1
|
Xu J, Ji F, Liu H, Luo S, Jiang S, Yu Z, Zheng Z. Fabrication, characterization and gastrointestinal fate of curcumin-loaded emulsions stabilized by soy protein-based ternary composite nanoparticles. Food Chem 2025; 464:141886. [PMID: 39522383 DOI: 10.1016/j.foodchem.2024.141886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
To design a novel emulsifier capable of enhancing the bioavailability of curcumin (Cur)-loaded emulsions in the gastrointestinal tract, soy protein-based ternary composite nanoparticles (SEPn) were fabricated by transacylation reaction. The results showed that SEPn was formed by the covalent binding of the carboxyl groups in PGA to the amino groups in SEC through multiple forces. SEPn-1:1 was determined to be the optimal condition for preparing Cur-loaded emulsions. Additionally, SEPn-1:1 had superior emulsifying capacity as formed plastic-state emulsion gel with φ as low as 0.5. Moreover, the rise in oil content promoted the development of gel, thus increasing the apparent viscosity, gel strength, and stability of Cur-loaded emulsions. Furthermore, SEPn-1:1 emulsion exhibited excellent gastric stability and higher free fatty acid (FAA) release rates in the small intestine phase compared with that of SECcon (SEC control sample) and Mixture emulsion, thus leading to the highest bioavailability of Cur (28.57 ± 1.91 %).
Collapse
Affiliation(s)
- Jingjing Xu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Fuyun Ji
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Huihui Liu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Shaotong Jiang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Zhenyu Yu
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
2
|
Zhang R, Li S, Ai M, Chen S, Zhang C, Zhou Z, Huang L, Li X, Lu J. Pickering emulsions stabilized by ultrasound-assisted phosphorylated cantaloupe seed protein isolate -chitosan: Preparation, characterization and stability. ULTRASONICS SONOCHEMISTRY 2025; 114:107246. [PMID: 39892207 DOI: 10.1016/j.ultsonch.2025.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Cantaloupe seed protein isolate (CSPI) has attracted the attention of its low cost, easy digestion and balanced composition of essential amino acids. However, due to the low solubility of CSPI, its application in the food industry is limited. Therefore, the present study investigated the effect of ultrasound-assisted phosphorylation on the solubility of CSPI and the structural properties were characterized. The solubility of cantaloupe seed protein increased from 9.17 % to 63.27 % by ultrasound assisted phosphorylation, and resulting in an increase in the absolute value of CSPI potential, a decrease in particle size, and a stable structure, which could be used for the construction of the food emulsification system. The modified CSPI was combined with chitosan (CS) to prepare stabilized Pickering emulsion for subsequent stability study. The results showed that stable Pickering emulsions could be prepared with CSPI at pH 7, CS 0.5 % and oil phase fraction 55 %. Ultrasound-assisted phosphorylation enhanced electrostatic interaction between CS's -NH3 groups and CSPI's -COO-groups which improved the storability of stabilized Pickering emulsion. This will help to broaden the application range of CSPI and provide a theoretical basis for CPI stable Pickering emulsion.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Food Science and Engineering, Tarim University, Alar 843300, China; Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Tarim University, Alar 843300, China
| | - Shuting Li
- College of Food Science and Engineering, Tarim University, Alar 843300, China; Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Tarim University, Alar 843300, China
| | - Mingyan Ai
- Wuhan Academy of Agricultural Sciences, Wuhan 430000, China
| | - Shenghuizi Chen
- College of Food Science and Engineering, Tarim University, Alar 843300, China; Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Tarim University, Alar 843300, China
| | - Chunlan Zhang
- College of Food Science and Engineering, Tarim University, Alar 843300, China; Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Tarim University, Alar 843300, China
| | - Zhiqiang Zhou
- Instrumental Analysis Center, Tarim University, Alar 843300, China
| | - Lili Huang
- College of Chemistry and Chemical Engineering, Tarim University, Alar 843300, China
| | - Xiang Li
- Xinjiang Black Fruit Wolfberry Biotechnology Co., LTD, Korla 841000, China
| | - Jiankang Lu
- College of Food Science and Engineering, Tarim University, Alar 843300, China; Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Tarim University, Alar 843300, China.
| |
Collapse
|
3
|
Wei Z, Zhou Q, Liu Q, Li Y. Oleogel-based Pickering emulsions stabilized by pea protein isolate aggregates with different morphologies: Curcumin protection and microencapsulation. Food Chem 2025; 473:143108. [PMID: 39889631 DOI: 10.1016/j.foodchem.2025.143108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/26/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
In this study, the effect of pea protein isolate aggregate morphologies on the basic properties and potential applications of oleogel-based Pickering emulsions was investigated. The results showed that pea protein fibrils exhibited a three-phase contact angle of 81.3° and a more effective reduction of oil-water interfacial tension, which suggested better emulsification properties. Meanwhile, microscopic analysis revealed that pea protein fibrils were effectively adsorbed on the oil-water interface, forming a spatial hindrance that prevented droplet coalescence. The oleogel-based Pickering emulsion stabilized by pea protein fibril exhibited higher stability, stronger gel strength, and improved the bioavailability of curcumin. Additionally, the microcapsules generated from oleogel-based Pickering emulsions stabilized by pea protein fibrils maintained better physical integrity during the spray drying process. This work could provide valuable insights into the effects of pea protein aggregate morphologies on the stabilization of oleogel-based Pickering emulsions and their potential applications in the food industry.
Collapse
Affiliation(s)
- Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China..
| | - Qi Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qingqing Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yujin Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
4
|
Akhtar G, Masoodi FA, Muzaffar S. Fabrication of ultrafine Himalayan walnut oil Pickering emulsions by ultrasonic emulsification: Techno-functional properties of emulsions and microcapsules. ULTRASONICS SONOCHEMISTRY 2024; 111:107081. [PMID: 39368413 PMCID: PMC11488444 DOI: 10.1016/j.ultsonch.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
In present scenario, much of the attention has been put on the production and utilization of Pickering emulsions deciphering enhanced stability and applicability over wide environmental conditions. In this context the present study was carried out to elaborate effect of different wall materials and pH systems on the physicochemical, structural and morphological properties of Himalayan walnut oil Pickering emulsions by ultrasonic emulsification. In this study, concentrated Pickering emulsion of Himalayan walnut oil (HWO) was prepared utilizing soy protein isolate (SPI), maltodextrin (MD) stabilized by pectin at varying concentrations and pH systems (4.0, 7.0). With increase in pectin and SPI concentration and lowering MD, stable emulsions were obtained as deciphered by an Emulsion stability index (ESI) of 100 for 7 days at ambient storage. HWO Pickering emulsions were analysed for particle size measurements (2.13-13.64 µm) and depicted negative zeta potential values (-3.70 to -18.58). Lyophilized HWO microcapsules depicted moderate encapsulation efficiency (44.69-57.63 %) whereas the hygroscopicity values of the microcapsule ranged from (0.21-12.10 %). Thermogravimetric analysis (TGA) of the samples depicted the temperature of maximum degradation rate up to 550 °C whereas XRD spectra depicted amorphous nature of oil microcapsules. FTIR spectra revealed a close association between the SPI-MD-Pectin matrix. SEM analysis revealed stable oil globules entrapped in protein-polysaccharide matrix with no visible cracks and fissures.
Collapse
Affiliation(s)
- Gazalla Akhtar
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - F A Masoodi
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Sabeera Muzaffar
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
5
|
Davtalab M, Naji-Tabasi S, Shahidi-Noghabi M, Martins AJ, Bourbon AI, Cerqueira MA. Pickering Emulsion Stabilized by Different Concentrations of Whey Protein-Cress Seed Gum Nanoparticles. Foods 2024; 13:3777. [PMID: 39682849 DOI: 10.3390/foods13233777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Nanoparticles based on food-grade materials are promising materials to develop Pickering emulsions for food applications. Initially, this study focuses on the development of nanoparticles through the utilization of a soluble complex of whey protein concentrate (WPC) and cress seed gum (CSG), which were modified by calcium chloride (CaCl2) as a cross-linker. The response surface methodology was used to investigate the impact of different concentrations of WPC (1-4% w/v), CSG (0-1% w/v), and CaCl2 (1-3 mM) on particle size, polydispersity index (PDI), and Zeta potential. The optimum conditions for the production of CSG-WPC nanoparticles (WPC-CSG NPs) were 0.31% (w/v) CSG, 1.75% (w/v) WPC, and 1.69 mM CaCl2, resulting in nanoparticles with average size of 236 nm and Zeta potential of -22 mV. Subsequently, oil-in-water (O/W) Pickering emulsions were produced with different concentrations of WPC-CSG NPs in optimum conditions. The contact angles of the WPC-CSG NPs were 41.44° and 61.13° at concentrations of 0.5% and 1%, respectively, showing that NPs are suitable for stabilizing O/W Pickering emulsions. Pickering emulsion viscosity rose from 80 to 500 mPa when nanoparticle concentration increased from 0.5% to 1%. Results also showed that WPC-CSG NPs enable stable O/W Pickering emulsions during storage and thermal treatment, confirming that protein-polysaccharide NPs can provide a sufficient steric hindrance.
Collapse
Affiliation(s)
- Maryam Davtalab
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Mostafa Shahidi-Noghabi
- Department of Green Technologies in Food Production and Processing, Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Artur J Martins
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Ana I Bourbon
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
6
|
Wang J, Lin M, Shi L, Zhao Y, Liu S, Liu Z, Lin R, Jin R, Weng W, Ren Z. Characteristics and stabilization of Pickering emulsions constructed using myosin from bighead carp (Aristichthys nobilis). Food Chem 2024; 456:140033. [PMID: 38870822 DOI: 10.1016/j.foodchem.2024.140033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Myosin from bighead carp (Aristichthys nobilis) as a main type of fish protein possesses a good emulsifying ability. However, whether bighead carp myosin (BCM) could construct stable Pickering emulsions is still unclear. Therefore, myosin particles and Pickering emulsions stabilized by bighead carp myosin (BCMPEs) were analyzed. The surface structure of BCM particles at 0.6 mol/L NaCl treatment was uniform and compact with a contact angle of 86.4 ± 2.7°, exhibiting the potential ability to construct O/W Pickering emulsions. The size and flocculation index (FI) of BCMPEs decreased with the increase in BCM concentrations of 1%-4% (w/v). Reversely, the size of BCMPEs increased with the increase in oil-water ratios. BCM particles could uniformly distribute at the oil-water interface to stabilize BCMPEs at a BCM concentration of 4% (w/v) and an oil-water ratio of 6:4 (v/v). This study could help explore fish proteins to construct Pickering emulsions for the deep processing of fish products.
Collapse
Affiliation(s)
- Jiafei Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Min Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
7
|
Tian Y, Lv X, Oh DH, Kassem JM, Salama M, Fu X. Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70004. [PMID: 39267186 DOI: 10.1111/1541-4337.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
As an essential food ingredient with good nutritional and functional properties and health benefits, eggs are widely utilized in food formulations. In particular, egg proteins have good emulsification properties and can be commonly used in various food products, such as mayonnaise and baked goods. Egg protein particles can act as stabilizers for Pickering emulsions because they can effectively adsorb at the oil-water interface, reduce interfacial tension, and form a stable physical barrier. Due to their emulsifying properties, biocompatibility, controlled release capabilities, and ability to protect bioactive substances, egg proteins have become ideal carriers for encapsulating and delivering functional substances. The focus of this review is to summarize current advances in using egg proteins as emulsifiers. The effects of influencing factors (temperature, pH, and ionic strength) and various modification methods (physical, chemical, and biological modification) on the emulsifying properties of egg proteins are discussed. In addition, the application of egg proteins as emulsifiers in food products is presented. Through in-depth research on the emulsifying properties of egg proteins, the optimization of their applications in food, biomedical, and other fields can be achieved.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza, Egypt
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
8
|
Wen L, Dai H, Li S, Liang H, Li B, Li J. Improvement of processable properties of plant-based high internal phase emulsions by mung bean protein isolate based on pH shift treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6966-6976. [PMID: 38619073 DOI: 10.1002/jsfa.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND High internal phase emulsions (HIPEs) are unique emulsion systems that transform liquid oil into solid-like fats, thus avoiding the use of saturated fat and leading to a healthier and more sustainable food system for consumers. HIPEs with oil volume fraction (ϕ) of 75-85% were fabricated with mung bean protein isolate (MPI) under different pH shift treatments at 1.0% concentration through the one-step method. In the present study, we investigated the physical properties, microstructures, processing properties, storage stability and rheological properties of HIPEs. RESULTS The results suggested that the properties of MPI under different pH shift treatments were improved to different degrees, stabilizing HIPEs (ϕ = 75-85%) with various processability to meet food processing needs. Under alkali shift treatment conditions, the particle size of MPI was significantly reduced with better solubility. Moreover, the exposure of hydrophobic groups increased the surface hydrophobicity of MPI, awarding MPI better emulsifying properties, which could stabilize the HIPEs with higher oil phase fraction. In addition, the MPI under pH 12 shift treatment (MPI-12) had the best oil-carrying ability to form the stable HIPEs with oil volume fraction (ϕ) up to 85%, which was the highest oil phase in preparing the HIPEs using plant protein solely at a low concentration under neutral conditions. CONCLUSION A series of stable HIPEs with different processing properties was simply and feasibly fabricated and these are of great potential in applying edible HIPEs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luming Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongmin Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
9
|
Yu Z, Zhou L, Chen Z, Chen L, Hong K, He D, Lei F. Fabrication and Characterization of Docosahexaenoic Acid Algal Oil Pickering Emulsions Stabilized Using the Whey Protein Isolate-High-Methoxyl Pectin Complex. Foods 2024; 13:2159. [PMID: 38998664 PMCID: PMC11240950 DOI: 10.3390/foods13132159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the whey protein isolate-high-methoxyl pectin (WPI-HMP) complex prepared by electrostatic interaction was utilized as an emulsifier in the preparation of docosahexaenoic acid (DHA) algal oils in order to improve their physicochemical properties and oxidation stability. The results showed that the emulsions stabilized using the WPI-HMP complex across varying oil-phase volume fractions (30-70%) exhibited consistent particle size and enhanced stability compared to emulsions stabilized solely using WPI or HMP at different ionic concentrations and heating temperatures. Furthermore, DHA algal oil emulsions stabilized using the WPI-HMP complex also showed superior storage stability, as they exhibited no discernible emulsification or oil droplet overflow and the particle size variation remained relatively minor throughout the storage at 25 °C for 30 days. The accelerated oxidation of the emulsions was assessed by measuring the rate of DHA loss, lipid hydroperoxide levels, and malondialdehyde levels. Emulsions stabilized using the WPI-HMP complex exhibited a lower rate of DHA loss and reduced levels of lipid hydroperoxides and malondialdehyde. This indicated that WPI-HMP-stabilized Pickering emulsions exhibit a greater rate of DHA retention. The excellent stability of these emulsions could prove valuable in food processing for DHA nutritional enhancement.
Collapse
Affiliation(s)
- Zhe Yu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Li Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Zhe Chen
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Ling Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Kunqiang Hong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Dongping He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Fenfen Lei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
10
|
Guo C, Geng S, Shi Y, Yuan C, Liu B. Effect of sulfuric acid hydrolysis on the structure and Pickering emulsifying capacity of acorn starch. Food Chem X 2024; 22:101277. [PMID: 38515830 PMCID: PMC10955292 DOI: 10.1016/j.fochx.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
The acid-hydrolyzed acorn starch samples (HAS-1, HAS-2, HAS-3, and HAS-4) were prepared from natural acorn starch (NAS) at sulfuric acid concentrations of 1, 2, 3, and 4 mol/L for 2 d. The particle characteristics and structures of HAS were investigated, and Pickering high internal phase emulsions (HIPEs) based on HAS were constructed and characterized. The results showed that with an increase in sulfuric acid concentration, the size, yield, amylose content, molecular weight, and amylopectin chain length of HAS gradually decreased. HAS retained an A-type crystal structure, and its relative crystallinity and short-range order degree gradually increased with increasing sulfuric acid concentration. Acid hydrolysis treatment improved the wettability of NAS, and its effect was positively correlated with the sulfuric acid concentration. HAS-3 and HAS-4 could stabilize the Pickering HIPEs with an oil phase volume fraction of 80% at c ≥ 1.5%. The mechanical properties of the HIPEs were positively correlated with c.
Collapse
Affiliation(s)
- Changsheng Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuzhong Shi
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Benguo Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
11
|
Pu Y, Long Y, Xu D, Niu Y, Wu Q, Chen S, Wang R, Ge R. Influence of thermal denaturation on whey protein isolates in combination with chitosan for fabricating Pickering emulsions: a comparison study. Front Nutr 2024; 11:1418120. [PMID: 38887503 PMCID: PMC11180793 DOI: 10.3389/fnut.2024.1418120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Composite natural emulsifiers such as whey protein isolate (WPI) and chitosan (CS) are commonly used in Pickering emulsions to address the effect of thermal deformation of proteins before complexation with CS and heating after complexation. In this study, the properties of WPI and CS composites were investigated by complexing CS with either unmodified WPI or thermally denatured WPI (DWPI). Three types of composite particles were prepared, WPI-CS, DWPI-CS, and D(WPI-CS). Atomic force microscopy revealed that the composite particles formed larger aggregates with increased contour size and surface roughness compared to CS and WPI, whereas the interfacial tension decreased, indicating improved emulsifying abilities. Fourier-transform infrared analysis revealed differences in the hydrogen bonds between CS and WPI/DWPI. All three composite particles formed stable emulsions with droplet sizes of 20.00 ± 0.15, 27.80 ± 0.35, and 16.77 ± 0.51 μm, respectively. Thermal stability experiments revealed that the curcumin emulsion stabilized with WPI-CS and DWPI-CS exhibited relatively better thermal stability than that stabilized with D(WPI-CS). In vitro experiments results indicated that the bioaccessibility of the curcumin emulsion stabilized with WPI-CS was 61.18 ± 0.16%, significantly higher than that of the emulsions prepared with the other two composite particles (p < 0.05). This study will enable the customized design of WPI composite-based Pickering emulsions for application in the food and nutrition industries.
Collapse
Affiliation(s)
- Yilin Pu
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxiang Long
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Die Xu
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongkang Niu
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinglong Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruozhen Wang
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
14
|
Shorey R, Mekonnen TH. Oleic acid decorated kraft lignin as a hydrophobic and functional filler of cellulose acetate films. Int J Biol Macromol 2024; 268:131672. [PMID: 38643912 DOI: 10.1016/j.ijbiomac.2024.131672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
The packaging industry has primarily been dominated by single-use, petrochemical-sourced plastic materials despite their short-term use. Their leakage into the ecosystem after their use poses substantial environmental concerns. As a result, compostable and renewable packaging material alternatives are garnering significant attention. Cellulose acetate is a derivative of cellulose that exhibits excellent tensile properties, transparency, melt processability, and intermediate compostability. However, its application in the food packaging industry is limited due to its hygroscopic behavior and lack of dimensional stability. This study investigated using lignin (pristine and esterified) as a functional additive of cellulose acetate. The effect of varying concentrations of pristine kraft and oleic acid functionalized lignin in the cellulose acetate matrix and its effect on the resulting film's mechanical, morphological, viscoelastic, and water barrier properties were explored. Comprehensive characterization of the thermomechanical processed lignin-cellulose acetate sheets revealed reduced moisture absorption, improved UV and moisture barrier, and enhanced tensile properties with melt processability. Overall, the studied films could have appealing properties for food and other packaging applications, thus, serving as eco-friendly and sustainable alternatives to conventional petroleum-derived packing materials.
Collapse
Affiliation(s)
- Rohan Shorey
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
15
|
Yin C, Chen X, Zhang H, Xue Y, Dong H, Mao X. Pickering emulsion biocatalysis: Bridging interfacial design with enzymatic reactions. Biotechnol Adv 2024; 72:108338. [PMID: 38460741 DOI: 10.1016/j.biotechadv.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.
Collapse
Affiliation(s)
- Chengmei Yin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xiangyao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yong Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
16
|
Naji-Tabasi S, Shakeri MS, Modiri-Dovom A, Shahbazizadeh S. Investigating Baneh ( Pistacia atlantica) gum properties and applying its particles for stabilizing Pickering emulsions. Food Chem X 2024; 21:101111. [PMID: 38298356 PMCID: PMC10828642 DOI: 10.1016/j.fochx.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this research was to investigate Baneh gum (BG) properties and prepare Pickering emulsion stabilized by BG particles at different concentrations (0.1, 0.3, 0.5, and 0.7 % (w/w)). Average size of the particles was 948 nm, and the SEM images confirmed the presence of the particles. Surface and interfacial tension of the BG particles were 48.39 and 15.36 (mN/m), respectively. Contact angle of water- and oil-BG particles was 99° and 42.68°, respectively, which can stabilize oil-in-water emulsions. Increment of the Pickering particles concentration decreased the size of the emulsion droplets and increased the emulsion stability (p ≤ 0.05). The size of emulsion droplets was in the range of 1.65-1.76 μm and the highest zeta potential value was obtained by 0.7 % (w/w) BG particles (-30.02 mV). It can be concluded that increasing BG particles to 0.7 % resulted in creating the most stable emulsion.
Collapse
Affiliation(s)
- Sara Naji-Tabasi
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Monir-sadat Shakeri
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Atena Modiri-Dovom
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Saeedeh Shahbazizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| |
Collapse
|
17
|
Wang W, Sun R, Ji S, Xia Q. Effects of κ-carrageenan on the emulsifying ability and encapsulation properties of pea protein isolate-grape seed oil emulsions. Food Chem 2024; 435:137561. [PMID: 37776649 DOI: 10.1016/j.foodchem.2023.137561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
This work investigated the characteristics of pea protein isolate and κ-carrageenan complexes in stabilizing curcumin-loaded emulsions. The complexes structured by electrostatic attraction exhibited biphasic wettability with increased three-phase contact angles close to 90°. Morphological differences in the complexes were the critical factor influencing their emulsifying ability at various pH. As a steric barrier via increasing net negative charge (up to -54.7 ± 2.4 mV) and adsorbed protein content (92.57 %-97.61 %), the interfacial layer could retard droplet coalescence and improve emulsions stability. Rheological tests verified the higher viscoelasticity of emulsions by raising the oil fraction. After 4 weeks of heating treatment, the chemical stability of curcumin was prominently enhanced from 18.6 ± 0.2 % to 64.3 ± 5.7 %. The confirmed synergistic antioxidant activity between grape seed oil and curcumin in emulsions might facilitate the development of specific functional delivery systems in foods.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
18
|
Qayum A, Rashid A, Liang Q, Kang L, Ahmed Z, Hussain M, Virk MS, Ekumah JN, Ren X, Ma H, Miao S. Multi-scale ultrasound induced composite coacervates of whey protein and pullulan polysaccharide on emulsion forming and stabilizing mechanisms. Colloids Surf B Biointerfaces 2024; 234:113709. [PMID: 38159329 DOI: 10.1016/j.colsurfb.2023.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
A non-destructive technique known as multi-scale ultrasound (MSU) was employed to modify the emulsion consisting of glycosylated bovine whey protein (WP) and pullulan (Pu). To assess the effect on the structural and emulsifying properties of the WP-Pu, the formulated emulsion, was treated with divergent MSU at (single: 20 kHz, 40 kHz, and 60 kHz; dual: 20-40 kHz, 40-60 kHz, and 20-60 kHz; and tri: 20-40-60 kHz) frequency for a duration of 30 min. The tri-frequency, treated emulsion showed improved emulsifying stability compared to the control and MSU-treated single, and dual-frequency samples, as indicated by the particle size, structural morphology, and adsorbed protein. The molecular docking and numerous spectral analysis provided evidence that WP can undergo successful phenolation. This modified form of WP then interacts with Pu through various forces, including H-bonding and other mechanisms, resulting in the formation of a composite emulsion. The rheological properties revealed that both the control emulsion and the MSU-treated emulsion exhibited non-Newtonian pseudoplastic flow behavior. This behavior is characterized by shear thinning, where the viscosity decreases with increasing shear rate. The shear rates tested ranged from 1 to 300 1/s, additionally, the degree of crystallinity increased from 18.2° to 19.4°. Overall, the tri-frequency effect was most pronounced compared to single and dual-frequency. Ultrasonication, an emerging non-thermal technology, proves to be an efficient approach for the formulation of WP-Pu composites. These composites have significant potential for use in drug delivery systems and functional foods.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Zahoor Ahmed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
19
|
Li Y, Wang H, Zhao Y, Chen Q, Xia X, Liu Q, Kong B. Evaluation of the Emulsifying Property and Oxidative Stability of Myofibrillar Protein-Diacylglycerol Emulsions Containing Catechin Subjected to Different pH Values. Foods 2024; 13:253. [PMID: 38254554 PMCID: PMC10814794 DOI: 10.3390/foods13020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Myofibrillar protein-diacylglycerol emulsions containing catechin (MP-DAG-C) possess outstanding emulsifying property and oxidative stability. However, the effect of pH on MP-DAG-C emulsions should be revealed to provide possibilities for their application in practical meat products. Therefore, MP-DAG-C emulsions at different pH values were used in this study, in which lard, unpurified glycerolytic lard (UGL), and purified glycerolytic lard (PGL) were used as the oil phases. The results indicated that the emulsifying property of the UGL- and PGL-based emulsions increased compared to those of the lard-based emulsions (p < 0.05). The emulsifying activity and stability indices, absolute value of ζ-potential, and rheological characteristics increased with the increase in pH values (p < 0.05), with the droplets were smallest and distributed most uniformly at a pH of 6.5 compared to the other acidic environment (p < 0.05). The thiobarbituric acid substance and carbonyl content increased (p < 0.05), while the total sulfydryl content decreased (p < 0.05) during storage. However, there was no statistical difference between the oxidative stability of the MP-DAG-C emulsions with different pH values (p > 0.05). The results implied that the emulsifying property of MP-DAG-C emulsions increased with an increase in pH values. The oxidative stability of the MP-DAG-C emulsions at high pH values was improved by catechin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (H.W.); (Y.Z.); (Q.C.); (X.X.); (Q.L.)
| |
Collapse
|
20
|
Li G, Li J, Lee YY, Qiu C, Zeng X, Wang Y. Pickering emulsions stabilized by chitosan-flaxseed gum-hyaluronic acid nanoparticles for controlled topical release of ferulic acid. Int J Biol Macromol 2024; 255:128086. [PMID: 37981278 DOI: 10.1016/j.ijbiomac.2023.128086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 μM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.
Collapse
Affiliation(s)
- Guanghui Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Junle Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| | - Xiaofang Zeng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
21
|
Jin Z, Wei Z. Molecular simulation for food protein-ligand interactions: A comprehensive review on principles, current applications, and emerging trends. Compr Rev Food Sci Food Saf 2024; 23:e13280. [PMID: 38284571 DOI: 10.1111/1541-4337.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
In recent years, investigations on molecular interaction mechanisms between food proteins and ligands have attracted much interest. The interaction mechanisms can supply much useful information for many fields in the food industry, including nutrient delivery, food processing, auxiliary detection, and others. Molecular simulation has offered extraordinary insights into the interaction mechanisms. It can reflect binding conformation, interaction forces, binding affinity, key residues, and other information that physicochemical experiments cannot reveal in a fast and detailed manner. The simulation results have proven to be consistent with the results of physicochemical experiments. Molecular simulation holds great potential for future applications in the field of food protein-ligand interactions. This review elaborates on the principles of molecular docking and molecular dynamics simulation. Besides, their applications in food protein-ligand interactions are summarized. Furthermore, challenges, perspectives, and trends in molecular simulation of food protein-ligand interactions are proposed. Based on the results of molecular simulation, the mechanisms of interfacial behavior, enzyme-substrate binding, and structural changes during food processing can be reflected, and strategies for hazardous substance detection and food flavor adjustment can be generated. Moreover, molecular simulation can accelerate food development and reduce animal experiments. However, there are still several challenges to applying molecular simulation to food protein-ligand interaction research. The future trends will be a combination of international cooperation and data sharing, quantum mechanics/molecular mechanics, advanced computational techniques, and machine learning, which contribute to promoting food protein-ligand interaction simulation. Overall, the use of molecular simulation to study food protein-ligand interactions has a promising prospect.
Collapse
Affiliation(s)
- Zihan Jin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
22
|
Zhou Q, Xu Z, Wei Z. Precise control of aggregation morphology: Effective strategy to tune the properties of ovotransferrin particles. Int J Biol Macromol 2023; 253:126850. [PMID: 37703969 DOI: 10.1016/j.ijbiomac.2023.126850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Different aggregation morphologies of ovotransferrin (OVT) aggregates were successfully obtained through precise control, and the effects on structural, physical, liquid-liquid and gas-liquid interfacial characteristics as well as mechanisms were explored for the first time. It was observed that the surface hydrophobicity of OVT fibrils was higher than OVT spheres due to the acid-heat treatment. The exploration of liquid-liquid interface behaviors indicated that OVT fibrils possessed higher adsorption capacity at the interface, revealing the higher surface activity at the oil-water interface. During adsorption process, fibrils exhibited higher diffusion rate, while spheres were easier to penetrate and rearrange at the interface. The interfacial film composed of fibrils possessed more elastic solid-like behaviors owing to the higher surface activity of individual fibrous aggregates and rapid fibril-fibril interactions. The analysis of gas-liquid interface characteristics presented that OVT spheres possessed lower interfacial tension and higher interfacial viscoelasticity, and showed significantly higher FC and FS values in comparation to fibrils. These findings will facilitate the reader's understanding of the relationship between protein aggregate structure and properties, and lay a foundation for broadening the application of OVT and even other proteins.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ziyuan Xu
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
23
|
Bai Y, Sun Y, Li X, Ren J, Sun C, Chen X, Dong X, Qi H. Phycocyanin/lysozyme nanocomplexes to stabilize Pickering emulsions for fucoxanthin encapsulation. Food Res Int 2023; 173:113386. [PMID: 37803725 DOI: 10.1016/j.foodres.2023.113386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Food-grade Pickering emulsions with plant proteins have attracted increasing interest in recent years. In this work, we report a type of phycocyanin (PC) electrostatic nanocomplex fabricated following a complexation between PC and lysozyme (Lys). The aim was to investigate toward investigating the performance of phycocyanin-Lysozyme (PC-Lys) nanocomplexes in stabilizing Pickering emulsions and protecting fucoxanthin (FX) from degradation. The properties of the PC-Lys nanocomplexes were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy and three-phase contact angle. Using PC-Lys nanocomplexes as emulsifiers, Pickering emulsions were successfully prepared. Pickering emulsions stabilized by PC-Lys nanocomplexes generated a tight three-dimensional network structure, which increased the memory modulus and viscoelasticity of the emulsion. Furthermore, the produced Pickering emulsions considerably increased the chemical stability and bioavailability of FX. Overall, our study showed that PC-Lys nanocomplexes have the potential for use in Pickering emulsion construction with enhanced protective effects on loaded lipophilic ingredients.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Yihan Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Jiaying Ren
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Chenghang Sun
- Department of Biochemical Engineering, Chaoyang Teachers College, Chaoyang 122000, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China.
| |
Collapse
|
24
|
Wei Z, Dong Y, Li X, Wang M, Zhang K. Design of Novel Knot-like Structures Based on Ovotransferrin Fibril-Gum Arabic Complexes: Effective Strategies to Stabilize Pickering Emulsions. Foods 2023; 12:3767. [PMID: 37893660 PMCID: PMC10606543 DOI: 10.3390/foods12203767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This work aimed to clarify the effects of gum arabic (GA) on the morphology and properties of ovotransferrin fibrils (OVTFs). By constructing OVTF-GA complexes and exploring the dispersion stability, turbidity and the ζ-potential of the complexes, the optimum mass ratio of OVTFs to GA and pH for complex formation were confirmed as being 1:1 and pH 4.6, respectively. The interaction between OVTFs and GA was determined to be predominantly driven by electrostatic attraction. The OVTF-GA complexes exhibited a knot-like structure when observed using atomic force microscopy. Then, OVTFs and OVTF-GA complexes were compared in terms of contact angle, surface hydrophobicity and dynamic interfacial tension. The combination of OVTFs and GA decreased the contact angle of OVTFs from 80.85° to 70.36°. In comparison with OVTFs, OVTF-GA complexes reduced the oil-water interfacial tension to a lower level (8.14 mN/m). Furthermore, the capacities of OVTF-GA complexes in stabilizing emulsions were explored. OVTF-GA complex-stabilized oleogel-based Pickering emulsion (OGPE) was constructed, and OVTF-stabilized oleogel-based Pickering emulsion (OPE) was used as the control. OGPE had a higher emulsified phase volume fraction (EPVF) and stability index (SI). The EPVF of OGPE was 100.0% and 99.4% before and after one-month storage, respectively, compared with 98.3% and 95.7% of OPE. This work can provide some useful references for the design of biopolymers with novel structures composed of protein fibrils and polysaccharides, which may also help to construct and apply protein fibril-polysaccharide complexes under specific needs.
Collapse
Affiliation(s)
- Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | | | | | | | | |
Collapse
|
25
|
Dong Y, Wei Z, Xue C. Effect of interaction between ovotransferrin fibrils and pectin on properties of oleogel-based Pickering emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
26
|
Xi X, Wei Z, Xu Y, Xue C. Clove Essential Oil Pickering Emulsions Stabilized with Lactoferrin/Fucoidan Complexes: Stability and Rheological Properties. Polymers (Basel) 2023; 15:polym15081820. [PMID: 37111967 PMCID: PMC10143265 DOI: 10.3390/polym15081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Although studies have shown that lactoferrin (LF) and fucoidan (FD) can be used to stabilize Pickering emulsions, there have been no studies on the stabilization of Pickering emulsions via the use of LF-FD complexes. In this study, different LF-FD complexes were obtained by adjusting the pH and heating the LF and FD mixture while using different mass ratios, and the properties of the LF-FD complexes were investigated. The results showed that the optimal conditions for preparing the LF-FD complexes were a mass ratio of 1:1 (LF to FD) and a pH of 3.2. Under these conditions, the LF-FD complexes not only had a uniform particle size of 133.27 ± 1.45 nm but also had good thermal stability (the thermal denaturation temperature was 110.3 °C) and wettability (the air-water contact angle was 63.9 ± 1.90°). The concentration of the LF-FD complexes and the ratio of the oil phase influenced the stability and rheological properties of the Pickering emulsion such that both can be adjusted to prepare a Pickering emulsion with good performance. This indicates that LF-FD complexes represent promising applications for Pickering emulsions with adjustable properties.
Collapse
Affiliation(s)
- Xiaohong Xi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
27
|
Burgos-Díaz C, Garrido-Miranda KA, Palacio DA, Chacón-Fuentes M, Opazo-Navarrete M, Bustamante M. Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.
Collapse
|
28
|
Wang R, Li M, Liu M, Wang A, Strappe P, Blanchard C, Zhou Z. Characterization of Pickering emulsion by SCFAs-modified debranched starch and a potent for delivering encapsulated bioactive compound. Int J Biol Macromol 2023; 231:123164. [PMID: 36621731 DOI: 10.1016/j.ijbiomac.2023.123164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The Pickering emulsion was prepared by short-chain fatty acids (SCFAs) esterified debranched starch. The microstructure, particle size distribution, rheological properties and stability of the emulsions showed that the introduction of acyl groups improved the ability of starch to stabilize the emulsions, in which the butyrylated starch with longer acyl side chains exhibited higher emulsifying ability compared to acetylated and propionylated starches. Pickering emulsions stabilized with butyrylated starch as stabilizer have better stability after 30 days of storage. The particle size distribution of SCFAs-esterified starch emulsions with enzymatic debranching pretreatment was more concentrated and the droplet size was further reduced, which improved the instability factors such as flocculation, agglomeration or Ostwald ripening of emulsions induced by conventional SCFAs-esterified emulsions and further improved the stability of SCFAs-esterified emulsions. More importantly, butyrylated starch (with or without debranched pretreatment) emulsions exhibited smaller and more uniform droplet shapes and higher curcumin encapsulation efficiency (EE%) in SCFAs-esterified starch emulsions, and the EE% of curcumin in debranched butyrylated starch emulsion increasing from 10.04 % in native starch emulsions to 50.70 %.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mei Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia
| | - Chris Blanchard
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
29
|
Wan Y, Lin C, Li Y, Wang R, Feng W, Chen Z, Wang T, Luo X, Wu X. Tuning the electrostatic interaction between rice protein and carboxymethyl cellulose toward hydrophilic composites with enhanced functional properties. Int J Biol Macromol 2023; 235:123918. [PMID: 36871680 DOI: 10.1016/j.ijbiomac.2023.123918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Protein-polysaccharide interactions have attracted much attention due to inherent potential in generating new structures and functionalities. In the present study, by simply mixing rice proteins (RPs) with carboxymethyl cellulose (CMC) at pH 12.0 prior neutralization, novel protein-polysaccharide complexes (RCs) were structured with water dispersibility and functionalities highly dependent on the degree of substitution (DS) and molecular weight (Mw) of CMC. Specifically, the water-dispersibility of RPs was increased from 1.7 % to 93.5 % at a RPs/CMC mass ratio of 10:1 with CMC of DS1.2 (Mw = 250 kDa). Fluorescence and circular dichroism spectra showed suppressed folding tendency of RPs by CMC during neutralizing the basicity, indicating controllable protein conformations. Furthermore, the structures of RCs became more unfolded for CMC with a larger DS or a smaller Mw. This enabled RCs with highly controllable functionalities in terms of emulsifying and foaming properties, which may have promising applications in developing food matrix with customized structures and textures.
Collapse
Affiliation(s)
- Ying Wan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chen Lin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiaohu Luo
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China.
| | - Xiping Wu
- Department of Neurology, Ningbo Medical Center Li-Huili Hospital, Ningbo, Zhejiang 315040, China; School of Medicine, Ningbo University, Zhejiang 315040, China.
| |
Collapse
|
30
|
Kuang Y, Zhao S, Liu P, Liu M, Wu K, Liu Y, Deng P, Li C, Jiang F. Schiff base type casein-konjac glucomannan conjugates with improved stability and emulsifying properties via mild covalent cross-linking. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
31
|
Khan MA, Bao H, Cheng H, Feng S, Wang Y, Liang L. Fabrication of whey-protein-stabilized G/O/W emulsion for the encapsulation and retention of -ascorbic acid and α-tocopherol. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
Shorey R, Mekonnen TH. Esterification of lignin with long chain fatty acids for the stabilization of oil-in-water Pickering emulsions. Int J Biol Macromol 2023; 230:123143. [PMID: 36641016 DOI: 10.1016/j.ijbiomac.2023.123143] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
Pickering emulsions offer numerous advantages over conventional surfactant-stabilized emulsion systems, including lower loading levels and enhanced long-term stability. Through both organic and inorganic Pickering emulsifying particles exist, more efforts are being invested in devising renewable, biodegradable, and non-toxic alternatives to conventional Pickering emulsifiers. In this study, the use of lignin (unmodified and esterified) specimens as an effective alternative to conventional Pickering emulsifiers was investigated. Hexanoyl chloride, decanoyl chloride, and palmitoyl chloride esterified lignin specimens were produced and their employability as Pickering emulsifiers was studied. The effects of varying the concentrations of lignin (unmodified and esterified specimens) and pH of the dispersion medium on the stability of the produced Pickering emulsions were explored. Comprehensive characterization of the esterified lignin stabilized Pickering emulsions exhibited enhanced stability, and smaller average oil droplet size, resulting in stable Pickering emulsions with high zeta potential and better flow properties. Overall, the studied esterified lignin specimens can have appealing applications in various Pickering emulsion systems, as a nontoxic and sustainable alternative to conventional emulsifiers.
Collapse
Affiliation(s)
- Rohan Shorey
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
33
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Thermomechanically micronized sugar beet pulp: Emulsification performance and the contribution of soluble elements and insoluble fibrous particles. Food Res Int 2023; 165:112467. [PMID: 36869480 DOI: 10.1016/j.foodres.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 μm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Charles S Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
34
|
Su J, Ma Q, Cai Y, Li H, Yuan F, Ren F, Wang P, Van der Meeren P. Incorporating surfactants within protein-polysaccharide hybrid particles for high internal phase emulsions (HIPEs): Toward plant-based mayonnaise. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Xu T, Hong Y, Gu Z, Cheng L, Li C, Li Z. Adsorption and Assembly of Octenyl Succinic Anhydride Starch/Chitosan Electrostatic Complexes at Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3006-3017. [PMID: 36745541 DOI: 10.1021/acs.langmuir.2c02878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biopolymer electrostatic complexes are popular Pickering stabilizers whose structures greatly affect their interfacial properties. This study comprehensively demonstrated the interfacial adsorption and assembly of dissolved octenyl succinic anhydride (OSA) starch (OSA-D)/chitosan (CS) electrostatic complexes with different structures through complementary characterization methods. We found that compared with single-component systems, OSA-D/CS complexes exhibited significantly increased wetting stability and adsorption rate to the interface, which was reinforced by molecular dynamics simulations. Their soft structures and the entanglement of molecular chains led to the formation of thick and highly viscoelastic multilayer adsorbed films, which greatly resisted deformation against shearing forces. The adsorption and assembly of the complexes were strongly influenced by OSA-D/CS ratios and pH, which could be related to the different interfacial interaction strengths. Overall, the electrostatic complexation, structural characteristics, and interfacial properties of OSA-D/CS complexes were well related, thereby providing valuable information for the regulation of controlled interfaces and bulk system properties.
Collapse
Affiliation(s)
- Tian Xu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
- Jiaxing Institute of Future Food, Jiaxing314050, PR China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| |
Collapse
|
36
|
Froelich A, Jakubowska E, Jadach B, Gadziński P, Osmałek T. Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics 2023; 15:pharmaceutics15030759. [PMID: 36986620 PMCID: PMC10059891 DOI: 10.3390/pharmaceutics15030759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations.
Collapse
|
37
|
Ganjoo R, Sharma S, Verma C, Quraishi MA, Kumar A. Heteropolysaccharides in sustainable corrosion inhibition: 4E (Energy, Economy, Ecology, and Effectivity) dimensions. Int J Biol Macromol 2023; 235:123571. [PMID: 36750168 DOI: 10.1016/j.ijbiomac.2023.123571] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Carbohydrate polymers (polysaccharides) and their derivatives are widely utilized in sustainable corrosion inhibition (SCI) because of their various fascinating properties including multiple adsorption sites, high solubility and high efficiency. Contrary to traditional synthetic polymer-based corrosion inhibitors, polysaccharides are related to the 4E dimension, which stands for Energy, Economy, Ecology, and Effectivity. Furthermore, they are relatively more environmentally benign, biodegradable, and non-bioaccumulative. The current review describes the SCI features of various heteropolysaccharides, including gum Arabic (GA), glycosaminoglycans (chondroitin-4-sulfate (CS), hyaluronic acid (HA), heparin, etc.), pectin, alginates, and agar for the first time. They demonstrate impressive anticorrosive activity for different metals and alloys in a variety of corrosive electrolytes. Through their adsorption at the metal/electrolyte interface, heteropolysaccharides function by producing a corrosion-protective film. In general, their adsorption follows the Langmuir isotherm model. In their molecular structures, heteropolysaccharides contain several polar functional groups like -OH, -NH2, -COCH3, -CH2OH, cyclic and bridging O, -CH2SO3H, -SO3OH, -COOH, -NHCOCH3, -OHOR, etc. that serve as adsorption centers when they bind to metallic surfaces.
Collapse
Affiliation(s)
- Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Chandrabhan Verma
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - M A Quraishi
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ashish Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India; NCE, Department of Science and Technology, Government of Bihar, India.
| |
Collapse
|
38
|
Shen Q, Dai H, Wen L, Zheng W, Li B, Dai J, Li B, Chen Y. Effects of pH-shifting treatments on the emulsifying properties of rice protein isolates: Quantitative analysis of interfacial protein layer. Food Res Int 2023; 164:112306. [PMID: 36737901 DOI: 10.1016/j.foodres.2022.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
For the limitation of poor solubility and interfacial adsorption capacity of rice protein isolates (RPI), in this work the effects of pH-shifting treatments on the emulsifying properties of RPI were investigated. The results showed that the particle size of the emulsion stabilized by alkaline pH-shifting treated RPI was smaller than that stabilized by acid pH-shifting treated RPI. In addition, the RPI-10 stabilized emulsion showed a more uniform particle size distribution, which was explained by its high emulsifying activity and stability (EAI: 49.5 m2/g, ESI: 59.5 min). The interface rheology results showed that the alkaline pH-shifting treatment could promote the protein rearrangement and subsequently formed interface film with higher rate of protein penetration and rearrangement. The quantitative analysis of adsorbed proteins in the RPI-10 stabilized emulsion showed that glutelin-type isoforms as major proteins in RPI were increased at the oil-water interface for their balanced distribution of the hydrophilic and hydrophobic amino acid group. These quantitative and interfacial rheology analysis could improve deep understanding of the interfacial properties of pH-shifting treated RPI, and promote the development of application in grain protein stabilized emulsion.
Collapse
Affiliation(s)
- Qian Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmin Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luming Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Beixi Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
39
|
Yuan J, Yan P, Liu X, Kang X, Jin Y, Sheng L, Xia J. Enhancing solid-like characteristics of porcine plasma protein-carrageenan-based high internal phase emulsion: As solid fat alternative of loading curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Tang Y, Gao C, Tang X. In situ rapid conjugation of chitosan-gum Arabic coacervated complex with cinnamaldehyde in cinnamon essential oil to stabilize high internal phase Pickering emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Formation, stability and the application of Pickering emulsions stabilized with OSA starch/chitosan complexes. Carbohydr Polym 2023; 299:120149. [PMID: 36876777 DOI: 10.1016/j.carbpol.2022.120149] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
We demonstrated the formation, structure and stability of Pickering emulsions stabilized by octenyl succinic anhydride starch (OSA-S)/chitosan (CS) complexes and explored their potential as templates for porous materials. Sufficient oil fraction (Φ > 50 %) was decisive for stable emulsions, whereas the complex concentration (c) significantly affected the gel network of emulsions. An increase in Φ or c led to tighter droplet arrangement and enhanced network, which improved the self-supporting characteristics and the stability of emulsions. The stacking of OSA-S/CS complexes at the oil-water interface influenced the emulsion properties, forming typical microstructure with small droplets embedded in interstices of large droplets, and bridging flocculation occurred. Porous materials prepared using emulsions (Φ > 75 %) as templates exhibited semi-open structures with pore size and network varying with different Φ or c. There was no structure collapse due to the interconnectivity of complexes. Our work provides comprehensive information on OSA-S/CS complex-stabilized Pickering emulsions.
Collapse
|
43
|
Zhang W, Cheng H, Pan R, Yang JH, Gong Y, Gan Z, Hu R, Ding J, Chen L, Zhang X, Tian X. Phase Change Microcapsules with a Polystyrene/Boron Nitride Nanosheet Hybrid Shell for Enhanced Thermal Management of Electronics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16055-16066. [PMID: 36521186 DOI: 10.1021/acs.langmuir.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic shell material and phase change material (PCM) have low thermal conductivity, which reduces the heat absorption and release rate of microencapsulated phase change materials (MEPCMs). Boron nitride nanosheets (BNNSs) with high thermal conductivity can not only stabilize the oil phase as the Pickering emulsifier but also improve the thermal conductivity of MEPCMs as one of the shell components, thus facilitating the heat conduction in the microcapsule system. Herein, MEPCM with paraffin wax (PW) as the core material and polystyrene (PS) modified by BNNSs as the shell material (PW@PS/BNNS MEPCMs) are synthesized via Pickering emulsion polymerization. The structure of PW@PS/BNNS MEPCMs can be regulated by tuning the PW and BNNS contents, to achieve high latent heat and thermal conductivity. In comparison to pure PW, the thermal conductivity of MEPCMs-5 wt % BNNSs increases by 63.76% at 25 °C. The PW@PS/BNNS powder possesses a latent heat capacity of 166.3 J/g, corresponding to a high encapsulation ratio of 80.77%. These properties endow the prepared MEPCMs with excellent thermal regulation properties. We also propose the formation mechanism of PW@PS/BNNS MEPCMs via Pickering emulsion polymerization for the first time, which will guide the MEPCM fabrication toward a reliable direction.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hua Cheng
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, People's Republic of China
| | - Rui Pan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Ji Hua Yang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yi Gong
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Zhengya Gan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Rui Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Jianjun Ding
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Lin Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Xian Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Xingyou Tian
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
44
|
Effects of morphology and rheology of starch nanoparticles prepared from various coarse cereals on emulsifying ability. Carbohydr Polym 2022; 298:120137. [DOI: 10.1016/j.carbpol.2022.120137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
|
45
|
Fabrication and characterization of Pickering high internal phase emulsions stabilized by Tartary buckwheat bran flour. Food Chem X 2022; 16:100513. [DOI: 10.1016/j.fochx.2022.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
|
46
|
Li Y, Xu Y, Xu X, Zeng X, Zhou G. Explore the mechanism of continuous cyclic glycation in affecting the stability of myofibrillar protein emulsion: The influence of pH. Food Res Int 2022; 161:111834. [DOI: 10.1016/j.foodres.2022.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
47
|
Wang Z, Gao Y, Wei Z, Xue C. Ovalbumin fibril-stabilized oleogel-based Pickering emulsions improve astaxanthin bioaccessibility. Food Res Int 2022; 161:111790. [DOI: 10.1016/j.foodres.2022.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
48
|
Lv X, Guo C, Ma Y, Liu B. Effect of citric acid esterification on the structure and physicochemical properties of tigernut starch. Int J Biol Macromol 2022; 222:2833-2842. [DOI: 10.1016/j.ijbiomac.2022.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
49
|
Xia C, Han L, Zhang C, Xu M, Liu Z, Chen Y, Zhu Y, Yu M, Wu W, Yin S, Huang J, Zheng Z, Zhang R. Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|