1
|
Lu Y, Feng S, Zhao Y, Wang Y, Diao M, Liang Y, Zhang T. Comparison of interactions between alpha-lactalbumin and three protopanaxadiol ginsenosides: Impacts on the structure and antitumor properties. Food Chem 2024; 439:138046. [PMID: 38029562 DOI: 10.1016/j.foodchem.2023.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
In this research, interactions between α-lactalbumin (ALA) and three protopanaxadiol ginsenosides [20(S)-Rg3, 20(S)-Rh2, and 20(S)-PPD] were compared to explore the effects of similar ligand on structure and cytotoxicity of ALA. Multi-spectroscopy revealed the binding between ALA and ginsenoside changed the conformation of ALA, which related to different structures and solubility of ligands. Scanning electron microscope illustrated that all ALA-ginsenoside complexes exhibited denser structures via hydrophobic interactions. Additionally, the cytotoxic experiments confirmed that the cytotoxicity of ginsenoside was enhanced after binding with ALA. Molecular docking showed all three ginsenosides were bound to the sulcus depression region of ALA via hydrogen bonding and hydrophobic interaction. Furthermore, molecular dynamics simulation elucidated the precise binding sites and pertinent system properties. Among all three composite systems, 20(S)-Rh2 had optimal binding affinity. These findings enhanced understanding of the synergistic utilization of ALA and ginsenosides as functional ingredients in food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Yitong Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Sitong Feng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yueying Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yingyi Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Chen X, Chu X, Li X, Cao F, Guo Q, Wang J. Non-thermal plasma modulation of the interaction between whey protein isolate and ginsenoside Rg 1 to improve the rheological and oxidative properties of emulsion. Food Res Int 2023; 165:112548. [PMID: 36869457 DOI: 10.1016/j.foodres.2023.112548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Molecular interaction forces regulate the interfacial properties of oil-in-water emulsion and play a key role in the rheology and stability of the emulsion in the food industry. In this study, the effects of non-thermal plasma (NTP) treatment on the structural and functional properties of whey protein isolate (WPI) and its binding interaction with ginsenoside Rg1 (GR1) were investigated. The results based on surface hydrophobicity, infrared spectroscopy and fluorescence spectroscopy test showed that the NTP treatment induced the unfolding of the structure of WPI and promoted the binding affinity between WPI and GR1. By comparing with untreated WPI (an α-helix content of 19.63 % and a β-sheet content of 31.66 %), there was a greater decrease in α-helix content and an increase in β-sheet content of WPI in N20-WPI (α-helix = 9.63 %, β-sheet = 39.63 %) and N20-WPI-GR1 (α-helix = 4.98 %, β-sheet = 48.66 %) groups. Importantly, the NTP treatment increased the interfacial adsorption and antioxidant capacity of the WPI-GR1 complexes, which contributed to the improvement of the rheological properties and oxidation stability of the emulsion. As a result, the NTP treatment could markedly improve the rheological and antioxidative properties of the WPI-GR1 complexes and the NTP-treated WPI-GR1 emulsions was more stable than that untreated. The present research indicated that NTP-treated formation of protein-saponin complexes could enhance the functional properties of the proteins, thus expanding their application as functional ingradients in nutritionally fortified food.
Collapse
Affiliation(s)
- Xianqiang Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Chu
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qirong Guo
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Sun S, Zhang C, Li S, Yan H, Zou H, Yu C. Improving emulsifying properties using mixed natural emulsifiers: Tea saponin and golden pompano protein. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Zhang S, Chai X, Hou G, Zhao F, Meng Q. Platycodon grandiflorum (Jacq.) A. DC.: A review of phytochemistry, pharmacology, toxicology and traditional use. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154422. [PMID: 36087526 DOI: 10.1016/j.phymed.2022.154422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The traditional Chinese medicine Platycodon grandiflorum (Jacq.) A. DC. (PG, balloon flower) has medicinal and culinary value. It consists of a variety of chemical components including triterpenoid saponins, polysaccharides, flavonoids, polyphenols, polyethylene glycols, volatile oils and mineral components, which have medicinal and edible value. PURPOSE The ultimate goal of this review is to summarize the phytochemistry, pharmacological activities, safety and uses of PG in local and traditional medicine. METHODS A comprehensive search of published literature up to March 2022 was conducted using the PubMed, China Knowledge Network and Web of Science databases to identify original research related to PG, its active ingredients and pharmacological activities. RESULTS Triterpene saponins are the primary bioactive compounds of PG. To date, 76 triterpene saponin compounds have been isolated and identified from PG. In addition, there are other biological components, such as flavonoids, polyacetylene and phenolic acids. These extracts possess antitussive, immunostimulatory, anti-inflammatory, antioxidant, antitumor, antiobesity, antidepressant, and cardiovascular system activities. The mechanisms of expression of these pharmacological effects include inhibition of the expression of proteins such as MDM and p53, inhibition of the activation of enzymes, such as AKT, the secretion of inflammatory factors, such as IFN-γ, TNF-α, IL-2 and IL-1β, and activation of the AMPK pathway. CONCLUSION This review summarizes the chemical composition, pharmacological activities, molecular mechanism, toxicity and uses of PG in local and traditional medicine over the last 12 years. PG contains a wide range of chemical components, among which triterpene saponins, especially platycoside D (PD), play a strong role in pharmacological activity, representing a natural phytomedicine with low toxicity that has applications in food, animal feed and cosmetics. Therefore, PG has value for exploitation and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
5
|
Li Y, Liu X, Liu H, Zhu L. Interfacial adsorption behavior and interaction mechanism in saponin–protein composite systems: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Comparison between Quinoa and Quillaja saponins in the Formation, Stability and Digestibility of Astaxanthin-Canola Oil Emulsions. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Saponins from Quillaja saponaria and Chenopodium quinoa were evaluated as natural emulsifiers in the formation of astaxanthin enriched canola oil emulsions. The aim of this study was to define the processing conditions for developing emulsions and to evaluate their physical stability against environmental conditions: pH (2–10), temperature (20–50 °C), ionic strength (0–500 mM NaCl), and storage (35 days at 25 °C), as well as their performance in an in vitro digestion model. The emulsions were characterized, evaluating their mean particle size, polydispersity index (PDI), and zeta potential. Oil-in-water (O/W) emulsions were effectively produced using 1% oil phase and 1% emulsifier (saponins). Emulsions were stable over a wide range of pH values (4–10), but exhibited particle aggregation at lower pH, salt conditions, and high temperatures. The emulsion stability index (ESI) remained above 80% after 35 days of storage. The results of our study suggest that saponins can be an effective alternative to synthetic emulsifiers.
Collapse
|
7
|
Schreiner T, Dias MM, Barreiro MF, Pinho SP. Saponins as Natural Emulsifiers for Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6573-6590. [PMID: 35621387 PMCID: PMC9776534 DOI: 10.1021/acs.jafc.1c07893] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The awareness of sustainability approaches has focused attention on replacing synthetic emulsifiers with natural alternatives when formulating nanoemulsions. In this context, a comprehensive review of the different types of saponins being successfully used to form and stabilize nanoemulsions is presented, highlighting the most common natural sources and biosynthetic routes. Processes for their extraction and purification are also reviewed altogether with the recent advances for their characterization. Concerning the preparation of the nanoemulsions containing saponins, the focus has been initially given to screening methods, lipid phase used, and production procedures, but their characterization and delivery systems explored are also discussed. Most experimental outcomes showed that the saponins present high performance, but the challenges associated with the saponins' broader application, mainly the standardization for industrial use, are identified. Future perspectives report, among others, the emerging biotechnological processes and the use of byproducts in a circular economy context.
Collapse
Affiliation(s)
- Tatiana
B. Schreiner
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena M. Dias
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Filomena Barreiro
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
de Oliveira Felipe L, Lemos Bicas J, Bouhoute M, Vodo S, Taarji N, Nakajima M, Neves MA. Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier. Food Res Int 2021; 153:110894. [DOI: 10.1016/j.foodres.2021.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
|
9
|
Xu L, yan W, Zhang M, Hong X, Liu Y, Li J. Application of ultrasound in stabilizing of Antarctic krill oil by modified chickpea protein isolate and ginseng saponin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Arslan I, Cenzano AM. Characterization of Triterpene Saponins from Gypsophila arrostii by Electrospray Ionization Ion Trap Multiple-Stage Mass Spectrometry. REVISTA BRASILEIRA DE FARMACOGNOSIA 2021. [DOI: 10.1007/s43450-021-00125-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kaspchak E, Silveira JLM, Igarashi-Mafra L, Mafra MR. Effect of antinutrients on heat-set gelation of soy, pea, and rice protein isolates. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4201-4210. [PMID: 33071341 PMCID: PMC7520492 DOI: 10.1007/s13197-020-04458-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Plant-derived protein can present antinutrients (ANs) in its composition. The ANs can interact with the protein, affecting its solubility and functional properties, such as gelation. This work evaluated the effect of three ANs, namely phytic acid (PA), tannic acid (TA), and Quillaja bark saponin (QBS), on the gelation and solubility of soy (SPI), pea (PPI), and rice protein isolate (RPI). The ANs altered the protein isolates gelation and solubility. PA decreased the solubility and gelation of the three protein isolates at pH 3.0. The TA was the AN that most decreased the solubility and gelation characteristics of SPI and PPI at both pHs analyzed. QBS increased the gelation of SPI at pH 3.0 but decreased the final gel strength of RPI at the same pH. These results show that the knowledge of the presence of ANs in the protein isolates is of fundamental relevance for the processing of vegetable proteins.
Collapse
Affiliation(s)
- Elaine Kaspchak
- Department of Chemical Engineering, Federal University of Paraná, Rua Francisco H. Dos Santos S/N, Curitiba, PR zip code 81531-980 Brazil
| | - Joana Léa Meira Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Rua Francisco H. Dos Santos S/N, Curitiba, PR zip code 81531-980 Brazil
| | - Luciana Igarashi-Mafra
- Department of Chemical Engineering, Federal University of Paraná, Rua Francisco H. Dos Santos S/N, Curitiba, PR zip code 81531-980 Brazil
| | - Marcos R. Mafra
- Department of Chemical Engineering, Federal University of Paraná, Rua Francisco H. Dos Santos S/N, Curitiba, PR zip code 81531-980 Brazil
| |
Collapse
|
12
|
Zhu L, Xu Q, Liu X, Xu Y, Yang L, Wang S, Li J, He Y, Liu H. Soy glycinin-soyasaponin mixtures at oil-water interface: Interfacial behavior and O/W emulsion stability. Food Chem 2020; 327:127062. [PMID: 32454279 DOI: 10.1016/j.foodchem.2020.127062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
Soy glycinin (11S) was mixed with soyasaponin (Ssa) to elucidate the mechanism(s) involved in the stabilization of emulsions by mixed systems based on dynamic interfacial tension and dilatational rheology at the oil-water interface. The short/long-term properties of oil-in-water emulsions stabilized by 11S-Ssa mixtures included droplet-size distribution, droplet ζ-potential, microstructure, and Turbiscan stability index. The combination of Ssa (0.05%) with 11S significantly affected the interfacial dilatational and emulsion properties although the interfacial properties were still dominated by the protein. Higher concentrations (0.1% and 0.2%) of Ssa combined with 11S synergistically decreased the interfacial tension, which was attributed to the interaction between 11S and Ssa. Using high Ssa concentrations (0.25%-0.5%) enhanced the long-term stability of emulsions (in response to external deformations) after 42 d. These results will aid the basic understanding of protein-Ssa interfacial adsorption during emulsion formation and can help prepare natural food additives for designing emulsions.
Collapse
Affiliation(s)
- Lijie Zhu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Qingying Xu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiuying Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Yangyang Xu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
13
|
Kaspchak E, Bonassoli ABG, Iwankiw PK, Kayukawa CTM, Igarashi-Mafra L, Mafra MR. Interactions of antinutrients mixtures with bovine serum albumin and its influence on in vitro protein digestibility. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Zou H, Zhao N, Li S, Sun S, Dong X, Yu C. Physicochemical and emulsifying properties of mussel water-soluble proteins as affected by lecithin concentration. Int J Biol Macromol 2020; 163:180-189. [PMID: 32599247 DOI: 10.1016/j.ijbiomac.2020.06.225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/26/2022]
Abstract
The effects of lecithin addition at different concentrations (0-2.0%) on the physicochemical and emulsifying properties of mussel water-soluble proteins (MWP) were investigated. In solution system, low lecithin concentration (0.5%-1.0%) induced the aggregation and increased turbidity of composite particles. Lecithin addition caused changes in secondary structure and induced partial unfolding of MWP. Hydrophobic interactions between MWP and lecithin may contribute to the exposure of chromophores and hydrophobic groups of MWP. The interfacial tension decreased with lecithin addition. However, at a high lecithin concentration (1.5%-2.0%), the degree of aggregation and state of unfolding alleviated due to competitive adsorption. In emulsion system, with the low concentration of lecithin addition (0.5%-1.0%), droplet size and surface charge of emulsion decreased. The emulsion activity index, emulsion stability index, percentage of adsorbed protein increased. Both creaming stability and viscoelastic properties improved. At an intermediate lecithin concentration (1.0%), the emulsion showed the highest physical stability, while further addition of lecithin caused a slight deterioration in emulsifying properties. Overall, these results indicated the possibility that the lecithin-MWP mixed emulsifiers can be used to obtain emulsions with desirable properties.
Collapse
Affiliation(s)
- Henan Zou
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ning Zhao
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Sihui Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xinran Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Cuiping Yu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Formulation and Optimization of Nanoemulsions Using the Natural Surfactant Saponin from Quillaja Bark. Molecules 2020; 25:molecules25071538. [PMID: 32230976 PMCID: PMC7181021 DOI: 10.3390/molecules25071538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/30/2022] Open
Abstract
Replacing synthetic surfactants by natural alternatives when formulating nanoemulsions has gained attention as a sustainable approach. In this context, nanoemulsions based on sweet almond oil and stabilized by saponin from Quillaja bark with glycerol as cosurfactant were prepared by the high-pressure homogenization method. The effects of oil/water (O/W) ratio, total surfactant amount, and saponin/glycerol ratio on their stability were analyzed. The formation and stabilization of the oil-in-water nanoemulsions were analyzed through the evaluation of stability over time, pH, zeta potential, and particle size distribution analysis. Moreover, a design of experiments was performed to assess the most suitable composition based on particle size and stability parameters. The prepared nanoemulsions are, in general, highly stable over time, showing zeta potential values lower than −40 mV, a slight acid behavior due to the character of the components, and particle size (in volume) in the range of 1.1 to 4.3 µm. Response surface methodology revealed that formulations using an O/W ratio of 10/90 and 1.5 wt% surfactant resulted in lower particle sizes and zeta potential, presenting higher stability. The use of glycerol did not positively affect the formulations, which reinforces the suitability of preparing highly stable nanoemulsions based on natural surfactants such as saponins.
Collapse
|
16
|
Interaction of Quillaja bark saponin and bovine serum albumin: Effect on secondary and tertiary structure, gelation and in vitro digestibility of the protein. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Tsibranska S, Tcholakova S, Golemanov K, Denkov N, Pelan E, Stoyanov SD. Role of interfacial elasticity for the rheological properties of saponin-stabilized emulsions. J Colloid Interface Sci 2019; 564:264-275. [PMID: 31923825 DOI: 10.1016/j.jcis.2019.12.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Saponins are natural surfactants which can provide highly viscoelastic interfaces. This property can be used to quantify precisely the effect of interfacial dilatational elasticity on the various rheological properties of bulk emulsions. EXPERIMENTS We measured the interfacial dilatational elasticity of adsorption layers from four saponins (Quillaja, Escin, Berry, Tea) adsorbed on hexadecane-water and sunflower oil-water interfaces. In parallel, the rheological properties under steady and oscillatory shear deformations were measured for bulk emulsions, stabilized by the same saponins (oil volume fraction between 75 and 85%). FINDINGS Quillaja saponin and Berry saponin formed solid adsorption layers (shells) on the SFO-water interface. As a consequence, the respective emulsions contained non-spherical drops. For the other systems, the interfacial elasticities varied between 2 mN/m and 500 mN/m. We found that this interfacial elasticity has very significant impact on the emulsion shear elasticity, moderate effect on the dynamic yield stress, and no effect on the viscous stress of the respective steadily sheared emulsions. The last conclusion is not trivial, because the dilatational surface viscoelasticity is known to have strong impact on the viscous stress of steadily sheared foams. Mechanistic explanations of all observed effects are described.
Collapse
Affiliation(s)
- Sonya Tsibranska
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria.
| | - Konstantin Golemanov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria
| | | | - Simeon D Stoyanov
- Unilever R&D, Vlaardingen, the Netherlands; Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, the Netherlands; Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
18
|
Xu X, Sun Q, McClements DJ. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Chen XW, Yang XQ. Characterization of Orange Oil Powders and Oleogels Fabricated from Emulsion Templates Stabilized Solely by a Natural Triterpene Saponin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2637-2646. [PMID: 30721052 DOI: 10.1021/acs.jafc.8b04588] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new facile route was reported to use the natural triterpene Quillaja saponin (QS)-stabilized orange emulsions as a template for the development of flavor oil powders and oleogels achieved by the tunable oil fraction and drying mode. A fibrosis network interfacial film from self-assembly of QS at the oil-water interface possibility contributed to the fabrication of stable emulsion precursors and subsequent oil powder and oleogels by packing oil droplets in the network structure. An oil powder containing as high as 93 wt % orange oil was obtained by spray drying, showing excellent stability, flowability, and reconstitution ability. Upon the medium water removal rate of freeze drying, porous structured solid products followed by oleogels by a simple shearing can be formed. Upon oven drying, a translucent oleogel with high oil loading of 98.2 wt % was obtained from the high internal phase emulsion template. The resulting oleogels showed tunable rheological and texture properties, thixotropic recovery by modulating the oil fraction and water evaporation rate, and reversibility to reconstituted emulsions. Structuring liquid oil into solid materials by simply drying the continuous water from solely QS-based emulsions is very encouraging and provides new insights into various functional applications in the fields of foods, pharmaceuticals, cosmetics, and agriculture.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, School of Food Science and Engineering , Henan University of Technology , Zhengzhou , Henan 450001 , People's Republic of China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Xiao-Quan Yang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
20
|
Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules 2019; 24:E171. [PMID: 30621160 PMCID: PMC6337100 DOI: 10.3390/molecules24010171] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.
Collapse
Affiliation(s)
- Juliane Deise Fleck
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Francini Pereira da Silva
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Eduardo Artur Troian
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Cristina Olivaro
- Science and Chemical Technology Department, University Center of Tacuarembó, Udelar, Tacuarembó 45000, Uruguay.
| | - Fernando Ferreira
- Organic Chemistry Department, Carbohydrates and Glycoconjugates Laboratory, Udelar, Mondevideo 11600, Uruguay.
| | - Simone Gasparin Verza
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| |
Collapse
|
21
|
Ralla T, Salminen H, Tuosto J, Weiss J. Formation and stability of emulsions stabilised by Yucca
saponin extract. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Theo Ralla
- Department of Food Physics and Meat Science; University of Hohenheim; Garbenstrasse 25 Stuttgart 70599 Germany
| | - Hanna Salminen
- Department of Food Physics and Meat Science; University of Hohenheim; Garbenstrasse 25 Stuttgart 70599 Germany
| | - Jessica Tuosto
- Department of Food Physics and Meat Science; University of Hohenheim; Garbenstrasse 25 Stuttgart 70599 Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science; University of Hohenheim; Garbenstrasse 25 Stuttgart 70599 Germany
| |
Collapse
|
22
|
Ralla T, Salminen H, Edelmann M, Dawid C, Hofmann T, Weiss J. Sugar Beet Extract (Beta vulgaris L.) as a New Natural Emulsifier: Emulsion Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4153-4160. [PMID: 28453286 DOI: 10.1021/acs.jafc.7b00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interfacial and emulsion-forming properties of sugar beet extract (Beta vulgaris L.) were examined and compared to a Quillaja extract that is widely used within the food industry. We investigated the influence of extract concentration on surface activity at oil-water and air-water interfaces and on the formation of oil-in-water emulsions (10% w/w, pH 7). Sugar beet extract reduced the interfacial tension up to 38% at the oil-water interface, and the surface tension up to 33% at the air-water surface. The generated emulsions were negatively charged (ζ ≈ -46 mV) and had the smallest particle sizes (d43) of ∼1.3 μm at a low emulsifier-to-oil ratio of 0.75:10. Applying lower or higher extract concentrations increased the mean particle sizes. The smallest emulsions were formed at an optimum homogenization pressure of 69 MPa. Higher homogenization pressures led to increased particle sizes. Overall, sugar beet extract showed high surface activity. Furthermore, the formation of small emulsion droplets was successful; however, the droplets were bigger compared to those from the Quillaja extract. These results indicate sugar beet as an effective natural emulsifier that may be utilized for a variety of food and beverage applications.
Collapse
Affiliation(s)
- Theo Ralla
- Department of Food Physics and Meat Science, University of Hohenheim , Garbenstrasse 21/25, 70599 Stuttgart, Germany
| | - Hanna Salminen
- Department of Food Physics and Meat Science, University of Hohenheim , Garbenstrasse 21/25, 70599 Stuttgart, Germany
| | - Matthias Edelmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich , Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich , Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich , Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, University of Hohenheim , Garbenstrasse 21/25, 70599 Stuttgart, Germany
| |
Collapse
|