ratios of TiO2 nanoparticles was characterized as new packaging system. X-ray diffraction (XRD) measurement showed that the crystalline structure of the TiO2 nanoparticles remained intact in the polysaccharide matrix and the surface of nanocomposites containing 1-3% TiO2 was observed morphologically uniform under scanning electron microscopy (SEM). Dynamic mechanical thermal analysis revealed that the magnitude of storage modulus was 3.62-fold higher in SPSS/TiO2 nanocomposites containing 7 wt.% of TiO2 than control SSPS indicating improvement in the physical properties of the film supposed to be utilized for food packaging. With respect to the concern over the safety of these nanocomposites, inductively coupled plasma-optical emission spectroscopy (ICP-OES) showed that no TiO2 was detected in bread samples covered by SSPS/TiO2 film and stored for 6 months. Similarly, the nanocomposite films only released a minuscule amount (21.05 ± 0.054 ppm) of TiO2 in water. TiO2 nanoparticles were found in the plasma membrane of epithelial cell line after long-term exposure (10-day) of these cells to large amounts of the free nanoparticles. SSPS/TiO2 nanocomposites showed excellent antimicrobial activity against Staphylococcus aureus PTCC 1431 (ATCC 25923), while neither anti-cancerous nor pro-cancerous activity was observed for these nanocomposites denoting their neutrality with respect to cancer suppression or progression in gastrointestinal tract. In conclusion, SSPS/TiO2 nanocomposites could be a promising packaging system for food industries' objective regarding their physical characteristics, low rate of Ti transition, and low health risk.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Postdoctoral researcher, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|