1
|
Wang Y, Liu B, Ma Y, Wang C, Ma H, Geng S. Oil/water interface behavior of hesperidin methylchalcone and its application in nano-emulsions. Food Chem 2025; 463:141235. [PMID: 39276552 DOI: 10.1016/j.foodchem.2024.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The behavior of hesperidin methylchalcone (HMC) at the oil/water interface was examined through experimental and molecular simulation methods, and a nano-emulsions based on HMC was subsequently fabricated. The findings indicated that HMC spontaneously aggregated at the oil-water interface, leading to a reduction in interfacial tension and an increase in interfacial thickness. Furthermore, its glycoside and benzene ring showed tendencies to interact with water and medium-chain triglyceride, respectively. The HMC addition amount (w), homogenization times (n) and homogenization pressure (p) significantly influenced the formation of the nano-emulsions. The nano-emulsion with an oil-droplet size of 277.26 ± 13.62 nm was obtained at w = 1.0 %, p = 200 bar, and n = 6. When compared to the Tween 20 nano-emulsion, the HMC nano-emulsion demonstrated superior storage stability, antioxidant activity, and lutein bioaccessibility. It could achieve the slow release of HMC. These findings not only broaden the application range of HMC but also contribute to the advancement of functional nano-emulsions.
Collapse
Affiliation(s)
- Yuxiang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuling Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chunyan Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Wang Y, Sun Y, Tian Y, Xie Y, Li T, Zhang X, Wang Y, Huang J, Xia B, Wang S, Dong W. High internal phase Pickering emulsions stabilized by Zein-hyaluronic acid conjugate particles and their application in active substances protection. Carbohydr Polym 2024; 343:122498. [PMID: 39174107 DOI: 10.1016/j.carbpol.2024.122498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
In recent years, active substances have been extensively applied in the fields of food, cosmetics, and pharmaceuticals. However, their preservation and transportation have posed challenges due to issues such as oxidation and photodegradation. This study proposes a method for synthesizing Zein-Hyaluronic Acid (Zein-HA) conjugate particles via the Schiff base reaction, utilizing these conjugate particles to encapsulate and protect active substances within a stable emulsion system. Compared to zein, the modified conjugate particles exhibit significantly improved dispersibility, amphiphilicity, interfacial affinity, and emulsifying properties. Consequently, these particles are capable of stabilizing high internal phase Pickering emulsions with an oil phase volume fraction of up to 80 (v/v)%, thereby enabling the carriage of a higher load of active components. Furthermore, the prepared emulsions demonstrate excellent storage stability, resistance to ionic strength (250-2000 mM NaCl), and outstanding antioxidative characteristics. Moreover, after 8 h of UV light exposure, the retention rates of the active substances (curcumin, astaxanthin, and resveratrol) exceed 60 %. Therefore, these emulsions hold substantial potential to be applied as a carrier system in the food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunze Tian
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Xu Y, Sun L, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. Influence of gelatinized octenyl succinic anhydride-modified waxy adlay seed starch on the properties of astaxanthin-loaded emulsions: Emulsion properties, stability and in vitro digestion properties. Food Chem 2024; 457:140105. [PMID: 38905828 DOI: 10.1016/j.foodchem.2024.140105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starch is a commonly used food emulsifier and its emulsifying properties are positively correlated with the degree of substitution (DS). However, the maximum concentration of OSA in starch approved by the FDA and the China National Food Safety Standards is 3%. This study aims to enhance the emulsifying properties of OSA-modified waxy adlay seed starch by gelatinization under a limited DS and investigate its use in preparing delivery systems. The gelatinized OSA starch exhibited a more flexible macromolecular structure and better emulsifying activity (20.19 m2/g). The gelatinized OSA starch-stabilized astaxanthin-loaded emulsions showed high retention of astaxanthin (>50%) and long-term stability (56 days). In vitro digestion, the emulsion system showed a protective effect on astaxanthin, and the bioaccessibility of astaxanthin was increased to 16.32%. This study indicated that gelatinization could enhance the emulsifying properties of OSA starch, and this starch-stabilized emulsion was an effective system for astaxanthin.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
5
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
6
|
Yin X, Lu J, Du W, Wu Q, Han L, Su S. Encapsulation of β-carotene in Pickering emulsions stabilized by self-aggregated chitosan nanoparticles: Factors affecting β-carotene stability. Int J Biol Macromol 2024; 277:133696. [PMID: 39084971 DOI: 10.1016/j.ijbiomac.2024.133696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
For conventional emulsions used to encapsulate easily degradable bioactive compounds, achieving small droplet size and high encapsulation capacity is a challenging. Pickering emulsions stabilized by self-aggregated chitosan particles may offer high encapsulation efficiency due to the robust mechanical barrier formed by solid particles adsorbed at the oil-water interface. Therefore, the effects of pH, chitosan concentration, oil volume fraction, homogenization pressure, and homogenization cycle on the stability of chitosan Pickering emulsions and the degradation of β-carotene were investigated. Effective interfacial adsorption of chitosan nanoparticles and moderate homogenization intensity facilitated the formation of small emulsion droplets. Unlike conventional emulsions, chitosan Pickering emulsions with smaller droplets provided enhanced protection for β-carotene. This enhancement was primarily attributed to the improved interfacial coverage of chitosan nanoparticles with smaller droplet sizes, which was advantageous for β-carotene protection. The optimal conditions for preparing β-carotene-loaded chitosan Pickering emulsions were as follows: pH 6.5, chitosan concentration of 1.0 wt%, oil volume fraction of 20 %, homogenization pressure of 90 MPa, and 6 homogenization cycles. These findings indicate that chitosan Pickering emulsions are well-suited for encapsulating β-carotene with both small droplet size and high encapsulation efficiency.
Collapse
Affiliation(s)
- Xinyi Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Junhua Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Wenyu Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China; Fruit and Vegetable Storage and Processing Technology Innovation Center of Shandong Province, Jinan Fruit Research Institute, All China Federation of Supply and Marketing Co-operatives, Jinan 250220, China
| | - Qiu Wu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Liying Han
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| | - Shupeng Su
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
7
|
Wang Z, Yu X, Song L, Jiao J, Prakash S, Dong X. Encapsulation of β-carotene in gelatin-gum Arabic-sodium carboxymethylcellulose complex coacervates: Enhancing surimi gel properties and exploring 3D printing potential. Int J Biol Macromol 2024; 278:134129. [PMID: 39069046 DOI: 10.1016/j.ijbiomac.2024.134129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
This study investigates the utilization of functional additives (β-carotene microcapsules) and 3D printing technology for the production of innovative surimi products. The β-carotene microcapsules were prepared using different ratios of gelatin (Ge), gum Arabic (Ara), and carboxymethylcellulose sodium (CMC). Among these ratios, the ratio of 5:5:1 (Ge:Ara:CMC) resulted in more stable microcapsules spherical structures and better environmental stability. Subsequently, different concentrations (5-20 %) of the obtained β-carotene microcapsules were added to surimi samples. As the concentration increased, there was an improvement in the gel strength of the surimi. However, no significant changes were observed when the concentration was 15 % (p > 0.05). All samples exhibited shear thinning behavior. The addition of microcapsules improved the resilience and thixotropy of surimi, making it more suitable for 3D printing applications. The inclusion of β-carotene microcapsules in surimi products not only meets the nutritional needs of consumers, but also provides valuable insights for the development of functional surimi products.
Collapse
Affiliation(s)
- Zheming Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiliang Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jian Jiao
- Beijing Tong Ren Tang Health (Dalian) Seafoods Co., Ltd., Dalian 116034, Liaoning, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
8
|
Xie Y, Li H, Deng Z, Peng H, Yu Y, Zhang B. Preparation and characterization of a new food-grade Pickering emulsion stabilized by mulberry-leaf protein nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39271605 DOI: 10.1002/jsfa.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Food-grade Pickering particles, particularly plant proteins, have attracted significant interest due to their bio-based nature, environmental friendliness, and edibility. Mulberry-leaf protein (MLP) is a high-quality protein with rich nutritional value and important functional properties. It has special amphoteric and emulsifying characteristics, making it valuable for use in Pickering emulsions. This study aimed to investigate the feasibility of using MLP nanoparticles as solid particles to stabilize Pickering emulsions. RESULTS The particle size of MLP nanoparticles was less than 300 nm under neutral and alkaline conditions. At pH 9, the zeta potential value reached -34.3 mV, indicating the electrostatic stability of the particles. As ion concentration increased, the particle size of MLP nanoparticles increased, and the zeta potential decreased. Throughout the storage process, no obvious aggregation or precipitation was observed in the dispersion of MLP nanoparticles, indicating strong stability. The particle size of the Pickering emulsion decreased with the increase in protein concentration. When the protein concentration was low, the particles on the oil-water interface became sparse, resulting in poor stability of the prepared emulsion and making it susceptible to aggregation and thus larger particle sizes. Increasing the oil-phase ratio to 70% (v/v) promotes the formation of Pickering emulsions, which exhibit exceptional stability when MLP nanoparticles are fixed at a concentration of 20 mg mL-1. CONCLUSION The overall findings indicated that MLP nanoparticles have potential as food-grade materials for Pickering emulsions, marking a novel application of these nanoparticles in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingshan Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Yanfang Yu
- Jiangxi Cash Crops Institute, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Wang B, LvYe J, Yang S, Shi Y, Chen Q. Critical Review of Food Colloidal Delivery System for Bioactive Compounds: Physical Characterization and Application. Foods 2024; 13:2596. [PMID: 39200523 PMCID: PMC11353541 DOI: 10.3390/foods13162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Bioactive compounds (BACs) have attracted much attention due to their potential health benefits. However, such substances have problems such as difficulty dissolving in water, poor stability, and low intestinal absorption, leading to serious limitations in practical applications. Nowadays, food colloidal delivery carriers have become a highly promising solution due to their safety, controllability, and efficiency. The use of natural macromolecules to construct delivery carriers can not only regulate the solubility, stability, and intestinal absorption of BACs but also effectively enhance the nutritional added value of functional foods, improve sensory properties, and extend shelf life. Moreover, smart-responsive colloidal delivery carriers can control the release characteristics of BACs, thus improving their absorption rate in the human body. This review describes the characteristics of several typical food colloid delivery carriers, focuses on their physical properties from static structure to dynamic release, summarizes their applications in delivery systems, and provides an outlook on the future development of food colloid delivery carriers. The different compositions and structures of food colloids tend to affect their stability and release behaviors, and the different surface properties and rheological characteristics of the carriers predestine their different application scenarios. The control of in vivo release properties and the effect on food media should be emphasized in the future exploration of safer and more controllable carrier systems.
Collapse
Affiliation(s)
- Bijie Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
| | - Jiayi LvYe
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
| | - Shaoming Yang
- Zhejiang Longquan ZhengDa Biotech Co., Ltd., Lishui 323000, China;
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 310000, China
| |
Collapse
|
10
|
Liu L, Shi LS, Hu CY, Gong T, Yang XY, Zhang CQ, Meng YH. Walnut protein isolate based emulsion as a promising delivery system enhanced lutein bioaccessibility. Int J Biol Macromol 2024; 275:133608. [PMID: 38960249 DOI: 10.1016/j.ijbiomac.2024.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ± 1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ± 1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chao Qun Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
11
|
Zhan S, He M, Wu Y, Ouyang J. Improved light and ultraviolet stability of curcumin encapsulated in emulsion gels prepared with corn starch, OSA-starch and whey protein isolate. Food Chem 2024; 446:138803. [PMID: 38412810 DOI: 10.1016/j.foodchem.2024.138803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The objective of this study was to enhance the bioavailability and stability of curcumin (Cur) by encapsulating it in corn starch (CS)/octenylsuccinic acid modified (OSA)-starch-whey protein isolate (WPI) emulsion gels (EGs). As the volume fraction of the oil phase increased, the droplet size and ζ- potential of the EGs decreased. The encapsulation efficiency and bioavailability of Cur in CS/OSA-starch-WPI EGs with a 60% oil ratio were 96.0% and 67.3%, respectively. The release rate of free fatty acid and the bioavailability of Cur from the EGs after digestion were significantly higher compared to Cur dissolved in oil. EGs with an oil phase volume fraction of 75% and 80% demonstrated greater protection against light irradiation but were less effective against UV irradiation compared to EGs with a 60% oil phase volume fraction. Encapsulation in EGs proved to be an effective method for enhancing the bioavailability and stability of Cur.
Collapse
Affiliation(s)
- Siyuan Zhan
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mohe He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Liu Y, Ma L, Zhang Q, Liu Y, Li D. Construction of fatty acid-ovalbumin binary complexes to improve the water dispersibility, thermal/digestive stability and bioaccessibility of lutein: A comparative study of different fatty acids. Int J Biol Macromol 2024; 273:133010. [PMID: 38852735 DOI: 10.1016/j.ijbiomac.2024.133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Lipids are increasingly being incorporated into delivery systems due to their ability to facilitate intestinal absorption of lipid-soluble nutrients through molecular solubilization and micellization. In this work, self-assembled complexes of ovalbumin (OVA) and nine dietary fatty acids (FAs) were constructed to improve the processability and absorbability of lutein (LUT). Results showed that all FAs could form stable hydrophilic particles with OVA under the optimized ultrasound-coupled pH conditions. Fourier infrared spectroscopy and transmission electron microscopy analysis showed that these binary complexes effectively encapsulated LUT with an encapsulation rate > 90.0 %. Stability experiments showed that these complexes protected LUT well, which could improve thermal stability and in vitro digestive stability by 1.66-3.58-fold and 1.27-2.74-fold, respectively. Besides, the bioaccessibility of LUT was also enhanced by 7.16-24.99-fold. The chain length and saturation of FAs affected the stability and absorption of LUT. Therefore, these results provided some reference for the selection of FAs for efficient delivery of lipid-soluble nutrients.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Qian Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| | - Dan Li
- Navy Medical Center, Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
13
|
Fülöp D, Varga Z, Kiss É, Gyulai G. Interfacial Behavior of Biodegradable Poly(lactic- co-glycolic acid)-Pluronic F127 Nanoparticles and Its Impact on Pickering Emulsion Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12353-12367. [PMID: 38848254 DOI: 10.1021/acs.langmuir.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Biodegradable nanoparticle-based emulsions exhibit immense potential in various applications, particularly in the pharmaceutical, cosmetic, and food industries. This study delves into the intricate interfacial behavior of Pluronic F127 modified poly(lactic-co-glycolic acid) (PLGA-F127) nanoparticles, a crucial determinant of their ability to stabilize Pickering emulsions. Employing a combination of Langmuir balance, surface tension, and diffusion coefficient measurements, we investigate the interfacial dynamics of PLGA-F127 nanoparticles under varying temperature and ionic strength conditions. Theoretical calculations are employed to elucidate the underlying mechanisms governing these phenomena. Our findings reveal a profound influence of temperature-dependent Pluronic layer behavior and electrostatic and steric interactions on the interfacial dynamics. Nonlinear changes in surface tension are observed, reflecting the interplay of these factors. Particle aggregation is found to be prevalent at elevated temperatures and ionic strengths, compromising the stability and emulsification efficiency of the formed emulsions. This work provides insights into the rational design of stable and efficient biodegradable nanoparticle-based Pickering emulsions, broadening their potential applications in various fields.
Collapse
Affiliation(s)
- Dániel Fülöp
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
14
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
15
|
Bai X, Liu C, Yu S, Pan Y, Shafiq F, Qiao W. Lipase-Responsive Lignin Composite Nanoparticles for the Delivery of Insoluble Bioactives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11610-11625. [PMID: 38760180 DOI: 10.1021/acs.langmuir.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Low solubility and chemical instability are the main problems with insoluble bioactives. Lignin, with its exceptional biological properties and amphiphilicity, holds promise as a delivery system material. In this study, glycerol esters were incorporated into alkali lignin (AL) through ether and ester bonds, resulting in the successful synthesis of three hydrophobically modified alkali lignins (AL-OA, AL-OGL, and AL-SAN-OGL). Subsequently, lignin composite nanoparticles (LNPs@BC) encapsulating β-carotene were prepared using antisolvent and sonication techniques. The encapsulation rates were determined to be 37.69 ± 2.21%, 84.01 ± 5.55%, 83.82 ± 5.23%, and 83.11 ± 5.85% for LNP@BC-1, LNP@BC-2, LNP@BC-3, and LNP@BC-4, respectively, with AL, AL-OA, AL-OGL, and AL-SAN-OGL serving as the wall materials under optimized preparation conditions. The antioxidant properties and UV-absorbing capacity of the four lignins were characterized, demonstrating their efficacy in enhancing the oxygen and photostability of β-carotene. Following 6 h of UV irradiation, LNP@BC-4 exhibited a retention rate of 83.03 ± 2.85% for β-carotene, while storage under light-protected conditions at 25 °C for 7 days retained 73.33 ± 7.62% of β-carotene. Furthermore, the encapsulated β-carotene demonstrated enhanced thermal and storage stability. In vitro release experiments revealed superior stability of LNPs@BC in simulated gastric fluid (SGF), with β-carotene retention exceeding 77% in both LNP@BC-3 and LNP@BC-4. LNP@BC-4 exhibited the highest bioaccessibility in simulated intestinal fluid (SIF) at 46.96 ± 0.80%, that LNP@BC-1 only achieved 10.87 ± 0.90%. The enzymatic responsiveness of AL-OGL and AL-SAN-OGL was confirmed. Moreover, LNPs@BC exhibited no cytotoxicity toward L929 cells and demonstrated excellent hemocompatibility. In summary, this study introduces a novel enzyme-responsive modified lignin that has promising applications in the fields of food, biomedicine, and animal feed.
Collapse
Affiliation(s)
- Xuefei Bai
- Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang 110042, People's Republic of China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Chenyu Liu
- Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang 110042, People's Republic of China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yongxin Pan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Farishta Shafiq
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Weihong Qiao
- Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang 110042, People's Republic of China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
16
|
Hu Y, Wang L, Julian McClements D. Design, characterization and digestibility of β-carotene-loaded emulsion system stabilized by whey protein with chitosan and potato starch addition. Food Chem 2024; 440:138131. [PMID: 38103502 DOI: 10.1016/j.foodchem.2023.138131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The physicochemical properties and gastrointestinal fate of β-carotene-loaded emulsions and emulsion gels were examined. The emulsion was emulsified by whey protein isolate and incorporated with chitosan, then the emulsion gels were produced by gelatinizing potato starch in the aqueous phase. The rheology properties, water distribution, and microstructure of emulsions and emulsion gels were modulated by chitosan combination. A standardized INFOGEST method was employed to track the gastrointestinal fate of emulsion systems. Significant changes in droplet size, zeta-potential, and aggregation state were detected during in vitro digestion, including simulated oral, stomach, and small intestine phases. The presence of chitosan led to a significantly reduced free fatty acids release in emulsion, whereas a slightly increasing released amount in the emulsion gel. β-carotene bioaccessibility was significantly improved by hydrogel formation and chitosan addition. These results could be used to formulate advanced emulsion systems to improve the gastrointestinal fate of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Yuying Hu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | |
Collapse
|
17
|
Zhou S, Zhang W, Han X, Liu J, Asemi Z. The present state and future outlook of pectin-based nanoparticles in the stabilization of Pickering emulsions. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38733326 DOI: 10.1080/10408398.2024.2351163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.
Collapse
Affiliation(s)
- Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiao Han
- Jilin Jinziyuan Biotechnology Co., Ltd, Shuangliao, Jilin, China
| | - Jinhui Liu
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- Huashikang (Shenyang) Health Industry Group Co., Ltd, Shenyang, Liaoning, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
18
|
Huang Z, Zong MH, Wang J, Peng SY, Yu M, Lou WY. Structural and interfacial properties of acetylated Millettia speciosa Champ polysaccharide and stability evaluation of the resultant O/W emulsion containing β-carotene. Int J Biol Macromol 2024; 264:130556. [PMID: 38431014 DOI: 10.1016/j.ijbiomac.2024.130556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to investigate the effects of acetylation modification on the structural, interfacial and emulsifying properties of Millettia speciosa Champ polysaccharide (MSCP). Besides, the influence of acetylation modification on the encapsulation properties of polysaccharide-based emulsion was also explored. Results indicated that modification resulted in a prominent reduction in molecular weight of MSCP and the interfacial layer thickness formed by acetylated MSCP (AC-MSCP) was also decreased, but the adsorption rate and ability of AC-MSCP to reduce interfacial tension were improved. AC-MSCP formulated emulsion possessed smaller droplet size (6.8 μm) and exhibited better physical stability under stressful conditions. The chemical stability of β-carotene was also profoundly enhanced by AC-MSCP fabricated emulsion. Moreover, AC-MSCP improved lipids digestion extent, thus facilitating the formation of micelle and increasing bioaccessibility of β-carotene. This study provided insights for rational modification of polysaccharide-based emulsifier and designing delivery system for chemically labile hydrophobic bioactive components.
Collapse
Affiliation(s)
- Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, No. 100 Daxue East Road, Nanning 530004, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Shao-Yan Peng
- Hin Sang Health and Medical (Guangdong) Co., Ltd, Yunfu 527300, China
| | - Ming Yu
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China.
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
19
|
Asase RV, Glukhareva TV. Production and application of xanthan gum-prospects in the dairy and plant-based milk food industry: a review. Food Sci Biotechnol 2024; 33:749-767. [PMID: 38371690 PMCID: PMC10866857 DOI: 10.1007/s10068-023-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 02/20/2024] Open
Abstract
Xanthan gum (XG) is an important industrial microbial exopolysaccharide. It has found applications in various industries, such as pharmaceuticals, cosmetics, paints and coatings, and wastewater treatment, but especially in the food industry. The thickening and stabilizing properties of XG make it a valuable ingredient in many food products. This review presents a comprehensive overview of the various potential applications of this versatile ingredient in the food industry. Especially in the plant-based food industries due to current interest of consumers in cheaper protein sources and health purposes. However, challenges and opportunities also exist, and this review aims to identify and explore these issues in greater detail. Overall, this article represents a valuable contribution to the scientific understanding of XG and its potential applications in the food industry.
Collapse
Affiliation(s)
- Richard Vincent Asase
- Institute of Chemical Engineering, Ural Federal University of the First President of Russia B.N. Yeltsin, Mira St., 19, Yekaterinburg, Russia 620002
| | - Tatiana Vladimirovna Glukhareva
- Institute of Chemical Engineering, Ural Federal University of the First President of Russia B.N. Yeltsin, Mira St., 19, Yekaterinburg, Russia 620002
| |
Collapse
|
20
|
Cui XR, Wang YS, Chen Y, Mu HY, Chen HH. Effects of wheat protein on hot-extrusion 3D-printing performance and the release behaviours of caffeic acid-loaded wheat starch. Int J Biol Macromol 2024; 258:129097. [PMID: 38158066 DOI: 10.1016/j.ijbiomac.2023.129097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this study, the effects of wheat protein (WP) on the hot-extrusion 3D-printing (HE-3DP) performance of wheat starch (WS) gels, as well as effects of such gels on the encapsulation of caffeic acid, were investigated for the first time. The HE-3DP results show that the addition of WP can reduce print-line width and improve printing accuracy and fidelity, and the best printing results were achieved when using gels with 10 % WP. The rheological results show that WP reduced the gels' linear viscoelastic region (LVR), yield stress (τy), flow stress (τf) and consistency factor (K) but increased their structural recovery rate, which facilitated smooth extrusion during 3D printing and, thus, improved printing accuracy. The analysis of X-ray diffraction and small-angle X-ray scattering indicates that adding WP to WS could increase the mass fractal dimension and lead to denser gel network structures. The results regarding release kinetics demonstrate that the maximum release of caffeic acid from gels decreased by 28 % with the addition of WP, indicating slow-release behaviour. This study provided valuable information about processing wheat products via 3D printing.
Collapse
Affiliation(s)
- Xin-Ru Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yan Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hong-Yan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Bathurst Future Agti-Tech Institute, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
21
|
Liu Z, Wang H, Bu Y, Wu T, Chen X, Yan H, Lin Q. Fabrication of self-assembled micelles based on amphiphilic oxidized sodium alginate grafted oleoamine derivatives via Schiff base reduction amination reaction for delivery of hydrophobic food active ingredients. Int J Biol Macromol 2024; 257:128653. [PMID: 38072345 DOI: 10.1016/j.ijbiomac.2023.128653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
The application of hydrophobic β-carotene in the food industry are limited due to its susceptibility to light, high temperature, pH value, and other factors, leading to poor stability and low bioavailability. To address this problem, we adopt a more green and environmentally friendly reducing agent, 2-methylpyridine borane complex (pic-BH3), instead of traditional sodium borohydride, to achieve the simple green and efficient synthesis of amphiphilic oxidized sodium alginate grafted oleoamine derivatives (OSAOLA) through the reduction amination reaction of Schiff base. The resultant OSAOLA with the degree of substitution (DS) of 7.2 %, 23.6 %, and 38.8 % were synthesized, and their CMC values ranged from 0.0095 to 0.062 mg/mL, indicating excellent self-assembly capability in aqueous solution. Meanwhile, OSAOLA showed no obvious cytotoxicity to RAW 264.7 cells, thus revealing good biocompatibility. Furthermore, β-carotene, as the hydrophobic active ingredients in foods was successfully encapsulated in the OSAOLA micelles by ultrasonic-dialysis method. The prepared drug-loaded OSAOLA micelles could maintain good stability when stored at room temperature for 7 d. Additionally, they were able to continuously release β-carotene and exert long-term effects in pH 7.4 PBS at 37 °C, effectively improving the bioavailability of β-carotene, which exhibited tremendous application potential in functional food and biomedical fields.
Collapse
Affiliation(s)
- Zhaowen Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
22
|
Fu DW, Fu JJ, Xu H, Shao ZW, Zhou DY, Zhu BW, Song L. Glycation-induced enhancement of yeast cell protein for improved stability and curcumin delivery in Pickering high internal phase emulsions. Int J Biol Macromol 2024; 257:128652. [PMID: 38065454 DOI: 10.1016/j.ijbiomac.2023.128652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Pickering high internal phase emulsions (HIPEs) have gained significant attention for various applications within the food industry. Yeast cell protein (YCP), derived from spent brewer's yeast, stands out as a preferred stabilizing agent due to its cost-effectiveness, abundance, and safety profile. However, challenges persist in utilizing YCP, notably its instability under high salt concentration, thermal processing, and proximity to its isoelectric point. This study aimed to enhance YCP's emulsifying properties through glycation with glucose and evaluate its efficacy as a stabilizer for curcumin (CUR)-loaded HIPEs. The results revealed that glycation increased YCP's surface hydrophobicity, exposing hydrophobic groups. This augmentation, along with steric hindrance from grafted glucose molecules, improved emulsifying properties, resulting in a thicker interfacial layer around oil droplets. This fortified interfacial layer, in synergy with steric hindrance, bolstered resistance to pH changes, salt ions, and thermal degradation. Moreover, HIPEs stabilized with glycated YCP exhibited reduced oxidation rates and improved CUR protection. In vitro digestion studies demonstrated enhanced CUR bioaccessibility, attributed to a faster release of fatty acids. This study underscores the efficacy of glycation as a strategic approach to augment the applicability of biomass proteins, exemplified by glycated YCP, in formulating stable and functional HIPEs for diverse food applications.
Collapse
Affiliation(s)
- Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Jing-Jing Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, PR China
| | - Hang Xu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co. Ltd., Qingdao, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China.
| |
Collapse
|
23
|
Shehzad Q, Liu Z, Zuo M, Wang J. The role of polysaccharides in improving the functionality of zein coated nanocarriers: Implications for colloidal stability under environmental stresses. Food Chem 2024; 431:136967. [PMID: 37604006 DOI: 10.1016/j.foodchem.2023.136967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Zein has gained popularity over the past few years as an incredible food and bio-based materials. The potential functions and health benefits of zein microcapsules or micro-/nanoparticles in bioactive components delivery, structured emulsion, etc., have received great attention. However, the development has been limited by colloidal destabilization, especially when thermal processing is involved. There is a recent trend in developing zein-polysaccharide complexes (ZPCs), which has tremendously improved the performance of zein-based colloidal carrier systems or emulsions. Increasing our understanding of zein interactions and their contribution to the structure of various macromolecules can help us to develop novel biomaterials that can be used in food, agriculture, biomedicine, and cosmetics. In addition, these nanocarriers are suitable for the encapsulation and delivery of bioactive compounds which have positive perspective in food industry. Therefore, this article aimed to review recent advances in the ZPCs that can be applied to functional or health-promoting foods, with a focus on the characteristics of different ZPCs, factors and mechanisms affecting the stability (especially thermal stability) of these complexes, and their application in food industry as a carrier for BCs. Further, the stability of ZPCs based emulsions under processing and physiological environments, as well some typical effective methods are introduced. Also, the principal challenges and prospects were enumerated and discussed.
Collapse
Affiliation(s)
- Qayyum Shehzad
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China
| | - Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China.
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
24
|
Gao Y, He W, Zhao Y, Yao Y, Chen S, Xu L, Wu N, Tu Y. The Effect of Ionic Strength on the Formation and Stability of Ovalbumin-Xanthan Gum Complex Emulsions. Foods 2024; 13:218. [PMID: 38254519 PMCID: PMC10814777 DOI: 10.3390/foods13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Protein-polysaccharide complexes have been widely used to stabilize emulsions, but the effect of NaCl on ovalbumin-xanthan gum (OVA-XG) complex emulsions is unclear. Therefore, OVA-XG complex emulsions with different XG concentrations at pH 5.5 were prepared, and the effects of NaCl on them were explored. The results indicated that the NaCl significantly affected the interaction force between OVA-XG complexes. The NaCl improved the adsorption of proteins at the oil-water interface and significantly enhanced emulsion stability, and the droplet size and zeta potential of the emulsion gradually decreased with increasing NaCl concentrations (0-0.08 M). In particular, 0.08 M NaCl was added to the OVA-0.2% XG emulsion, which had a minimum droplet size of 18.3 μm. Additionally, XG as a stabilizer could improve the stability of the emulsions, and the OVA-0.3% XG emulsion also exhibited good stability, even without NaCl. This study further revealed the effects of NaCl on emulsions, which has positive implications for the application of egg white proteins in food processing.
Collapse
Affiliation(s)
- Yuanxue Gao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
25
|
Yu J, Zhang Y, Zhang R, Gao Y, Mao L. Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel. Int J Biol Macromol 2024; 254:127815. [PMID: 37918613 DOI: 10.1016/j.ijbiomac.2023.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
High internal phase emulsions (HIPEs) based on beeswax (BW) oleogels and octenyl succinic acid starch (OSA starch) were prepared by a facile one-step method. Effects of the oleogelation of internal phase on the formation, stability and functionality of the HIPEs were investigated. OSA starch absorbed at the interface allowed high surface charge (|ζ| > 25 mV) of the droplets, and small droplet size (d ≈ 5 m). Microstructural observation suggested that the HIPEs were of O/W type with droplets packed tightly. With the increase in BW content (0-4 %), the particle size (4-7 μm) and ζ-potential (-25 ~ -30 mV) of the HIPEs were first decreased and then increased. Stability analysis revealed that the addition of BW effectively improved emulsion stability against centrifugation, freeze-thawing, changes in pH and ionic strength, and the HIPE with 2 % BW presented the best stability. Rheological tests indicated that the HIPEs with higher content of BW exhibited higher storage modulus, solid-like properties, and shear thinning behaviors. Creep-recovery results implied that the oleogelation enhanced the structure of HIPEs and improved the deformation resistance of the systems. When subjected to light and heat, oleogel-in-water HIPEs showed advantages in protecting β-carotene from degradation, and β-carotene in the HIPEs with 2 % BW had the lowest degradation rate. These findings suggested that gelation of oil phase could improve the stability of HIPEs and the encapsulation capability, which would be meaningful for the development of novel healthy food.
Collapse
Affiliation(s)
- Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Hou Y, Sun Y, Zhang P, Wang H, Tan M. Development and characterization of emulsion gels prepared via gliadin-based colloidal particles and gellan gum with tunable rheological properties for 3D printed dysphagia diet. Int J Biol Macromol 2023; 253:126839. [PMID: 37696376 DOI: 10.1016/j.ijbiomac.2023.126839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Dysphagia, a condition characterized by difficulty swallowing, has emerged as a threat to health. Herein, we investigated the feasibility of preparing a novel 3D-printed dysphagia diet using emulsions and gellan gum. A gel network was facilitated by the inclusion of gellan gum, which also helped to reduce the size of the oil droplets. Emulsion gels (with 0.3 %-0.5 % gellan gum) were stable at 25 °C for 30 days and tolerated a high ionic concentration of 800 mmol L-1. Emulsion gels remained stable after heat treatment and centrifugation. The excellent stability of the emulsion gels was related to the three-dimensional network developed by the gellan gum. The rheological results validated the solid-state behavior, shear thinning behavior and structural recovery of emulsion gels. Emulsion gels with 0.3 %-0.5 % gellan gum were suitable for 3D printing since they had high printing accuracy, self-support, and smooth surface texture. International Diet Standardization Initiative (IDDIS) tests have shown that emulsion gels can be classified as a level 3-5 dysphagia diet. In addition, the bioaccessibility of astaxanthin increased 1.7 times after being encapsulated by emulsion gels. Overall, these results demonstrate the potential of emulsion gels in the development of novel 3D-printed diets for dysphagia and bioactive protection.
Collapse
Affiliation(s)
- Yitong Hou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuanda Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Pengjing Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
27
|
Yao L, Wang Y, He Y, Wei P, Li C, Xiong X. Pickering Emulsions Stabilized by Conjugated Zein-Soybean Polysaccharides Nanoparticles: Fabrication, Characterization and Functional Performance. Polymers (Basel) 2023; 15:4474. [PMID: 38231891 PMCID: PMC10708203 DOI: 10.3390/polym15234474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study aims to fabricate zein-based colloidal nanoparticles, which were used to stabilize Pickering emulsions, by conjugation with soybean polysaccharide (SSPS) through the Maillard reaction. The physicochemical properties of the conjugated particles as well as the physical and oxidative stability of the fabricated Pickering emulsion that utilized conjugated colloidal particles with the volumetric ratio of water and oil at 50:50 were investigated. The grafting degree of zein and SSPS was verified through examination of FT-IR and fluorescence. Moreover, the conjugated Zein/SSPS nanoparticles (ZSP) that were prepared after dry heating for 48-72 h exhibit excellent colloidal stability across a range of pH values (4.0-10.0). Further, the wettability of ZSP decreased based on a contact angle analysis of θ~87°. Confocal laser scanning microscopy (CLSM) images indicated that ZSP particles were located around the oil droplets. Additionally, the ZSP effectively improved the oxidative stability of the Pickering emulsions, as demonstrated by a significant decrease in both peroxide value (PV) and thiobarbituric acid reactive substances (TBARS). The results of this study demonstrate that ZSP represents a promising food-grade Pickering emulsifier, capable of not only stabilizing emulsions but also inhibiting their oil oxidation.
Collapse
Affiliation(s)
- Lili Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ying Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Yangyang He
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| |
Collapse
|
28
|
Ye L, Zheng W, Li X, Han W, Shen J, Lin Q, Hou L, Liao L, Zeng X. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023; 12:4179. [PMID: 38002235 PMCID: PMC10670377 DOI: 10.3390/foods12224179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.
Collapse
Affiliation(s)
- Li Ye
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenyu Zheng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenmin Han
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jialing Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Qiuya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Liyan Hou
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Xin’an Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Rashwan AK, Osman AI, Abdelshafy AM, Mo J, Chen W. Plant-based proteins: advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Crit Rev Food Sci Nutr 2023:1-28. [PMID: 37966163 DOI: 10.1080/10408398.2023.2279696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Even though plant proteins are more plentiful and affordable than animal proteins in comparison, direct usage of plant-based proteins (PBPs) is still limited because PBPs are fed to animals as feed to produce animal-based proteins. Thus, this work has comprehensively reviewed the effects of various factors such as pH, temperature, pressure, and ionic strength on PBP properties, as well as describes the protein interactions, and extraction methods to know the optimal conditions for preparing PBP-based products with high functional properties and health benefits. According to the cited studies in the current work, the environmental factors, particularly pH and ionic strength significantly affected on physicochemical and functional properties of PBPs, especially solubility was 76.0% to 83.9% at pH = 2, while at pH = 5.0 reduced from 5.3% to 9.6%, emulsifying ability was the lowest at pH = 5.8 and the highest at pH 8.0, and foaming capacity was lowest at pH 5.0 and the highest at pH = 7.0. Electrostatic interactions are the main way for protein interactions, which can be used to create protein/polysaccharide complexes for food industrial purposes. The extraction yield of proteins can be reached up to 86-95% with high functional properties using sustainable and efficient routes, including enzymatic, ultrasound-, microwave-, pulsed electric field-, and high-pressure-assisted extraction. Nondairy alternative products, especially yogurt, 3D food printing and meat analogs, synthesis of nanoparticles, and bioplastics and packaging films are the best available PBPs-based products. Moreover, PBPs particularly those that contain pigments and their products showed good bioactivities, especially antioxidants, antidiabetic, and antimicrobial.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University-Assiut Branch, Assiut, Egypt
| | - Jianling Mo
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
31
|
Bai Y, Sun Y, Li X, Ren J, Sun C, Chen X, Dong X, Qi H. Phycocyanin/lysozyme nanocomplexes to stabilize Pickering emulsions for fucoxanthin encapsulation. Food Res Int 2023; 173:113386. [PMID: 37803725 DOI: 10.1016/j.foodres.2023.113386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Food-grade Pickering emulsions with plant proteins have attracted increasing interest in recent years. In this work, we report a type of phycocyanin (PC) electrostatic nanocomplex fabricated following a complexation between PC and lysozyme (Lys). The aim was to investigate toward investigating the performance of phycocyanin-Lysozyme (PC-Lys) nanocomplexes in stabilizing Pickering emulsions and protecting fucoxanthin (FX) from degradation. The properties of the PC-Lys nanocomplexes were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy and three-phase contact angle. Using PC-Lys nanocomplexes as emulsifiers, Pickering emulsions were successfully prepared. Pickering emulsions stabilized by PC-Lys nanocomplexes generated a tight three-dimensional network structure, which increased the memory modulus and viscoelasticity of the emulsion. Furthermore, the produced Pickering emulsions considerably increased the chemical stability and bioavailability of FX. Overall, our study showed that PC-Lys nanocomplexes have the potential for use in Pickering emulsion construction with enhanced protective effects on loaded lipophilic ingredients.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Yihan Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Jiaying Ren
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Chenghang Sun
- Department of Biochemical Engineering, Chaoyang Teachers College, Chaoyang 122000, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China.
| |
Collapse
|
32
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
33
|
Wang X, Han M, Zou L, Huang Z, Dong W, Fan J, Huang A. Preparation and characterization of Pickering emulsion with directionally embedded antimicrobial peptide MOp2 and its preservation effect on grass carp. Curr Res Food Sci 2023; 7:100569. [PMID: 37664003 PMCID: PMC10474363 DOI: 10.1016/j.crfs.2023.100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
The peptide MOp2 obtained from Moringa oleifera seeds showed good antimicrobial activity. However, the stability of its activity has not yet been studied. In the present study, MOp2-loaded thiolated chitosan-stabilized (CMOp2) Pickering emulsion was prepared and applied to prolong the shelf life of grass carp. The encapsulation rate of MOp2 was 57.7% in CMOp2. In addition, the effects of different concentrations of CMOp2 solid particles and pH on droplet size, zeta optional and storage stability of Pickering emulsions were evaluated; the best condition for preparing Pickering emulsion through experiment was 1.75% CMOp2 solid particles at pH 9.5. Moreover, morphological observations and rheological analysis indicated that Pickering emulsions were considered a water-in-oil emulsion with typical non-Newtonian fluid characteristics. Furthermore, the prepared Pickering emulsion could significantly inhibit the growth of Escherichia coli and Staphylococcus aureus. Besides, Pickering emulsion effectively prevented spoilage of grass carp, and the Pickering emulsion-treated group reduced its pH, TVB-N and color values, inhibited microbial growth, and extended shelf life to 9 day at the storage of 4 °C. Overall, the present findings provide a reference for the application of MOp2-loaded Pickering emulsions in food preservation.
Collapse
Affiliation(s)
| | | | | | - Zhiyuan Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenming Dong
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiangping Fan
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| |
Collapse
|
34
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
35
|
Xu X, Li L, Ma C, Li D, Yang Y, Bian X, Fan J, Zhang N, Zuo F. Soy protein isolate-citrus pectin-gallic acid ternary composite high internal phase Pickering emulsion for delivery of β-carotene: Physicochemical, structural and digestive properties. Food Res Int 2023; 169:112910. [PMID: 37254348 DOI: 10.1016/j.foodres.2023.112910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
The structure properties, stability and β-carotene slow-release mechanism of soybean protein isolate-citrus pectin-gallic acid complex (SPI-CP-GA) stabilized high-internal phase Pickering emulsion (HIPPE) were investigated. The results showed that compared with the SPI-CP binary complex, the turbidity of the SPI-CP-GA ternary complex increased from 2.174 ± 0.001 to 3.027 ± 0.001, the surface wettability was increased, the infrared peaks was blue-shifted, changed from hydrophilic to hydrophobic, and the equilibrium interfacial tension of particles increased from 10.77 ± 0.02 mN/m to 13.46 ± 0.03 mN/m, the complex was more stable. When the GA was 2.0 mg/mL, the encapsulation efficiency of β-carotene was higher. With increased GA concentration and oil phase volume fraction (φ), the apparent viscosity and viscoelastic behavior of HIPPE performed well, forming a stable gel network structure. After 30 days of storage, there was no oil separation in the sample group with GA concentration of 2.0 mg/mL and φ = 0.7, and the stability was strong. After gastrointestinal digestion, the particle size of the HIPPE decreased from 13.51 ± 0.86 μm to 7.70 ± 0.68 μm, the free fatty acid (FFA) release rate was 22.03%, and the bioaccessibility of β-carotene was 6.67 ± 0.19%, and the sustained-release effect was obvious. These results indicated that the SPI-CP-GA ternary complex is a potential stabilizer for HIPPE, and providing theoretical guidance for the design of protein-polysaccharide-polyphenol stabilized HIPPE.
Collapse
Affiliation(s)
- Xinyu Xu
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China; Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China
| | - Lin Li
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China
| | - Chunmin Ma
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Dan Li
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China
| | - Yang Yang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Xin Bian
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Jing Fan
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Na Zhang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China.
| | - Feng Zuo
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
36
|
Li X, Xu T, Wu C, Fan G, Li T, Wang Y, Zhou D. Fabrication and characterization of self-assembled whey protein isolate/short linear glucan core-shell nanoparticles for sustained release of curcumin. Food Chem 2023; 407:135124. [PMID: 36473353 DOI: 10.1016/j.foodchem.2022.135124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The aim of this research was to prepare a bistratal nanocomplex with a high loading capacity (LC) and harsh environment stability for controlled release of curcumin (Cur) in gastrointestinal conditions. Whey protein isolate (WPI)/short linear glucan (SLG) core-shell nanoparticles were fabricated by self-assembly for the delivery of Cur. The results showed that Cur@WPI@SLG nanoparticles had a relatively high LC (12.89 %) and small particle size (89.4 nm). The nanocomplex remained relatively stable in extreme pH conditions (2-4 and 8-10), high temperatures (60-70 °C), and ionic strength (<400 mM). Core-shell nanostructures facilitated the sustained release of Cur in simulated gastrointestinal conditions. In addition, the nanocomplex had little cytotoxicity at high concentrations, yet significantly enhanced the DPPH scavenging activity and reducing power of Cur. This delivery system will significantly improve the sustained release effect of Cur and broaden the application of hydrophobic nutrients in foods.
Collapse
Affiliation(s)
- Xiaojing Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gongjian Fan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yaosong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dandan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
37
|
Zhou W, Cai Z, Zhang R, Hu K, Wu F, Hu Y, Huang C, Chen Y. Preparation and emulsification properties of cationic starch-xanthan gum composite nanoparticles. Food Chem 2023; 421:136143. [PMID: 37094403 DOI: 10.1016/j.foodchem.2023.136143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
In this work, nanoparticles were prepared by the composite of cationic starch (CS) and xanthan gum (XG) through gelatinization and alcohol precipitation for the first time. Physicochemical properties, micromorphology, and emulsification properties of CS/XG nanoparticles were measured. SEM showed that after compositing with XG, the diameter size of the CS/XG nanoparticles was increased from about 50 nm to 150-300 nm. FT-IR, XRD and 13C CP/MAS NMR confirmed that XG was successfully complexed with CS. Besides, the visual observation indicated emulsions stabilized by CS/XG nanoparticles had excellent storage and thermal properties. Additionally, the rheological and stability results of emulsions show that pH and NaCl had effects on the rheological and stability properties of emulsions, which means that the prepared emulsions had environmental responsiveness. Thus, this work provides an efficient method to prepare CS and GX composite nanoparticles with efficient emulsifying properties.
Collapse
Affiliation(s)
- Wei Zhou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Zhen Cai
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Rui Zhang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Kun Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Fangfang Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China.
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China.
| |
Collapse
|
38
|
Kuang Y, Xiao Q, Yang Y, Liu M, Wang X, Deng P, Wu K, Liu Y, Peng B, Jiang F, Li C. Investigation and Characterization of Pickering Emulsion Stabilized by Alkali-Treated Zein (AZ)/Sodium Alginate (SA) Composite Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3164. [PMID: 37110002 PMCID: PMC10146332 DOI: 10.3390/ma16083164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Pickering emulsions stabilized by food-grade colloidal particles have attracted increasing attention in recent years due to their "surfactant-free" nature. In this study, the alkali-treated zein (AZ) was prepared via restricted alkali deamidation and then combined with sodium alginate (SA) in different ratios to obtain AZ/SA composite particles (ZS), which were used to stabilize Pickering emulsion. The degree of deamidation (DD) and degree of hydrolysis (DH) of AZ were 12.74% and 6.58% respectively, indicating the deamidation occurred mainly in glutamine on the side chain of the protein. After the treatment with alkali, AZ particle size decreased significantly. Moreover, the particle size of ZS with different ratios was all less than 80 nm. when the AZ/SA ratio was 2:1(Z2S1) and 3:1(Z3S1), the three-phase contact angle (θo/w) were close to 90°, which was favorable for stabilizing the Pickering emulsion. Furthermore, at a high oil phase fraction (75%), Z3S1-stabilized Pickering emulsions showed the best long-term storage stability within 60 days. Confocal laser scanning microscope (CLSM) observations showed that the water-oil interface was wrapped by a dense layer of Z3S1 particles with non-agglomeration between independent oil droplets. At constant particle concentration, the apparent viscosity of the Pickering emulsions stabilized by Z3S1 gradually decreased with increasing oil phase fraction, and the oil-droplet size and the Turbiscan stability index (TSI) also gradually decreased, exhibiting solid-like behavior. This study provides new ideas for the fabrication of food-grade Pickering emulsions and will extend the future applications of zein-based Pickering emulsions as bioactive ingredient delivery systems.
Collapse
Affiliation(s)
- Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Qinjian Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yichen Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Menglong Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiaosa Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yi Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Bo Peng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Cao Li
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
39
|
Xu T, Gu Z, Cheng L, Li C, Li Z, Hong Y. Stability, oxidizability, and topical delivery of resveratrol encapsulated in octenyl succinic anhydride starch/chitosan complex-stabilized high internal phase Pickering emulsions. Carbohydr Polym 2023; 305:120566. [PMID: 36737204 DOI: 10.1016/j.carbpol.2023.120566] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized with octenyl succinic anhydride starch/chitosan complexes were examined as a topical delivery vehicle for resveratrol. All resveratrol-loaded HIPPEs showed stable gel-like network structures, with the droplet size and microrheological properties largely dependent on the complex concentrations. HIPPEs exhibited strong stability when subjected to light, high temperature, UV radiation and freeze-thaw treatment, and resveratrol retention was greatly improved with the increasing addition of complexes and resveratrol. High amounts of resveratrol facilitated the antioxidant activity of HIPPEs, whereas sustained release of resveratrol was mainly related to the existence of complex interfacial layers. Moreover, HIPPEs overcome the stratum corneum barrier, with an approximately 3-5-fold increase in resveratrol deposition in deep skin compared to bulk oil. In conclusion, the emulsion composition (especially at the particle level) was vital for the effectiveness of HIPPEs as a carrier, which may provide new opportunities to design topical delivery systems.
Collapse
Affiliation(s)
- Tian Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
40
|
Burgos-Díaz C, Garrido-Miranda KA, Palacio DA, Chacón-Fuentes M, Opazo-Navarrete M, Bustamante M. Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.
Collapse
|
41
|
Liu F, McClements DJ, Ma C, Liu X. Novel Colloidal Food Ingredients: Protein Complexes and Conjugates. Annu Rev Food Sci Technol 2023; 14:35-61. [PMID: 36972160 DOI: 10.1146/annurev-food-060721-023522] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food proteins, polysaccharides, and polyphenols are natural ingredients with different functional attributes. For instance, many proteins are good emulsifiers and gelling agents, many polysaccharides are good thickening and stabilizing agents, and many polyphenols are good antioxidants and antimicrobials. These three kinds of ingredients can be combined into protein, polysaccharide, and/or polyphenol conjugates or complexes using covalent or noncovalent interactions to create novel multifunctional colloidal ingredients with new or improved properties. In this review, the formation, functionality, and potential applications of protein conjugates and complexes are discussed. In particular, the utilization of these colloidal ingredients to stabilize emulsions, control lipid digestion, encapsulate bioactive ingredients, modify textures, and form films is highlighted. Finally, future research needs in this area are briefly proposed. The rational design of protein complexes and conjugates may lead to the development of new functional ingredients that can be used to create more nutritious, sustainable, and healthy foods.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| |
Collapse
|
42
|
Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules 2023; 28:molecules28062504. [PMID: 36985475 PMCID: PMC10054141 DOI: 10.3390/molecules28062504] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Pickering emulsions (PEs) have attracted attention in different fields, such as food, pharmaceuticals and cosmetics, mainly due to their good physical stability. PEs are a promising strategy to develop functional products since the particles’ oil and water phases can act as carriers of active compounds, providing multiple combinations potentiating synergistic effects. Moreover, they can answer the sustainable and green chemistry issues arising from using conventional emulsifier-based systems. In this context, this review focuses on the applicability of safe inorganic solid particles as emulsion stabilisers, discussing the main stabilisation mechanisms of oil–water interfaces. In particular, it provides evidence for hydroxyapatite (HAp) particles as Pickering stabilisers, discussing the latest advances. The main technologies used to produce PEs are also presented. From an industrial perspective, an effort was made to list new productive technologies at the laboratory scale and discuss their feasibility for scale-up. Finally, the advantages and potential applications of PEs in the food industry are also described. Overall, this review gathers recent developments in the formulation, production and properties of food-grade PEs based on safe inorganic solid particles.
Collapse
|
43
|
Li W, Huang D, Song W, Ouyang F, Li W, Song Y, Li F, Jiang Y, Huang Q, Li D. Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): Construction and delivery studies. Food Chem 2023; 404:134642. [DOI: 10.1016/j.foodchem.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
44
|
Cassani L, Prieto MA, Gomez-Zavaglia A. Effect of food-grade biopolymers coated Pickering emulsions on carotenoids' stability during processing, storage, and passage through the gastrointestinal tract. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
45
|
Citral and cinnamaldehyde – Pickering emulsion stabilized by zein coupled with chitosan against Aspergillus. spp and their application in food storage. Food Chem 2023; 403:134272. [DOI: 10.1016/j.foodchem.2022.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
|
46
|
Ren Z, Chen Z, Zhang Y, Lin X, Weng W, Li B. Characteristics and in vitro digestion of resveratrol encapsulated in Pickering emulsions stabilized by tea water-insoluble protein nanoparticles. Food Chem X 2023; 18:100642. [PMID: 36968315 PMCID: PMC10034416 DOI: 10.1016/j.fochx.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
This study focused on the characteristics and in vitro digestion of resveratrol encapsulated in Pickering emulsions stabilized by tea water-insoluble protein nanoparticles (TWINs). The absolute value of zeta potential of Pickering emulsions stabilized by TWIPNs (TWIPNPEs) encapsulating resveratrol was above 40 mV. Resveratrol encapsulated in TWIPNPEs was located at a hydrophobic environment of emulsion droplets. Additionally, the encapsulation efficiency (EE) of TWIPNPEs at TWIPN concentrations of 3.0% and 4.0% was above 85%. The resveratrol encapsulated in TWIPNPEs at a TWIPN concentration of 4.0% was still greater than 80% after UV irradiation to reduce the susceptibility of resveratrol for photodegradation. Moreover, the bioavailability of resveratrol in TWIPNPEs was improved in the simulated in vitro digestion. The bioavailability of resveratrol in TWIPNPEs in the simulated system was two times higher than unencapsulated resveratrol. This research could be useful for the encapsulation and application of nutraceuticals like resveratrol based on TWIPNPEs.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
- Corresponding author.
| |
Collapse
|
47
|
Comparison of properties and application of starch nanoparticles optimized prepared from different crystalline starches. Int J Biol Macromol 2023; 235:123735. [PMID: 36806775 DOI: 10.1016/j.ijbiomac.2023.123735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Starch nanoparticles (SNPs) were produced by nanoprecipitation combined with ultrasonication with the use of different starches (corn, potato and sago starch) and used to stabilize Pickering emulsions. The orthogonal experiment was used to optimize preparation conditions of gelatinization pretreatment duration of 30 min, ultrasonic power of 600 W, and ultrasonic time of 40 min. Compared with native starch, the SNPs were spherical in shape and displayed a V-type crystalline structure with low relative crystallinity and higher degree of double-helix. Compared with native starch-Pickering emulsion, the SNP-Pickering emulsion had a smaller droplet size, more uniform distribution, clearer oil/water interface, and higher static stability of droplets. The sago SNP-Pickering emulsion had the great gelatinous structure and emulsion stability. In addition, the SNP-Pickering emulsion had the better loading efficiency and controlled release performance of curcumin. Meanwhile, the bioavailability of curcumin in sago SNP-Pickering emulsion was highest.
Collapse
|
48
|
In vitro bioaccessibility and uptake of β-carotene from encapsulated carotenoids from mango by-products in a coupled gastrointestinal digestion/Caco-2 cell model. Food Res Int 2023; 164:112301. [PMID: 36737902 DOI: 10.1016/j.foodres.2022.112301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
β-carotene is a carotenoid with provitamin A activity and other health benefits, which needs to become bioavailable upon oral intake to exert its biological activity. A better understanding of its behaviour and stability in the gastrointestinal tract and means to increase its bioavailability are highly needed. Using an in vitro gastrointestinal digestion method coupled to an intestinal cell model, we explored the stability, gastrointestinal bioaccessibility and cellular uptake of β-carotene from microparticles containing carotenoid extracts derived from mango by-products. Three types of microparticles were tested: one with the carotenoid extract as such, one with added inulin and one with added fructooligosaccharides. Overall, β-carotene was relatively stable during the in vitro digestion, as total recoveries were above 68 %. Prebiotics in the encapsulating material, especially inulin, enhanced the bioaccessibility of β-carotene almost 2-fold compared to microparticles without prebiotics. Likewise, β-carotene bioaccessibility increased proportionally with bile salt concentrations during digestion. Yet, a bile salts level above 10 mM did not contribute markedly to β-carotene bioaccessibility of prebiotic containing microparticles. Cellular uptake experiments with non-filtered gastrointestinal digests yielded higher absolute levels of β-carotene taken up in the epithelial cells as compared to uptake assays with filtered digests. However, the proportional uptake of β-carotene was higher for filtered digests (24 - 31 %) than for non-filtered digests (2 - 8 %). Matrix-dependent carotenoid uptake was only visible in the unfiltered medium, thereby pointing to possible other cellular transport mechanisms of non-micellarized carotenoids, besides the concentration effect. Regardless of a filtration step, inulin-amended microparticles consistently resulted in a higher β-carotene uptake than regular microparticles or FOS-amended microparticles. In conclusion, encapsulation of carotenoid extracts from mango by-products displayed chemical stability and release of a bioaccessible β-carotene fraction upon gastrointestinal digestion. This indicates the potential of the microparticles to be incorporated into functional foods with provitamin A activity.
Collapse
|
49
|
Rebouças JSA, Oliveira FPS, Araujo ACDS, Gouveia HL, Latorres JM, Martins VG, Prentice Hernández C, Tesser MB. Shellfish industrial waste reuse. Crit Rev Biotechnol 2023; 43:50-66. [PMID: 34933613 DOI: 10.1080/07388551.2021.2004989] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The global production of aquatic organisms has grown steadily in recent decades. This increase in production results in high volumes of by-products and waste, generally considered to be of low commercial value and part of them are consequently discarded in landfills or in the sea, causing serious environmental problems when not used. Currently, a large part of the reused aquaculture waste is destined for the feed industry. This generally undervalued waste presents an important source of bioactive compounds in its composition, such as: amino acids, carotenoids, chitin and its derivatives, fatty acids and minerals. These compounds are capable of offering numerous benefits due to their bioactive properties. However, the applicability of these compounds may be opportune in several other sectors. This review describes studies that seek to obtain and apply bioactive compounds from different sources of aquaculture waste, thus adding commercial value to these underutilized biomasses.HIGHLIGHTSVolume of aquaculture industrial waste from crustaceans and mollusks.Quantity and quality of bioactive components in aquaculture waste.Applications of recovered proteins, lipids, chitin, carotenoids and minerals.Future prospects for the destination of aquaculture waste.
Collapse
Affiliation(s)
- José Stênio Aragão Rebouças
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Alan Carvalho de Sousa Araujo
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Helena Leão Gouveia
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Carlos Prentice Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
50
|
Development and characterization of high internal phase pickering emulsions stabilized by heat-induced electrostatic complexes particles: Growth nucleation mechanism and interface architecture. Food Chem 2023; 402:134512. [DOI: 10.1016/j.foodchem.2022.134512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 12/31/2022]
|