1
|
Li X, Zou F, Kang X, Gao W, Cui B, Sui J. Effects of acetylated distarch phosphate on the physicochemical characteristics and stability of the oyster sauce system. Front Nutr 2024; 11:1412314. [PMID: 39183986 PMCID: PMC11342395 DOI: 10.3389/fnut.2024.1412314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
In this study, the effect of different acetylated distarch phosphate (ADSP) ratios (0, 1%, 2%, 3%, 4%, 5%) on the physicochemical characteristics and stability of the oyster sauce (OS) system was investigated. The texture, water state, interactions, rheological properties, microstructure, and stability of OS samples were analyzed through the texture analyser, low-field nuclear magnetic resonance (LF-NMR), particle diameter and zeta potential, fourier-transform infrared spectroscopy (FTIR), rheometer, and microscopes. The results revealed that the addition of ADSP improved the firmness, consistency, cohesiveness, and water-holding capacity of OS. Moreover, ADSP reduced the average particle size and zeta potential of OS, indicating that electrostatic and steric stabilization existed in the ADSP-OS system. The addition of ADSP enhanced the hydrogen bonding and decreased water mobility for OS system, processing a more continuous and smooth structure. All ADSP-OS samples were typical non-Newtonian fluids with shear-thinning characteristics. In addition, the non-significant instability index changes of ADSP-OS over the whole storage period confirmed the excellent long-term stabilization capability of OS prepared with ADSP. This study provides a theoretical basis for starch-based sauce products and contributes to the development of sauce products.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Jie Sui
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| |
Collapse
|
2
|
Zhang M, Cheng L, Hong Y, Li Z, Li C, Ban X, Gu Z. Effects of hydrocolloids on mechanical properties, viscoelastic and microstructural properties of starch-based modeling clay. Int J Biol Macromol 2024; 266:130963. [PMID: 38508561 DOI: 10.1016/j.ijbiomac.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
The effects of various hydrocolloids (guar gum, xanthan gum, and carboxymethyl cellulose) on the texture, rheology, and microstructural properties of modeling clay prepared with cassava starch were investigated. Notably, incorporation of 3 % guar gum and 4 % xanthan gum into starch-based modeling clay resulted in enhancements of 94.12 % and 77.47 % in cohesiveness, and 64.70 % and 66.20 % in extensibility, respectively. For starch-based modeling clay with added guar gum and xanthan gum, compared to formulations without hydrocolloids, the linear viscoelastic range exceeded 0.04 %, and the frequency dependence of both maximum creep compliance (Jmax) and storage modulus (G') was significantly reduced. This indicates a more stable network structure and enhanced resistance to deformation. Results from Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that the physical interactions between starch and various hydrocolloids, along with the addition of these hydrocolloids, inhibited the degradation effect of thermomechanical processing on the crystalline structure of starch. With the addition of guar gum, it is observed that a continuous and dense network structure forms within the starch-based modeling clay, and starch particles are distributed uniformly. In conclusion, hydrocolloids enhances the properties of starch-based modeling clay, introducing an innovative solution to the modeling clay sector.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Atzler JJ, Crofton EC, Sahin AW, Ispiryan L, Gallagher E, Zannini E, Arendt EK. Effect of fibre fortification of low FODMAP pasta. Int J Food Sci Nutr 2024; 75:293-305. [PMID: 38225882 DOI: 10.1080/09637486.2024.2303605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Irritable bowel syndrome (IBS) is a condition affecting the digestive system and can be triggered by several different factors, including diet. To ease symptoms of IBS, a diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) is often recommended. Pasta, as a staple food in the Western World, is naturally high in FODMAPs. This study investigates the impact of insoluble and soluble dietary fibre ingredients in low-FODMAPs pasta. The assessment included physicochemical, sensory, and nutritional quality. Soluble fibre strengthened gluten network, which caused a lower cooking loss and a lower release of sugars during in vitro starch digestion. Insoluble fibre interfered with the gluten network development to a higher extent causing a higher sugar release during digestion. This study reveals the most suitable fibre ingredients for the development of pasta with elevated nutritional value and sensory characteristics compared to commercial products on the market. This type of pasta has a high potential of being suitable for IBS patients.
Collapse
Affiliation(s)
- Jonas J Atzler
- School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland
| | - Emily C Crofton
- Food quality and sensory science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland
| | - Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland
| | - Eimear Gallagher
- Food quality and sensory science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
4
|
Hung SH, Lai LS. Changes in the pasting and rheological properties of wheat, corn, water caltrop and lotus rhizome starches by the addition of Annona montana mucilage. Int J Biol Macromol 2024; 265:131009. [PMID: 38513905 DOI: 10.1016/j.ijbiomac.2024.131009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Annona montana mucilage (AMM) is a novel mucilage with unique but limited information. This study investigated the effects of AMM addition on the pasting and rheological properties of wheat starch (WS), corn starch (CS), water caltrop starch (WCS), and lotus rhizome starch (LRS). The addition of AMM generally increased the pasting temperature and peak viscosity, but reduced the setback value of all starches to varying degrees, and the initiation of viscosity-increase for cereal starch/AMM systems during pasting occurred at lower temperatures, accompanied with a distinctive two-stage swelling process as well as lower peak and final hot paste viscosity at 50 °C. AMM significantly increased the pseudoplasticity and entanglement of the systems to varying degrees (LRS > WS > WCS > CS). Under a constant shear rate of 50 s-1, the consistency level was found to fall in honey-like for cereal starch/AMM groups, and honey-like to extremely thick levels for WCS and LRS/AMM groups. Except for the WCS/AMM systems, the storage and loss modulus as well as tan increased with increasing AMM concentration. Short-term retrogradation of starch at 4 °C was pronouncedly retarded by the addition of AMM for WS, CS and WCS groups, but was less affected for LRS group.
Collapse
Affiliation(s)
- Shao-Hua Hung
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Lih-Shiuh Lai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
5
|
Zhang Y, Wu H, Fu L. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38470104 DOI: 10.1080/10408398.2024.2326618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
6
|
Halm J, Sahin AW, Nyhan L, Zannini E, Arendt EK. Commercial Egg Replacers in Pound Cake Systems: A Comprehensive Analysis of Market Trends and Application. Foods 2024; 13:292. [PMID: 38254593 PMCID: PMC10814760 DOI: 10.3390/foods13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Replacing eggs without influencing pound cakes' texture, appearance, and taste is challenging. Ovalbumin, the major protein in egg white, contributes to the structures of cakes by providing SH Groups that form a firm gel during baking. However, there is a shift in the consumers' behaviour regarding health, well-being, animal welfare standards, and environmental concerns. To meet upcoming trends and consumer needs, 102 egg replacement products were launched globally to the best of the authors' knowledge, with 20 of them advertised as suitable for baking applications. Ten locally available commercial egg replacers with a range of protein contents were chosen and applied in a pound cake model system to evaluate their functionality by evaluating cake and cake batter quality. Three different categories of egg replacements were chosen: replacers containing no protein (R1-R3), a low amount of protein (1-10 g/100 g; R4-R5), and a high amount of protein (>10 g/100 g; R6-R10). Those were compared to three control cakes containing powdered whole egg, fresh egg, and liquid whole egg. All the analysed egg replacers significantly differed from the control cakes, including low-protein egg replacement R4. Despite R4 achieving the highest specific volume (1.63 ± 0.07 mL/g) and comparable texture values, none of the examined egg replacers compared favourably with the egg control cakes regarding appearance, physical and textural properties, and nutritional value.
Collapse
Affiliation(s)
- Juliane Halm
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (J.H.); (A.W.S.); (L.N.); (E.Z.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (J.H.); (A.W.S.); (L.N.); (E.Z.)
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (J.H.); (A.W.S.); (L.N.); (E.Z.)
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (J.H.); (A.W.S.); (L.N.); (E.Z.)
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, 00185 Rome, Italy
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (J.H.); (A.W.S.); (L.N.); (E.Z.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
7
|
Zhang J, Zhao F, Li C, Ban X, Gu Z, Li Z. Acceleration mechanism of the rehydration process of dried rice noodles by the porous structure. Food Chem 2024; 431:137050. [PMID: 37573750 DOI: 10.1016/j.foodchem.2023.137050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Rehydration of dried rice noodles (DRNs) is a time-consuming process, which is dominated by the compactness of noodle structure. Therefore, DRNs with differentiated porous structures were prepared, and their effect on the rehydration process was investigated. Porous structure can shorten rehydration time by reducing the time needed for water to migrate into the noodle core, or the water amount required for rehydration. Magnetic resonance imaging showed that although larger pores facilitate absorbing more water, the time for water to migrate into the noodle center is longer than that of medium size pores, as water needs to fill the periphery large hole before inward migration. SAXS analysis demonstrated that the presence of flexible starch molecular chains reduce the water required to achieve the maximum tensile strain of samples, thus shortening the rehydration time. Understanding the acceleration mechanism of porous structure on rehydration contributes to designing improved process of instant noodle products.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China
| | - Fangfang Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Xie X, Zhao X, Meng F, Ren Y, An J, Deng L. Effect of Adding Different Commercial Propylene Glycol Alginates on the Properties of Mealworm-Flour-Formulated Bread and Steamed Bread. Foods 2023; 12:3641. [PMID: 37835295 PMCID: PMC10572306 DOI: 10.3390/foods12193641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mealworm-flour-formulated flour-based products have gained increasing attention; however, their textural properties need to be improved. Propylene glycol alginate (PGA) is a commercial food additive with excellent emulsifying and stabilizing capabilities. We evaluated the effects of adding three commercially available PGAs (0.3% w/w, as food additive) on the properties of 10% concentration of mealworm-flour-formulated bread and steamed bread. The results showed that, compared with the control (2.17 mL/g), three PGA brands (Q, M, and Y) significantly increased the specific volume of the bread to 3.34, 3.40, and 3.36 mL/g, respectively. Only PGA from brand Q significantly improved the specific volumes of bread and steamed bread. The color of the bread was affected by the Maillard reaction. The addition of PGAs also augmented the moisture content of the fresh bread crumbs and steamed bread crumbs. All three PGAs improved the textural properties of bread and steamed bread. During storage, PGA addition delayed the staling of bread and steamed bread. In summary, our study showed that the addition of 0.3% PGA from three different producers improved bread properties, with PGA from brand Q having the most substantial effect. PGA had a more substantial effect on bread than steamed bread. Our results provide a theoretical basis to guide the development of insect-formulated flour-based products.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingli Deng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.X.); (X.Z.); (F.M.); (Y.R.); (J.A.)
| |
Collapse
|
9
|
Nikolaou EN, Karvela ED, Papadopoulou A, Karathanos VT. The Effect of Enrichment with Sour-Cherry Extracts on Gluten-Free Snacks Developed by Novel 3D Technologies. Antioxidants (Basel) 2023; 12:1583. [PMID: 37627578 PMCID: PMC10451638 DOI: 10.3390/antiox12081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Gluten-free formulations (GF) were utilized as food inks enriched with sour-cherry powder (SCP) and lyophilized extract (SCLE), and their physicochemical, rheological, and thermomechanical properties were evaluated with respect to different leavening conditions. Post-printing drying was also assessed in terms of texture, color, and phenolic substances. SCP and SCLE enrichment decreased lightness by 15% and increased red hue by almost 30%, mainly in yeast formulations. SC addition reduced pH by more than 12% for SCP in both leavening conditions and at 10% to 12% for SCLE, depending on leavening agents. The SCLE addition doubled dynamic moduli and complex viscosity magnitudes and increased hardness at 75.7% compared to the control for baking-powder formulations. SC enrichment, compared to the control, increased the phenolic sum to more than 90% (87% SCLE, 96% SCP) in yeast formulations, presenting lower values (almost 70%) for baking powder. Antioxidant activity in 3D-printed snacks was positively influenced by SC incorporation, depending on the drying and leavening treatment. Phenolic content, in terms of total phenolic sum, origin, and composition, possibly impacts the product's antioxidant activity by depicting antagonistic or synergistic phenomena. Ultimately, 3D printing is feasible for producing functional GF snacks enriched with sour-cherry extracts.
Collapse
Affiliation(s)
- Evgenia N. Nikolaou
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece; (E.N.N.); (E.D.K.)
| | - Evangelia D. Karvela
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece; (E.N.N.); (E.D.K.)
| | - Argyri Papadopoulou
- Department of Food Science and Technology, University of West Attika, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece;
| | - Vaios T. Karathanos
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece; (E.N.N.); (E.D.K.)
| |
Collapse
|
10
|
Sciarini LS, Palavecino PM, Ribotta PD, Barrera GN. Gleditsia triacanthos Galactomannans in Gluten-Free Formulation: Batter Rheology and Bread Quality. Foods 2023; 12:foods12040756. [PMID: 36832831 PMCID: PMC9956313 DOI: 10.3390/foods12040756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Gluten-free batters, in general, require the incorporation of agents to control their rheology; this role is commonly played by hydrocolloids. New natural sources of hydrocolloids are under permanent research. In this regard, the functional properties of the galactomannan extracted from the seed of Gleditsia triacanthos (Gledi) have been studied. In this work, we evaluated the incorporation of this hydrocolloid, alone and in combination with Xanthan gum, in gluten-free batters and bread and compared it with Guar gum. The incorporation of hydrocolloids increased the viscoelastic profile of the batters. Gledi addition at 0.5% and 1.25% increased the elastic modulus (G') by 200% and 1500%, respectively, and similar trends were observed when Gledi-Xanthan was used. These increases were more pronounced when Guar and Guar-Xanthan were used. The batters became firmer and more elastically resistant because of the addition of hydrocolloids; batters containing Gledi had lower values of these parameters than batters containing Gledi-Xanthan. The addition of Gledi at both doses significantly increased the volume of the bread compared to the control by about 12%, while when Xanthan gum was included, a decrease was observed, especially at higher doses (by about 12%). The increase in specific volume was accompanied by a decrease in initial crumb firmness and chewiness, and during storage, they were significantly reduced. Bread prepared with Guar gum and Guar-Xanthan gum combinations was also evaluated, and the trends observed were comparable to that of bread with Gledi gum and Gledi-Xanthan gum. The results showed that Gledi addition favors the production of bread of high technological quality.
Collapse
Affiliation(s)
- Lorena S. Sciarini
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba (UNC), Av. Filloy s/n, Córdoba CP X5000HUA, Argentina
- Facultad de Ciencias Agropecuarias (FCA), Universidad Nacional de Córdoba (UNC), Av. Valparaíso s/n, Córdoba CP X5000HUA, Argentina
| | - Pablo M. Palavecino
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba (UNC), Av. Filloy s/n, Córdoba CP X5000HUA, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield, 1611, Córdoba CP X5000HUA, Argentina
| | - Pablo D. Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba (UNC), Av. Filloy s/n, Córdoba CP X5000HUA, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield, 1611, Córdoba CP X5000HUA, Argentina
- Correspondence:
| | - Gabriela N. Barrera
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba (UNC), Av. Filloy s/n, Córdoba CP X5000HUA, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield, 1611, Córdoba CP X5000HUA, Argentina
| |
Collapse
|
11
|
Zhang J, You Y, Li C, Ban X, Gu Z, Li Z. The modulatory roles and regulatory strategy of starch in the textural and rehydration attributes of dried noodle products. Crit Rev Food Sci Nutr 2022; 64:5551-5567. [PMID: 36524398 DOI: 10.1080/10408398.2022.2155797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noodles are popular staple foods globally, and dried noodle products (DNPs) have gained increasing attention due to recent changes in consumer diet behavior. Rapid rehydration and excellent texture quality are the two major demands consumers make of dried noodle products. Unfortunately, these two qualities conflict with each other: the rapid rehydration of DNPs generally requires a loose structure, which is disadvantageous for good texture qualities. This contradiction limits further development of the noodle industry, and overcoming this limitation remains challenging. Starch is the major component of noodles, and it has two main roles in DNPs. It serves as a skeleton for the noodle in gel networks form or acts as a noodle network filler in granule form. In this review, we comprehensively investigate the different roles of starch in DNPs, and propose strategies for balancing the conflicts between texture and rehydration qualities of DNPs by regulating the gel network and granule structure of starch. Current strategies in regulating the gel network mainly focused on the hydrogen bond strength, the orientation degree, and the porosity; while regulating granule structure was generally performed by adjusting the integrity and the gelatinization degree of starch. This review assists in the production of instant dried noodle products with desired qualities, and provides insights into promising enhancements in the quality of starch-based products by manipulating starch structure.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuxian You
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
12
|
Xie Q, Liu X, Xiao S, Pan W, Wu Y, Ding W, Lyu Q, Wang X, Fu Y. Effect of mulberry leaf polysaccharides on the baking and staling properties of frozen dough bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6071-6079. [PMID: 35462415 DOI: 10.1002/jsfa.11959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Deterioration in frozen dough bread easily occurs in store, resulting in tremendous economic waste. Therefore, it is imperative to find natural additives to improve storage staling. The effects of mulberry leaf polysaccharides (MLP) were studied in terms of baking, retrogradation and microstructural aspects in frozen dough bread. RESULTS The incorporation of MLP improved the specific volume and reduced the hardness of bread during room storage, with 1% MLP showing the best results. The results of X-ray diffraction and Fourier transform infrared spectroscopy showed that crystallinity was decreased and the formation of double helical structure was inhibited with the incorporation of MLP. Meanwhile, the results of low-field nuclear magnetic resonance demonstrated that the addition of MLP was advantageous for retarding water migration and distribution, with reduced water loss. It can be seen intuitively from scanning electron microscopy that MLP improved the gluten network with a smoother and flatter system. CONCLUSION MLP improved the quality of bread during storage and delayed the degradation of internal structure, and can be used as an effective natural additive to improve the storage stability of baked food. 1% MLP showed the best results. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianran Xie
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Xiaorong Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Shensheng Xiao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Wen Pan
- Wuhan Qianji Food Co. Ltd, Wuhan, China
| | - Yan Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Wenping Ding
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Qingyun Lyu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Yang Fu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| |
Collapse
|
13
|
Tamilselvan T, Sharma S, Thomas PE, Goyal K, Prabhasankar P. Role of hydrocolloids in improving the rheology, quality characteristics and microstructure of gluten free proso millet bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Tamilselvan
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Shivani Sharma
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Pinchu Elizabath Thomas
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Kanchan Goyal
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Pichan Prabhasankar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| |
Collapse
|
14
|
Matas A, Igual M, García-Segovia P, Martínez-Monzó J. Application of 3D Printing in the Design of Functional Gluten-Free Dough. Foods 2022; 11:foods11111555. [PMID: 35681306 PMCID: PMC9180896 DOI: 10.3390/foods11111555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
The design of functional foods through 3D printing is proposed here as one of the most appropriate technologies to provide closer food personalization for the population. However, it is essential to study the properties of the biomaterials intended to be printed. This work will evaluate the incorporation of rosehip as a functional ingredient in a gluten-free dough. Three types of dough (control, rosehip, and encapsulated rosehip) were printed in a rectangular figure of dimensions 7 cm long, 2 cm wide, and 1, 2, and 3 cm high. Changes in printed figures before and after baking were evaluated by image analysis. Physicochemical properties, total phenols (TP), antioxidant capacity (AC), and total carotenoids (TC) were determined both in the pre-printed doughs and in the printed and baked samples. The bread enriched with rosehips presented more orange colors in dough and crumbs. They were also more acidic than control, probably due to the ascorbic acid content of rosehip. The addition of rosehip generally makes the product more resistant to breakage, which could be due to the fiber content of the rosehip. It was observed that the incorporation of rosehip notably improved the functional properties of the bread.
Collapse
|
15
|
Chen C, Zhang M, Liu W, Lin Z. Baking characteristic improvement and starch retrogradation inhibition of Chinese pancakes by hydrocolloids. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
- International Joint Laboratory on Food Safety Jiangnan University 214122 Wuxi, Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University 214122 Wuxi, Jiangsu China
| | - Wenchao Liu
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
| | - Zhihan Lin
- Jiangsu New Herunshijia Food Co Zhenjiang Jiangsu China
| |
Collapse
|
16
|
Culetu A, Duta DE, Papageorgiou M, Varzakas T. The Role of Hydrocolloids in Gluten-Free Bread and Pasta; Rheology, Characteristics, Staling and Glycemic Index. Foods 2021; 10:foods10123121. [PMID: 34945672 PMCID: PMC8701227 DOI: 10.3390/foods10123121] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Hydrocolloids are important ingredients controlling the quality characteristics of the final bakery products. Hydrocolloids are frequently used in gluten-free (GF) recipes, mimicking some rheological properties of gluten, improving dough properties, delaying starch retrogradation and improving bread texture, appearance and stability. Hydrocolloids addition increases viscosity and incorporation of air into the GF dough/batter. Besides their advantages for the technological properties of the GF bread, hydrocolloids addition may impact the glycemic index (GI) of the final product, thus answering the demand of people requiring products with low GI. This review deals with the application of hydrocolloids in GF bread and pasta with a focus on their effect on dough rheology, bread hardness, specific volume, staling and GI.
Collapse
Affiliation(s)
- Alina Culetu
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania; (A.C.); (D.E.D.)
| | - Denisa Eglantina Duta
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania; (A.C.); (D.E.D.)
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
- Correspondence: ; Tel.: +30-2721045279
| |
Collapse
|
17
|
Atzler JJ, Sahin AW, Gallagher E, Zannini E, Arendt EK. Investigation of different dietary-fibre-ingredients for the design of a fibre enriched bread formulation low in FODMAPs based on wheat starch and vital gluten. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractConsumption of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) often induces symptoms of irritable bowel syndrome (IBS). Since FODMAPs and dietary fibre (DF) share certain characteristics, IBS-patients have a limited intake of DF. Therefore, enrichment of a low FODMAP model bread (based on 84% wheat starch and 16% vital gluten) with various fibres (bamboo, cellulose, psyllium, guar gum) in two different concentrations (3 g/100 g and 6 g/100 g) was investigated. Physico-chemical properties of doughs and breads were analysed (fermentation quality, gluten development, specific volume and hardness), as well as the release of reducing sugars during in vitro digestion. High performance anion exchange chromatography with coupled pulsed amperometric detection (HPAEC-PAD) was used to determine the FODMAP levels (contents of mannitol, sorbitol, fructose in excess of glucose, fructans and α-galactooligosaccharides) of both dough and bread. Prototypes were compared with wheat flour-based breads (bakers’ flour with and without wheat bran addition) to assess the performance of these prototypes. Prototypes showed a decreased quality compared to a baker’s flour control, however, a quality comparable to commercial wheat bran breads was found. This in combination with a lower release of reducing sugars during in vitro digestion underline the potential of fibre enriched breads as part of a healthier and more palateable low FODMAP diet. Furthermore, this study highlights the importance of the type (viscous and insoluble) and the concentration of fibres used. Application of psyllium in a concentration of 3 g/100 g showed the most beneficial impact on both physical (specific volume, hardness after 0 h and 24 h) and nutritional aspects of bread.
Collapse
|
18
|
Okonkwo VC, Kwofie EM, Mba OI, Ngadi MO. Impact of thermo-sonication on quality indices of starch-based sauces. ULTRASONICS SONOCHEMISTRY 2021; 73:105473. [PMID: 33609994 PMCID: PMC7903464 DOI: 10.1016/j.ultsonch.2021.105473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 05/25/2023]
Abstract
In this study, ultrasonication, a physical, relatively cheap, and environmentally benign technology, was investigated to characterize its effect on functional properties of rice starch and rice starch-based sauces. Temperature-assisted ultrasound treatment improved the granular swelling power, fat and water absorption capacities, and thermal properties of rice starch, signifying its suitability in the formulation of starch-based sauces. Rheological characterization of the formulated sauces revealed a shear-thinning flow behavior, well described by the Ostwald de Waele model, while viscoelastic properties showed the existence of a weak gel. Results indicated that ultrasonication significantly enhanced the pseudoplastic behavior of starch-based sauces. Additionally, textural analysis showed that textural attributes (stickiness, stringiness, and work of adhesion) were also improved with ultrasonication. Moreover, enhanced freeze/thaw stability was also achieved with ultrasound-treated starch-based sauces. Overall, the results from this study show that ultrasound-treated starches can be used in the formulation of sauces and potentially other food products, which meets the requirements for clean label and minimally processed foods.
Collapse
Affiliation(s)
- Valentine C Okonkwo
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Ebenezer M Kwofie
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Ogan I Mba
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Michael O Ngadi
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada.
| |
Collapse
|
19
|
A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021; 10:foods10030614. [PMID: 33805719 PMCID: PMC7999268 DOI: 10.3390/foods10030614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to perform a systematic review on gluten-free bread formulations using specific volumes as a quality indicator. In this systematic review, we identified 259 studies that met inclusion criteria. From these studies, 43 met the requirements of having gluten-free bread with a specific volume greater than or equal to 3.5 cm3/g. Other parameters such as the texture profile, color (crumb and crust), and sensory analysis examined in these studies were presented. The formulations that best compensated the lack of the gluten-network were based on the combination of rice flour, rice flour with low amylose content, maize flour, rice starch, corn starch, potato starch, starch with proteins and added with transglutaminase (TGase), and hydrocolloids like hydroxypropylmethylcellulose (HPMC). Of the 43 studies, three did not present risk of bias, and the only parameter evaluated in common in the studies was the specific volume. However, it is necessary to jointly analyze other parameters that contribute to the quality, such as texture profile, external and internal characteristics, acceptability, and useful life of the bread, especially since it is a product obtained through raw materials and unconventional ingredients.
Collapse
|
20
|
Yang H, Ji Z, Wang R, Fan D, Zhao Y, Wang M. Inhibitory effect of selected hydrocolloids on 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) formation in chemical models and beef patties. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123486. [PMID: 32707466 DOI: 10.1016/j.jhazmat.2020.123486] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mutagen and a rodent carcinogen mainly formed in thermally processed muscle foods. Hydrocolloids are widely used as thickeners, gelling agents and stabilizers to improve food quality in the food industry. In this study, the inhibitory effects of eight hydrocolloids on the formation of PhIP were investigated in both chemical models and beef patties. 1% (w/w) of carboxymethylcellulose V, κ-carrageenan, alginic acid, and pectin significantly reduced PhIP formation by 53 %, 54 %, 48 %, and 47 %, respectively in chemical models. In fried beef patties, κ-carrageenan appeared to be most capable of inhibiting PhIP formation among the eight tested hydrocolloids. 1% (w/w) of κ-carrageenan caused a decreased formation of PhIP by 90 %. 1% (w/w) of κ-carrageenan also significantly reduced the formation of other heterocyclic aromatic amines including MeIQx and 4,8-DiMeIQx by 64 % and 48 %, respectively in fried beef patties. Further mechanism study showed that κ-carrageenan addition decreased the PhIP precursor creatinine residue and reduced the content of Maillard reaction intermediates including phenylacetaldehyde and aldol condensation product in the chemical model. κ-Carrageenan may inhibit PhIP formation via trapping both creatinine and phenylacetaldehyde. The structures of adducts formed between κ-carrageenan and creatinine and κ-carrageenan and phenylacetaldehyde merits further study.
Collapse
Affiliation(s)
- Hongmei Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Zhiwei Ji
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Ru Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China.
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
21
|
Belorio M, Gómez M. Effect of Hydration on Gluten-Free Breads Made with Hydroxypropyl Methylcellulose in Comparison with Psyllium and Xanthan Gum. Foods 2020; 9:E1548. [PMID: 33114635 PMCID: PMC7693925 DOI: 10.3390/foods9111548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
The use of hydrocolloids in gluten-free breads is a strategy to improve their quality and obtain products with acceptable structural and textural properties. Hydration level (HL) optimization is important to maximize the hydrocolloids effects on dough and bread quality. This study evaluated the optimum hydration level (OHL) for gluten-free breads prepared with different starch sources (rice flour or maize starch) and hydroxypropyl methylcellulose (HPMC) in comparison with psyllium husk fibre and xanthan gum. Breads with the same final volume and the corrected hydration (CH) were evaluated. The hydration is a key factor that influences the final characteristics of gluten-free breads. Breads made with HPMC had greater dependence on the HL, especially for preparations with maize starch. Psyllium had similar behaviour to xanthan with respect to specific volume and weight loss. Breads manufactured with maize starch and HPMC had low hardness due to their great specific volume. However, in breads made with rice flour, the combined decreased hydration and similar specific volume generated a harder bread with HPMC than the use of psyllium or xanthan. Breads made with HPMC presented higher specific volume than the other hydrocolloids, however combinations among these hydrocolloids could be evaluated to improve gluten-free breads quality.
Collapse
Affiliation(s)
- Mayara Belorio
- College of Agricultural Engineering, University of Valladolid, 34004 Palencia, Spain;
| | | |
Collapse
|
22
|
Abstract
Psyllium gum is a hydrocolloid found in the husk of seeds from Plantago ovata. Psyllium husk has been used in traditional medicine in areas of India and China. Its consumption has been shown to provide nutritional benefits, such as the capacity to reduce the glycaemic index, to minimize the risk of cardiovascular diseases, to decrease cholesterol and constipation problems and others. Thus, interest in the incorporation of psyllium in food products is twofold. First, it can be a natural alternative to the use of other gums and hydrocolloids considered additives. Second, it can be used to improve the nutritional properties of products in which it is incorporated. However, for this purpose, it is necessary to add great quantities of psyllium. This review analyses the potential use of psyllium in distinct food products, considering its advantages and inconveniences as well as possible solutions for undesired effects. Among the analyzed products there are bakery products and, in particular, gluten-free breads where psyllium has been used as a gluten substitute. The incorporation of psyllium into dairy products such as yogurts and those derived from fruits, among others, is also addressed.
Collapse
Affiliation(s)
- Mayara Belorio
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain
| | - Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain
| |
Collapse
|
23
|
A Systematic Review of Gluten-Free Dough and Bread: Dough Rheology, Bread Characteristics, and Improvement Strategies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186559] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-quality, gluten-free doughs and bakery products are clearly more difficult to produce than wheat flour-based products. The poor quality of the breads that are currently available demonstrates that manufacturing remains a significant technological problem. This is mainly due to the absence of gluten, which has a huge negative impact on dough rheology and bread characteristics. Gluten replacement is still the major challenge in the development of doughs and baked goods. The literature documents various improvement strategies. The most active approach seeks to identify alternative ingredients that can mimic the viscoelastic properties of the gluten network, notably hydrocolloids, enzymes, emulsifiers, and alternative sources of protein. However, other innovative strategies, such as high pressure, using heat to dry flour, and sourdough fermentation, have been investigated. In this context, the first aim of this review is to summarize current knowledge regarding gluten-free doughs, breads, and bakery products. Secondly, as it is clear that the manufacture of gluten-free products remains a key challenge, it suggests some improvement strategies that can boost their nutritional, technological, and sensorial characteristics.
Collapse
|
24
|
Evaluation of a new method to determine the water addition level in gluten-free bread systems. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ari Akin P, Miller R, Jaffe T, Koppel K, Ehmke L. Sensory profile and quality of chemically leavened gluten-free sorghum bread containing different starches and hydrocolloids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4391-4396. [PMID: 30859568 DOI: 10.1002/jsfa.9673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Pervin Ari Akin
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Rebecca Miller
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Taylor Jaffe
- Center for Sensory Analysis and Consumer Behavior, Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Kadri Koppel
- Center for Sensory Analysis and Consumer Behavior, Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Laura Ehmke
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
26
|
Roman L, Belorio M, Gomez M. Gluten‐Free Breads: The Gap Between Research and Commercial Reality. Compr Rev Food Sci Food Saf 2019; 18:690-702. [DOI: 10.1111/1541-4337.12437] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Roman
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| | - Mayara Belorio
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| | - Manuel Gomez
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| |
Collapse
|
27
|
Influence of tara gum and xanthan gum on rheological and textural properties of starch-based gluten-free dough and bread. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03253-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Han A, Romero HM, Nishijima N, Ichimura T, Handa A, Xu C, Zhang Y. Effect of egg white solids on the rheological properties and bread making performance of gluten-free batter. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
The effect of pH, sucrose, salt and hydrocolloid gums on the gelling properties and water holding capacity of egg white gel. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Conte P. Technological and Nutritional Challenges, and Novelty in Gluten-Free Breadmaking: a Review. POL J FOOD NUTR SCI 2018. [DOI: 10.31883/pjfns-2019-0005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
31
|
A comparative study of gluten-free sprouts in the gluten-free bread-making process. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3185-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Encina-Zelada CR, Cadavez V, Monteiro F, Teixeira JA, Gonzales-Barron U. Physicochemical and textural quality attributes of gluten-free bread formulated with guar gum. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3176-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Encina-Zelada CR, Cadavez V, Monteiro F, Teixeira JA, Gonzales-Barron U. Combined effect of xanthan gum and water content on physicochemical and textural properties of gluten-free batter and bread. Food Res Int 2018; 111:544-555. [PMID: 30007717 DOI: 10.1016/j.foodres.2018.05.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
The objective of this study was to evaluate the combined effect of xanthan gum (XG) on physicochemical, rheological and textural properties of gluten-free batter and bread. To prepare gluten-free batter, different levels of XG (1.5, 2.5 and 3.5%) and water (90, 100 and 110%) were added to a base formula of rice (50%), maize (30%) and quinoa flours (20%); and the batters were evaluated in a factorial design. Several properties on both batter (stickiness and back extrusion) and its corresponding bread (loaf specific volume, baking loss, water activity and pH, texture profile, mean cell area, mean cell density, cell size uniformity, void fraction, mean cell compactness and mean cell aspect ratio) were then evaluated. Higher XG doses (p < .001) tended to produce batters of lower stickiness, adhesion and cohesive-strength, yet, of higher firmness, consistency, cohesiveness and viscosity index. After baking, these loaves presented lower specific volume; lower crumb aw, pH, hardness, springiness, mean cell area and void fraction; and higher (p < .001) chewiness, resilience, mean cell density, cell size uniformity and mean cell compactness. The sticker and less consistent batters produced with higher WC rendered larger bread loaves of softer and more springy/resilient crumbs with greater mean cell size and void fraction. Gluten-free loaves of good appearance in terms of higher specific volume, lower crumb hardness, higher crumb springiness, and open grain visual texture were obtained in formulations with 110% WC and XG doses between 1.5 and 2.5%.
Collapse
Affiliation(s)
- Christian R Encina-Zelada
- CIMO Mountain Research Centre, School of Agriculture, Polytechnic Institute of Bragança, Portugal; Centre of Biological Engineering, School of Engineering, University of Minho, Portugal; Department of Food Technology, Faculty of Food Industries, National Agricultural University La Molina, Lima, Peru
| | - Vasco Cadavez
- CIMO Mountain Research Centre, School of Agriculture, Polytechnic Institute of Bragança, Portugal
| | - Fernando Monteiro
- Department of Electrical Engineering, School of Technology and Management, Polytechnic Institute of Bragança, Portugal; Portugal INESC-TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, School of Engineering, University of Minho, Portugal
| | - Ursula Gonzales-Barron
- CIMO Mountain Research Centre, School of Agriculture, Polytechnic Institute of Bragança, Portugal.
| |
Collapse
|