1
|
Gao L, Haesaert G, Van Bockstaele F, Vermeir P, Skirtach A, Eeckhout M. Combined effects of nitrogen and sulfur fertilizers on chemical composition, structure and physicochemical properties of buckwheat starch. Food Chem 2024; 459:140351. [PMID: 38981377 DOI: 10.1016/j.foodchem.2024.140351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Buckwheat starch has attracted worldwide attention in the food industry as a valuable raw material or food additive. Nitrogen (N) and sulfur (S) are two nutrients essential to ensure grain quality. This study investigated the combined application of N fertilizer (0, 45 and 90 kg N ha-1) and S fertilizer (0 and 45 kg SO3 ha-1) on the chemical composition, structure and physicochemical properties of buckwheat starch. The results showed that increasing the fertilizer application decreased amylose content and starch granule size but increased light transmittance, water solubility and swelling power. The stability of the absorption peak positions and the decrease in short-range order degree suggested that fertilization influenced the molecular structure of buckwheat starch. In addition, increases in viscosity and gelatinization enthalpy as well as decreases in gelatinization temperatures and dynamic rheological properties indicated changes in the processing characteristics and product quality of buckwheat-based foods.
Collapse
Affiliation(s)
- Licheng Gao
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analysis, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Andre Skirtach
- Laboratory for Nano-biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Shen W, Yang J, Wang Z, Liu B. Structural characterization and physicochemical properties of grain amaranth starch. Food Chem X 2024; 23:101723. [PMID: 39239531 PMCID: PMC11375243 DOI: 10.1016/j.fochx.2024.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
With potato starch (PS) and corn starch (CS) as the controls, the structure and physicochemical properties of grain amaranth starch (GAS) and its binding with dihydromyricetin were investigated in this study. The results indicated that GAS granules were small in size (3.21 ± 0.13 μm) and had a low amylose content (11.57 ± 0.91%). GAS exhibited low paste clarity, solubility, and swelling power, but demonstrated good freeze-thaw stability and resistance to retrogradation. Although the pasting temperature of GAS was high (75.88 ± 0.03 °C), its peak viscosity, breakdown viscosity, and setback viscosity were significantly lower than those of PS and CS. GAS was classified as A-type starch, with a high molecular weight and broad distribution (Mw, 3.96 × 107 g/mol; PDI, 2.67). For its chain length distribution, chain B1 had the highest proportion (50.09%), while chain B3 had the lowest proportion (13.50%). The complexation of GAS with dihydromyricetin effectively enhanced its ABTS and DPPH free radical scavenging capacities.
Collapse
Affiliation(s)
- Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiye Yang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
3
|
Liu M, Liu T, Zhang J, Liu Y, Zhao Y, Zhu Y, Bai J, Fan S, Cui S, He Y, Xiao X. Study on the Mechanism of Effect of Protein on Starch Digestibility in Fermented Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22269-22278. [PMID: 39344594 DOI: 10.1021/acs.jafc.4c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Previous studies have shown that fermented barley has a lower digestion rate. However, it remains unclear whether the antidigestibility of starch in fermented barley is affected by other nonstarch components. In this paper, the removal of protein, lipid, and β-glucan improved the hydrolysis rate of starch and the protein showed the greatest effect. Subsequently, the inhibitory mechanism of protein on starch digestion was elucidated from the perspective of starch physicochemical properties and structural changes. The removal of protein increased the swelling power of starch from 10.09 to 11.14%. The short-range molecular ordered structure and the helical structure content decreased. The removal of protein reduced the coating and particle size of the starch particles, making the Maltese cross more dispersed. In summary, protein in fermented barley enhanced the ordered structure of starch by forming a physical barrier around starch and prevented the expansion of starch, which inhibited the hydrolysis of starch.
Collapse
Affiliation(s)
- Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shumao Cui
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Yang X, Fu W, Xiao L, Wei Z, Han L. Nutrition, health benefits, and processing of sand rice ( Agriophyllum squarrosum): Comparisons with quinoa and buckwheat. Food Sci Nutr 2024; 12:7060-7074. [PMID: 39479695 PMCID: PMC11521642 DOI: 10.1002/fsn3.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
The dual pressures of climate change and population growth have made the development of new grains a necessity. Agriophyllum squarrosum (sand rice) has high adaptability to harsh environments and does not occupy agricultural land. It is widely cultivated and consumed in Central Asia. Sand rice, together with quinoa and buckwheat, belongs to the same pseudocereals group with rich nutritional value and gluten-free properties; however, its nutritional composition and health benefits differ from those of quinoa and buckwheat. Sand rice seeds are a rich source of nutrients and bioactive compounds, including proteins, amino acids, unsaturated fatty acids, and crude fiber, which are similar to those in buckwheat and quinoa; however, their starch content is relatively low. Sand rice seeds also possess phenolic acids and flavonoids, which exhibit antioxidant, anticancer, anti-diabetes, and anti-inflammatory properties. Furthermore, sand rice extracts are considered suitable for treating some chronic diseases. Overall, sand rice is considered a good plant-based food that can be used to develop various functional foods and beverages or mixed with other grains in different recipes. However, advancements in the processing technology of sand rice-based foods are required to fully exploit the potential of sand rice in the food industry to improve human health. This review analyzes the current understanding of the nutritional content of sand rice by comparing it with that of quinoa and buckwheat. Furthermore, its potential medicinal activity and feasibility as a functional ingredient to improve food quality is discussed.
Collapse
Affiliation(s)
- Xiaofan Yang
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Wenting Fu
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Liuyang Xiao
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Zhaojun Wei
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Lihong Han
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| |
Collapse
|
5
|
Chang L, Dang Y, Yang M, Liu Y, Ma J, Liang J, Li R, Zhang R, Du SK. Effects of Lactobacillus plantarum fermentation on the structure, physicochemical properties, and digestibility of foxtail millet starches. Int J Biol Macromol 2024; 270:132496. [PMID: 38763247 DOI: 10.1016/j.ijbiomac.2024.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
This study investigated the effects of Lactobacillus plantarum fermentation on the structural, physicochemical, and digestive properties of foxtail millet starches. The fermented starch granules formed a structure with honeycomb-like dents, uneven pores, and reduced particle size. As the fermentation time extended, the amylose content of waxy (0.88 %) and non-waxy (33.71 %) foxtail millet starches decreased to the minimum value at 24 h (0.59 % and 29.19 %, respectively), and then increased to 0.85 % and 31.87 % at 72 h, respectively. Both native and fermented foxtail millet starches exhibited an A-type crystal structure. Compared with native samples, the fermented samples performed enhanced proportion of short-branched chain, crystallinity, and short-range ordered degree. After fermentation for 24 h, the solubility, adsorption capacity, and pasting viscosity of foxtail millet starches improved, whereas the swelling power, pasting temperature, breakdown, setback, and degree of retrogradation reduced. Additionally, fermentation increased the transition temperatures, enthalpy, and digestibility. Overall, Lactobacillus plantarum fermentation is considered a competent choice to regulate the characteristics of foxtail millet starch.
Collapse
Affiliation(s)
- Lei Chang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yueyi Dang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Min Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yangjin Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Jing Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Jibao Liang
- Shenmu Agricultural Technology Promotion Center, Shenmu, Shaanxi 719300, PR China
| | - Rui Li
- Shenmu Agricultural Technology Promotion Center, Shenmu, Shaanxi 719300, PR China
| | - Rui Zhang
- Shenmu Agricultural Technology Promotion Center, Shenmu, Shaanxi 719300, PR China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
6
|
Ren L, Zheng Z, Fu H, Yang P, Xu J, Yang D. Hot air-assisted radio frequency drying of corn kernels: the effect on structure and functionality properties of corn starch. Int J Biol Macromol 2024; 267:131470. [PMID: 38599425 DOI: 10.1016/j.ijbiomac.2024.131470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/22/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.
Collapse
Affiliation(s)
- Liuyang Ren
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhaohui Zheng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hanyu Fu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Pei Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jingshen Xu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Deyong Yang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Xu M, Xu C, Kim SJ, Ji S, Ren Y, Chen Z, Li Y, Zhou B, Lu B. Investigating the evolution of the fine structure in cassava starch during growth and its correlation with gelatinization performance. Int J Biol Macromol 2024; 265:130422. [PMID: 38423429 DOI: 10.1016/j.ijbiomac.2024.130422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
The evolution of the starch fine structure during growth and its impact on the gelatinization behavior of cassava starch (CS) was investigated by isolating starch from South China 6068 (SC6068) cassava harvested from the 4th to 9th growth period. During growth, the short-range ordered structure, crystallinity as well as particle size distribution of starch were increased. Meanwhile, the starch molecular size and amylopectin (AP) proportion increased, while the proportion of amylose (AM) exhibited a decreasing tendency. The chains of short-AM (X ~ 100-1000) were mainly significantly reduced, whereas the short and medium-AP chains (X ~ 6-24) had the most increment in AP. The solubility, thermal stability, shear resistance, and retrogradation resistance of starch were enhanced after gelatinized under the influence of the results mentioned above. This study presented a deeper insight into the variation of starch fine structure during growth and its influence on gelatinization behavior, which would provide a theoretical basis for starch industrial applications.
Collapse
Affiliation(s)
- Minghao Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Congyi Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Sol-Ju Kim
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yicheng Ren
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ziyue Chen
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ye Li
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Bin Zhou
- Guilin Agricultural Science Research Centre, Guilin 541006, China.
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
8
|
Wang Z, Gao M, Kan J, Cheng Q, Chen X, Tang C, Chen D, Zong S, Jin C. Resistant Starch from Purple Sweet Potatoes Alleviates Dextran Sulfate Sodium-Induced Colitis through Modulating the Homeostasis of the Gut Microbiota. Foods 2024; 13:1028. [PMID: 38611336 PMCID: PMC11011479 DOI: 10.3390/foods13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is a complicated inflammatory disease with a continually growing incidence. In this study, resistant starch was obtained from purple sweet potato (PSPRS) by the enzymatic isolation method. Then, the structural properties of PSPRS and its protective function in dextran sulfate sodium (DSS)-induced colitis were investigated. The structural characterization results revealed that the crystallinity of PSPRS changed from CA-type to A-type, and the lamellar structure was totally destroyed during enzymatic hydrolysis. Compared to DSS-induced colitis mice, PSPRS administration significantly improved the pathological phenotype and colon inflammation in a dose-dependent manner. ELISA results indicated that DSS-induced colitis mice administered with PSPRS showed higher IL-10 and IgA levels but lower TNF-α, IL-1β, and IL-6 levels. Meanwhile, high doses (300 mg/kg) of PSPRS significantly increased the production of acetate, propionate, and butyrate. 16S rDNA high-throughput sequencing results showed that the ratio of Firmicutes to Bacteroidetes and the potential probiotic bacteria levels were notably increased in the PSPRS treatment group, such as Lactobacillus, Alloprevotella, Lachnospiraceae_NK4A136_group, and Bifidobacterium. Simultaneously, harmful bacteria like Bacteroides, Staphylococcus, and Akkermansia were significantly inhibited by the administration of a high dose of PSPRS (p < 0.05). Therefore, PSPRS has the potential to be a functional food for promoting intestinal health and alleviating UC.
Collapse
Affiliation(s)
| | | | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.W.); (M.G.); (Q.C.); (X.C.); (C.T.); (D.C.); (S.Z.); (C.J.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
10
|
Liu H, Liu B, Zhou H, Huang Y, Gao X. Nitrogen fertilizer affects the cooking quality and starch properties of proso millet ( Panicum miliaceum L.). Food Sci Nutr 2024; 12:602-614. [PMID: 38268879 PMCID: PMC10804076 DOI: 10.1002/fsn3.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 01/26/2024] Open
Abstract
Nitrogen has a critical influence on the yield and quality of proso millet. However, the exact impact of nitrogen on the cooking quality of proso millet is not clear. In this study, the cooking quality and starch properties of two proso millet varieties (waxy-Shaanxi millet [wSM] variety and non-waxy-Shaanxi millet [nSM] variety) were compared and analyzed under nitrogen fertilizer treatment (N150, 150 kg/hm2) and a control group without nitrogen application (N0, 0 kg/hm2). Compared with the N0 group, the N150 treatment significantly increased protein content, amylose levels, and total yield. Employing rapid visco analyser and differential scanning calorimetry analyses, we observed that under the N150 treatment, the peak viscosity and breakdown viscosity of proso millet powder were diminished, while the setback viscosity and enthalpy values (ΔH) increased. In addition, nitrogen treatment increased the solids content in the obtained rice soup and significantly hardened the texture of the rice. At the same time, we noticed that the absorption capacity of starch in water and oil was enhanced. These results showed that nitrogen fertilizer had significant effects on the cooking quality and starch properties of proso millet.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Beibei Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
- Ankang Vocational Technical CollegeAnkangChina
| | - Haolu Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yinghui Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
11
|
Wu M, Zhou Q, Zhou L, Wang J, Ren T, Zheng Y, Lv W, Zhao W. Enhancement of γ-Aminobutyric Acid and the Characteristics of Nutrition and Function in White Quinoa through Ultrasound Stress at the Pre-Germination Stage. Foods 2023; 13:57. [PMID: 38201084 PMCID: PMC10778457 DOI: 10.3390/foods13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The global production of quinoa has been increasing in recent years. In plant-based foods, ultrasound stress has received increasing attention, owing to its ability to enhance the production of primary and secondary metabolites. We studied the effects of ultrasonic stress at the pre-germination stage on the γ-aminobutyric acid (GABA) accumulation and characteristics of nutrition and function in quinoa. The results showed that ultrasonic conditions of 100 W for 4 min promoted an increase in GABA content by 9.15-fold, to 162.47 ± 6.69 mg/100 g·DW, compared to that of untreated quinoa, through promoting a 10.2% and 71.9% increase in the water absorption and glutamate decarboxylase activity of quinoa, respectively. Meanwhile, compared to untreated quinoa, ultrasonic stress at the pre-germination stage enhanced the total phenolic, total flavonoid, and total saponin contents of quinoa by 10.2%, 33.6%, and 90.7%, to 3.29 mg GA/g·DW, 104.0 mg RE/100 g·DW, and 7.13 mg/g, respectively, without decreasing its basic nutritional quality. Ultrasonic stress caused fissures on the surface of quinoa starch particles. Additionally, germination under ultrasonic stress increased the n3 polyunsaturated fatty acids by 14.4%. Furthermore, ultrasonic stress at the pre-germination stage promoted the scavenging of 2,2-diphenyl1-picrylhydrazyl radicals and inhibitions of α-amylase, α-glucosidase, and pancreatic lipase by 14.4%, 14.9%, 24.6%, and 20.0% in vitro, compared to untreated quinoa. The results indicated that the quinoa sprouted via ultrasonic stress could represent a promising method through which to develop nutritionally balanced whole grains rich in GABA, with hypoglycemic and hypolipidemic activities, which could provide theoretical support for the development of functional whole-grain foods based on quinoa.
Collapse
Affiliation(s)
- Mengying Wu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Qian Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Liangfu Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Jie Wang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Ting Ren
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Yu Zheng
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Wei Lv
- National Engineering Research Center for Semi-Arid Agriculture, Shijiazhuang 050000, China;
| | - Wen Zhao
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| |
Collapse
|
12
|
Zhu Y, Xie F, Ren J, Jiang F, Zhao N, Du SK. Structural analysis, nutritional evaluation, and flavor characterization of parched rice made from proso millet. Food Chem X 2023; 19:100784. [PMID: 37780251 PMCID: PMC10534107 DOI: 10.1016/j.fochx.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
This study investigated the structure and quality characteristics of hard and crispy parched rice obtained from raw proso millet through steaming, roasting, and milling. Results showed that thermal treatment disrupted the structure of samples and transformed the crystal from A-type in raw proso to V-type in parched rice. Rheological and thermodynamic analyses revealed that thermal treatment reduced the stability of parched rice. Gelatinization tests demonstrated that the parched rice was easier to gelatinize and had a lower viscosity. The digestibility of hard parched rice and crispy parched rice improved, with rapidly digestible starch content increasing by 73.62% and 76.95%, respectively, compared with that of raw proso millet. Headspace solid-phase microextraction/gas chromatography-mass spectrometry results further indicated that thermal treatment enhanced the flavor substances of parched rice. These findings demonstrated the unique properties of parched rice and supported its production and processing as a whole grain.
Collapse
Affiliation(s)
- Yulian Zhu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Fei Xie
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jing Ren
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Fan Jiang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Shuang-kui Du
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Engineering Research Center of Grain and Oil Functionalized Processing, Yangling, Shaanxi 712100, China
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Zhang L, Apea-Bah FB, Chen X, Hornung PS, Malunga LN, Beta T. The physicochemical and structural properties and in vitro digestibility of pea starch isolated from flour ground by milling and air classification. Food Chem 2023; 419:136086. [PMID: 37030213 DOI: 10.1016/j.foodchem.2023.136086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
The fine, coarse and parent starches were isolated from pea flour by milling and air-classification. Their structural, thermal, physicochemical properties and in vitro digestibility were investigated. Particle Size Distribution showed the fine starch with the smallest unimodal distribution (18.33 and 19.02 μm) displayed higher degree of short-range molecular order and lower number of double helix structure. Scanning Electron Microscopy showed the morphology of the coarse starch granules as uniform in size and lacking protein particles on its smooth surface. Differential Scanning Calorimetry revealed the coarse starch had higher enthalpy changes while Rapid Visco Analysis showed higher peak, trough, and breakdown viscosities for the fine starch. In vitro digestibility featured the fine starch containing lower fast digesting starch contents, but with higher resistant starch content, indicating its resistance to enzymatic hydrolysis. The results could provide theoretical support for application of pea starch in functional foods and the manufacture of emerging starch products.
Collapse
Affiliation(s)
- Lixia Zhang
- Research Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Franklin B Apea-Bah
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xin Chen
- Economic Crops Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Polyanna Silveira Hornung
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Lovemore Nkhata Malunga
- Agriculture and Agri-Food Canada / Government of Canada, 196 Innovation Drive, Winnipeg, Manitoba R3T 6C5, Canada
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
14
|
Liu G, Zhang R, Huo S, Li J, Wang M, Wang W, Yuan Z, Hu A, Zheng J. Insights into the changes of structure and digestibility of microwave and heat moisture treated quinoa starch. Int J Biol Macromol 2023; 246:125681. [PMID: 37406899 DOI: 10.1016/j.ijbiomac.2023.125681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, quinoa starch was subjected to microwave and heat moisture treatment (MHT) with various moisture content (15 %, 25 %, 35 %) and microwave power (4.8, 9.6, 14.4 W/g), and its structure and digestibility were investigated. SEM and particle size analysis indicated that MHT caused the agglomeration of starch granules and increased the particle size. Moreover, MHT increased the short-range order structure and relative crystallinity, except for MHT with moisture content (35 %). DSC results demonstrated that the gelatinization temperature and gelatinization enthalpy had a slight improvement after MHT. Moreover, MHT increased the amylose content to some extent. It was worth noting that the digestibility of quinoa starch significantly decreased. After MHT, a part of rapidly digestible starch (RDS) was converted into slowly digestible starch (SDS) or resistant starch (RS). Particularly, when moisture content was 25 %, the starch had a highest SDS + RS content. Thus, this study provided a potential approach using MHT to modulate the digestibility of starch.
Collapse
Affiliation(s)
- Guangxin Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Rong Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Shuan Huo
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Mengting Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Wei Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Zhining Yuan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Jie Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
15
|
Jiang F, Zhu Y, Hu WX, Li M, Liu Y, Feng J, Lv X, Yu X, Du SK. Characterization of quinoa starch nanoparticles as a stabilizer for oil in water Pickering emulsion. Food Chem 2023; 427:136697. [PMID: 37379746 DOI: 10.1016/j.foodchem.2023.136697] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Quinoa starch nanoparticles (QSNPs) prepared by nanoprecipitation had a uniform particle size of 191.20 nm. QSNPs with amorphous crystalline structure had greater contact angle than QS with orthorhombic crystalline structure, which can therefore be utilized to stabilize Pickering emulsions. QSNPs-based Pickering emulsions prepared by suitable formulations (QSNPs concentration of 2.0-2.5 %, oil volume fraction of 0.33-0.67) exhibited good stability against pH of 3-9 and ionic strength of 0-200 mM. The oxidative stability of the emulsions increased with increasing starch concentration and ionic strength. Microstructural and rheological results indicated that the structure of the starch interfacial film and the thickening effect of the water phase affected the emulsion stability. The emulsion had excellent freeze-thaw stability and can be produced as a re-dispersible dry emulsion using the freeze-drying technique. These results implied that the QSNPs had great potential for application in the preparation of Pickering emulsions.
Collapse
Affiliation(s)
- Fan Jiang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yulian Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Wen-Xuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Mengqing Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yangjin Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Jingjing Feng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, PR China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
16
|
Ren G, Teng C, Fan X, Guo S, Zhao G, Zhang L, Liang Z, Qin P. Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chem 2023; 410:135290. [PMID: 36608550 DOI: 10.1016/j.foodchem.2022.135290] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Quinoa is one of the gluten-free crops that has attracted considerable interest. Quinoa contains functional ingredients such as bioactive peptides, polysaccharides, saponins, polyphenols, flavonoids and other compounds. It is very important to determine efficient methods to identify such functional ingredients, and to explain their possible health benefits in humans. In this review, the chemical structure and biological activity mechanisms of quinoa nutrient composition have been elaborated. In addition, the development of quinoa-based functional foods and feed is emerging, providing a reference for the development of functional products with quinoa as an ingredient that are beneficial to health. The active ingredients in quinoa have different health effects including antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-obesity activities. Further exploration is also needed to improve the application of quinoa within the functional food industry, and in the areas of feed, medicine and cosmetics.
Collapse
Affiliation(s)
- Guixing Ren
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Gang Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zou Liang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Shen H, Yan M, Liu Y, Liu X, Ge X, Muratkhan M, Ospankulova G, Zhang G, Li W. Multiscale structure-property relationships of oxidized wheat starch prepared assisted with electron beam irradiation. Int J Biol Macromol 2023; 235:123908. [PMID: 36870652 DOI: 10.1016/j.ijbiomac.2023.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, two promising eco-friendly modification techniques, electron beam (EB) irradiation and hydrogen peroxide (H2O2) oxidation, were used to prepare oxidized wheat starch. Neither irradiation nor oxidation changed starch granule morphology, crystalline pattern, and Fourier transform infrared spectra pattern. Nevertheless, EB irradiation decreased the crystallinity and the absorbance ratios of 1047/1022 cm-1 (R1047/1022), but oxidized starch exhibited the opposite results. Both irradiation and oxidation treatments reduced the amylopectin molecular weight (Mw), pasting viscosities, and gelatinization temperatures, while increasing the amylose Mw, solubility and paste clarity. Notably, EB irradiation pretreatment dramatically elevated the carboxyl content of oxidized starch. In addition, irradiated-oxidized starches displayed higher solubility, paste clarity, and lower pasting viscosities than single oxidized starches. The main reason was that EB irradiation preferentially attacks the starch granules, degrades the starch molecules, and depolymerizes the starch chains. Therefore, this green method of irradiation-assisted oxidation of starch is promising and may promote the appropriate application of modified wheat starch.
Collapse
Affiliation(s)
- Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Mengting Yan
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yili Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Guoquan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Jingyi Y, Reddy CK, Fan Z, Xu B. Physicochemical and structural properties of starches from non-traditional sources in China. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Yan S, Li Z, Wang B, Li T, Li Z, Zhang N, Cui B. Correlation analysis on physicochemical and structural properties of sorghum starch. Front Nutr 2023; 9:1101868. [PMID: 36712512 PMCID: PMC9873550 DOI: 10.3389/fnut.2022.1101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
This manuscript analyzed physicochemical and structural properties of 30 different types of sorghum starches based on their apparent amylose content (AAC). Current results confirmed that sorghum starch exhibited irregular spherical or polygonal granule shape with 14.5 μm average particle size. The AAC of sorghum starch ranged from 7.42 to 36.44% corresponding to relative crystallinities of 20.5 to 32.4%. The properties of enthalpy of gelatinization (ΔH), peak viscosity (PV), relative crystallinity (RC), degree of double helix (DD), degree of order (DO), and swelling power (SP) were negatively correlated with AAC, while the cool paste viscosity (CPV) and setback (SB) were positively correlated with AAC. Correlations analyzed was conducted on various physicochemical parameters. Using principal component analysis (PCA) with 20 variables, the difference between 30 different types of sorghum starch was displayed. Results of current study can be used to guide the selection and breeding of sorghum varieties and its application in food and non-food industries.
Collapse
Affiliation(s)
- Shouxin Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhao Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Tingting Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhiyang Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Nan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| |
Collapse
|
20
|
Yu S, Wu Y, Li Z, Wang C, Zhang D, Wang L. Effect of different milling methods on physicochemical and functional properties of mung bean flour. Front Nutr 2023; 10:1117385. [PMID: 36908915 PMCID: PMC9998992 DOI: 10.3389/fnut.2023.1117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
There needs to be more information concerning the effect of different milling methods on the physicochemical properties of whole-grain mung bean flour. Therefore, the physicochemical properties of whole grain mung bean flour were analyzed using universal grinders (UGMB), ball mills (BMMB), and vibration mills (VMMB). The results showed that the particle size of the sample after ultrafine grinding treatment was significantly reduced to 21.34 μm (BMMB) and 26.55 μm (VMMB), and the specific surface area was increased. The particle distribution was uniform to a greater extent, and the color was white after treatment. Moreover, the water holding capacity (WHC), oil holding capacity (OHC), and swelling power (SP) increased, and the bulk density and solubility (S) decreased. The Rapid Viscosity Analyzer (RVA) indicated that the final viscosity of the sample after ultrafine grinding was high. Furthermore, rheological tests demonstrated that the consistency coefficient K, shear resistance, and viscosity were decreased. The results of functional experiments showed that the treated samples (BMMB and VMMB) increased their capacity for cation exchange by 0.59 and 8.28%, respectively, bile acid salt adsorption capacity increased from 25.56 to 27.27 mg/g and 26.38 mg/g, and nitrite adsorption capacity increased from 0.58 to 1.17 mg/g and 1.12 mg/g.
Collapse
Affiliation(s)
- Shibo Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanchun Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenjiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
21
|
Endogenous protein and lipid facilitate the digestion process of starch in cooked quinoa flours. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Effects of morphology and rheology of starch nanoparticles prepared from various coarse cereals on emulsifying ability. Carbohydr Polym 2022; 298:120137. [DOI: 10.1016/j.carbpol.2022.120137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
|
23
|
Electron beam irradiation regulates the structure and functionality of ball-milled corn starch: The related mechanism. Carbohydr Polym 2022; 297:120016. [DOI: 10.1016/j.carbpol.2022.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
|
24
|
Wang J, Leng J, Gao L, Han M, Wu Y, Lei X, Gao J. Effects of selenium solution on the crystalline structure, pasting and rheological properties of common buckwheat starch. FRONTIERS IN PLANT SCIENCE 2022; 13:1053480. [PMID: 36531376 PMCID: PMC9751854 DOI: 10.3389/fpls.2022.1053480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Selenium is an important element that affects human growth and development, and also affects the yield and quality of common buckwheat. In our study, two common buckwheat varieties were sprayed with different concentrations (0 g/hm2, 5 g/hm2, 20 g/hm2) of sodium selenite solution at the initial flowering period and the full flowering period, respectively, to determine the effects of selenium solution on the physicochemical properties of common buckwheat starch. With increasing selenium levels, the amylose content, peak viscosity, breakdown, relative crystallinity, pasting temperature and gelatinization enthalpy first decreased and then increased, while the transparency showed a trend of increasing and then decreasing. All samples exhibited a typical A-type pattern, while at high selenium level, the degree of short-range order of common buckwheat starches changed. From the rheological properties, it can be seen that the starch paste is dominated by elastic properties, while the low selenium treatment decreases the viscosity of the starch paste. These results showed that spraying different concentrations of selenium solutions at different periods significantly affected the physicochemical properties of common buckwheat starch.
Collapse
|
25
|
Characterization and comparative study on structural and physicochemical properties of buckwheat starch from 12 varieties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Structural, physicochemical and rheological properties of starches isolated from banana varieties ( Musa spp.). Food Chem X 2022; 16:100473. [PMID: 36277869 PMCID: PMC9579327 DOI: 10.1016/j.fochx.2022.100473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
High starch content in green banana can be extracted for industry and avoid waste. Banana starch from Tanzania was rich in amylose and resistant starch. Banana starch paste presented great structural stability. Banana starch had potential to produce edible films and replace chemical binder.
Banana starches were isolated from five banana varieties in Tanzania to analyze the proximate composition, structure, physicochemical and rheological properties. The amylose content of banana starches was 29.92 ± 0.17 %–39.50 ± 0.08 % and the resistant starch content of cooked banana starches ranged from 44.74 ± 1.72 % to 55.43 ± 1.52 %. Banana starch granules presented irregular shapes with particle size of 21.73 to 24.67 μm and showed B-type or C-type crystalline patterns with crystallinity of 36.69 % to 41.83 %. The solubility and the swelling power were 2.5 ± 0.42 %–4.4 ± 0.57 % and 11.27 ± 0.04 %–12.48 ± 0.71 %, respectively. Mzuzu and Malindi starches possessed lower gelatinization temperature. The high gelatinization peak viscosity (2248 ± 67–2897 ± 71 cP), low breakdown (556 ± 7–960 ± 41 cP) and low setback (583 ± 29–864 ± 118 cP) indicated banana starch could replace chemically cross-linked starch for applications that require stable viscosity. The rheological analysis showed that banana starches exhibited shear thinning behavior and had great processing adaptability. The results all above will provide basic data for the development and utilization of banana starch.
Collapse
|
27
|
Chang L, Zhao N, Jiang F, Ji X, Feng B, Liang J, Yu X, Du SK. Structure, physicochemical, functional and in vitro digestibility properties of non-waxy and waxy proso millet starches. Int J Biol Macromol 2022; 224:594-603. [DOI: 10.1016/j.ijbiomac.2022.10.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
28
|
Gao L, Wan C, Wang J, Wang P, Gao X, Eeckhout M, Gao J. Relationship between nitrogen fertilizer and structural, pasting and rheological properties on common buckwheat starch. Food Chem 2022; 389:132664. [PMID: 35523074 DOI: 10.1016/j.foodchem.2022.132664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Nitrogen is an essential element for the yield and quality of grain. In this study, the structural and physicochemical properties of two common buckwheat varieties under four nitrogen levels (0, 90, 180, 270 kg N ha-1) at one location in two years were investigated. With increasing nitrogen level, the contents of moisture and amylose decreased but the contents of ash and crude protein increased. Excessive nitrogen application significantly increased the granule size, but reduced the light transmittance, water solubility, swelling power, absorption of water and oil. All the samples showed a typical A - type pattern, while high relative crystallinity and low order degree were observed under high nitrogen level. The samples under high nitrogen level had lower textural properties, pasting properties and rheological properties but higher pasting temperature and gelatinization enthalpy. These results indicated that nitrogen fertilizer significantly affected the structural and physicochemical properties of common buckwheat starch.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China; Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jiale Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Mia Eeckhout
- Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
29
|
Kheto A, Das R, Deb S, Bist Y, Kumar Y, Tarafdar A, Saxena DC. Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. Int J Biol Macromol 2022; 222:636-651. [PMID: 36174856 DOI: 10.1016/j.ijbiomac.2022.09.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The Chenopodium genus includes >250 species, among which only quinoa, pigweed, djulis, and kaniwa have been explored for starches. Chenopodium is a non-conventional and rich source of starch, which has been found effective in producing different classes of food. Chenopodium starches are characterized by their smaller granule size (0.4-3.5 μm), higher swelling index, shorter/lower gelatinization regions/temperature, good emulsifying properties, and high digestibility, making them suitable for food applications. However, most of the investigations into Chenopodium starches are in the primary stages (isolation, modification, and characterization), except for quinoa. This review comprehensively explores the major developments in Chenopodium starch research, emphasizing isolation, structural composition, functionality, hydrolysis, modification, and application. A critical analysis of the trends, limitations, and scope of these starches for novel food applications has also been provided to promote further scientific advancement in the field.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Rahul Das
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Saptashish Deb
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| |
Collapse
|
30
|
Almeida RLJ, Santos NC, Feitoza JVF, de Alcântara Ribeiro VH, de Alcântara Silva VM, de Figueiredo MJ, Ribeiro CAC, Galdino PO, Queiroga AHF, de Sousa Muniz CE. The impact of the pulsed electric field on the structural, morphological, functional, textural, and rheological properties of red rice starch (
Oryza sativa
). J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Chemical Engineering Department Federal University of Rio Grande do Norte Natal Brazil
| | | | | | | | - Maria José de Figueiredo
- Department of Agro‐Industrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| | | | | | | | | |
Collapse
|
31
|
Li G, Hemar Y, Zhu F. Supramolecular structure of quinoa starch affected by nonenyl succinic anhydride (NSA) substitution. Int J Biol Macromol 2022; 218:181-189. [PMID: 35809675 DOI: 10.1016/j.ijbiomac.2022.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022]
Abstract
Quinoa starch granular structure as affected by nonenyl succinic anhydride (NSA) substitution was investigated by multiple approaches, including scattering, spectroscopic, and microscopic techniques. The modification had little impact on the morphology of starch granules. The NSA substitution was found mainly in the amorphous lamellae and amorphous growth rings. The NSA modification increased the thickness of the amorphous lamellae. The homogeneity of the ordered structure in the granules was improved, probably because the NSA modification reduced the amount of defects in the semi-crystalline growth ring. Compared to other chemical modifications such as acylation, succinylation was more effective in modifying the starch lamellar structure. A possible reaction pattern of NSA modification on quinoa starch is proposed, in which the NSA modification may follow the sequence of amorphous growth rings, the amorphous matrices among blocklets, amorphous and crystalline lamellae in semi-crystalline growth rings. This study provides new insights on the structural changes of starch granules induced by succinylation on the supramolecular level.
Collapse
Affiliation(s)
- Guantian Li
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yacine Hemar
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
32
|
Choque Delgado GT, Carlos Tapia KV, Pacco Huamani MC, Hamaker BR. Peruvian Andean grains: Nutritional, functional properties and industrial uses. Crit Rev Food Sci Nutr 2022; 63:9634-9647. [PMID: 35544604 DOI: 10.1080/10408398.2022.2073960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Andean geography induces favorable conditions for the growth of food plants of high nutritional and functional value. Among these plants are the Andean grains, which are recognized worldwide for their nutritional attributes. The objective of this article is to show the nutritional and functional properties, as well as industrial potential, of Andean grains. Quinoa, amaranth, canihua, and Andean corn are grains that contain bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activities that benefit the health of the consumer. Numerous in vitro and in vivo studies demonstrate their functional potential. These high-Andean crops could be used industrially to add value to other functional food products. These reports suggest the inclusion of these grains in the daily diets of people and the application of their active compounds in the food industry.
Collapse
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Katerin Victoria Carlos Tapia
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maria Cecilia Pacco Huamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
33
|
Extraction and characterization of starch granule-associated surface and channel lipids from small-granule starches that affect physicochemical properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
|
35
|
Rao H, Sindhu R, Panwar S. Morphology and functionality of dry heat‐treated and oxidized quinoa starches. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Himanshi Rao
- Centre of Food Science and Technology ChaudharyCharan Singh Haryana Agricultural University Hisar Haryana India
| | - Ritu Sindhu
- Centre of Food Science and Technology ChaudharyCharan Singh Haryana Agricultural University Hisar Haryana India
| | - Shreya Panwar
- Centre of Food Science and Technology ChaudharyCharan Singh Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
36
|
Ma Y, Wu D, Guo L, Yao Y, Yao X, Wang Z, Wu K, Cao X, Gao X. Effects of Quinoa Flour on Wheat Dough Quality, Baking Quality, and in vitro Starch Digestibility of the Crispy Biscuits. Front Nutr 2022; 9:846808. [PMID: 35495943 PMCID: PMC9043647 DOI: 10.3389/fnut.2022.846808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Quinoa is a pseudo-cereal which has excellent nutritional and functional properties due to its high content of nutrients, such as polyphenols and flavonoids, and therefore quinoa serves as an excellent supplement to make healthy and functional foods. The present study was aimed to evaluate the quality characteristics of wheat doughs and crispy biscuits supplemented with different amount of quinoa flour. The results showed that when more wheat flour was substituted by quinoa flour, proportion of unextractable polymeric protein to the total polymeric protein (UPP%) of the reconstituted doughs decreased and the gluten network structure was destroyed at a certain substitution level. The content of B-type starch and the gelatinization temperature of the reconstituted flours increased. The storage modulus, loss modulus, development time, and stability time of the dough increased as well. Moreover, hardness and toughness of the formulated crispy biscuits significantly decreased. Analyses suggested that starch digestibility was reduced and resistant starch content increased significantly. Taken together, quinoa flour improved dough rheological properties, enhanced the textural properties, and increased resistant starch content in crispy biscuits, thus adding to high nutritional value.
Collapse
Affiliation(s)
- Yanrong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Daying Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Lei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Youhua Yao
- State Key Laboratory of Plateau Ecology and Agronomy, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Qinghai University, Xining, China
| | - Xiaohua Yao
- State Key Laboratory of Plateau Ecology and Agronomy, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Qinghai University, Xining, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Kunlun Wu
- State Key Laboratory of Plateau Ecology and Agronomy, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Qinghai University, Xining, China
- *Correspondence: Kunlun Wu,
| | - Xinyou Cao
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Xinyou Cao,
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Xin Gao,
| |
Collapse
|
37
|
Peng M, Yin L, Dong J, Shen R, Zhu Y. Physicochemical characteristics and in vitro digestibility of starches from colored quinoa (Chenopodium quinoa) varieties. J Food Sci 2022; 87:2147-2158. [PMID: 35365864 DOI: 10.1111/1750-3841.16126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
The quinoa flour processing is mostly subject to the properties of starch. Starches from four colored quinoa varieties, including white quinoa (QS-W), yellow quinoa (QS-Y), red (QS-R), and black (QS-B), were compared with respect to their physicochemical properties and in vitro digestibility. Results indicated that QS-B exhibited the highest content of amylose (8.14%) (p < 0.05). All starch samples exhibited as irregular sphere with a particle size less than 3 µm. Results of the FT-IR and X-ray showed that the short-range order of the four quinoa starches exhibited no significant difference; all starches showed a typical A-type diffractrometric pattern and was not affected by seed color, and QS-Y had the highest relative crystallinity (34.3%) (p < 0.05). In addition, QS-W reflected the highest solubility (6.32%) and QS-Y showed the highest swelling power (19.45 g/g) (p < 0.05). QS-Y also presented a higher ΔH value (11.46 J/g) (p < 0.05), while QS-R peak temperature and peak G' were the lowest. Besides, QS-B had the highest slow-digestible starch (SDS) and resistant starch (RS) content, while the lowest estimated glycemic index (eGI) value (p < 0.05). Also, there was a negative correlation between hydrolysis rates and amylose content of quinoa starch. PRACTICAL APPLICATION: Due to the low gelatinization temperature of quinoa starch, it can be used to both produce and improve instant and fast food products. Quinoa starch particles are small, and Pickering emulsions and additives have potential application values. Red quinoa contains easily digestible starch, which can be a good food choice for infants and the elderly, while white quinoa starch has less swelling power and can be used in noodle products. The results of this study can help to underpin the study of quinoa nonstarch components versus starch component.
Collapse
Affiliation(s)
- Mingjun Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Lisha Yin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Jilin Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, China.,Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Ruiling Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, China.,Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, China.,Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Kheto A, Joseph D, Islam M, Dhua S, Das R, Kumar Y, Vashishth R, Sharanagat VS, Kumar K, Nema PK. Microwave roasting induced structural, morphological, antioxidant and functional attributes of Quinoa (
Chenopodium quinoa Willd). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ankan Kheto
- Department of Food Technology, Vignan Foundation for Science Technology and Research Andhra Pradesh 522213 India
| | - Don Joseph
- Department of Food Technology, Vignan Foundation for Science Technology and Research Andhra Pradesh 522213 India
| | - Makdud Islam
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana 131028 India
| | - Subhamoy Dhua
- Department of Food Engineering & Technology Tezpur University Assam 784028 India
| | - Rahul Das
- Department of Food Engineering and Technology, SLIET Punjab 148106 India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, SLIET Punjab 148106 India
| | - Rahul Vashishth
- Department of Food Technology, Vignan Foundation for Science Technology and Research Andhra Pradesh 522213 India
| | - Vijay Singh Sharanagat
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana 131028 India
| | - Kshitiz Kumar
- Department of Food Processing Technology A D Patel Institute of Technology New V V Nagar, Gujarat, 388121 India
| | - Prabhat K. Nema
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana 131028 India
| |
Collapse
|
39
|
de Lima Brito I, Chantelle L, Magnani M, de Magalhães Cordeiro AMT. Nutritional, therapeutic and technological perspectives of Quinoa (
Chenopodium quinoa
Willd.): A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isabelle de Lima Brito
- Department of Management and Agroindustrial Technology, Center of Human, Social and Agrarian Sciences (CCHSA) Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Laís Chantelle
- Department of Chemistry, NPE‐LACOM Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Marciane Magnani
- Department of Food Engineering, Tecnology Center (CT) Federal University of Paraíba João Pessoa Paraíba Brazil
| | | |
Collapse
|
40
|
Gao L, Wu Y, Wan C, Wang P, Yang P, Gao X, Eeckhout M, Gao J. Structural and physicochemical properties of pea starch affected by germination treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Chang L, Yang M, Zhao N, Xie F, Zheng P, Simbo J, Yu X, Du SK. Structural, physicochemical, antioxidant and in vitro digestibility properties of banana flours from different banana varieties (Musa spp.). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem 2022; 369:130895. [PMID: 34438343 DOI: 10.1016/j.foodchem.2021.130895] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Quinoa starch nanoparticles (QSNPs) prepared by nanoprecipitation method under the optimal condition was developed as a carrier for quercetin. The QSNPs prepared under the optimal condition (90 DMSO/H2O ratio, 10 ethanol/solvent ratio, and ultrasonic oscillation dispersion mode) had the smallest particle size and polymer dispersity index through full factorial design. Compared with maize starch nanoparticles (MSNPs), QSNPs exhibited a smaller particle size of 166.25 nm and a higher loading capacity of 26.62%. Starch nanoparticles (SNPs) interacted with quercetin through hydrogen bonding. V-type crystal structures of SNPs were disappeared and their crystallinity increased after loading with quercetin. QSNPs was more effective in protecting and prolonging quercetin bioactivity because of their small particle sizes and high loading capacities. This study will be useful for preparing starch-based carrier used to load sensitive bioactive compounds.
Collapse
|
43
|
Almeida RLJ, Santos NC, Feitoza JVF, da Silva GM, Muniz CEDS, Eduardo RDS, de Alcântara Ribeiro VH, de Alcântara Silva VM, Mota MMDA. Effect of heat-moisture treatment on the thermal, structural and morphological properties of Quinoa starch. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
44
|
Li G, Zhu F. Physicochemical, rheological, and emulsification properties of nonenyl succinic anhydride (NSA) modified quinoa starch. Int J Biol Macromol 2021; 193:1371-1378. [PMID: 34757132 DOI: 10.1016/j.ijbiomac.2021.10.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022]
Abstract
Nonenyl succinic anhydride (NSA) modification could be an alternative to octenyl succinic anhydride (OSA) modification of starch to obtain a range of physicochemical and rheological properties and for emulsification applications. A series of NSA-modified quinoa starches in granular form with different degrees of substitution (DS) (0.0080, 0.0175, 0.0359, and 0.0548) were prepared. The NSA modifications reduced the gelatinization temperatures and frequency dependence of storage modulus (G'), while increasing the peak viscosity, gel hardness, and G'. The NSA-modified quinoa starches with medium DS were the most effective in stabilising Pickering emulsions. The droplet size of Pickering emulsions decreased first with increasing DS before increasing at the highest DS. Modified starch with a DS of 0.0359 had the highest emulsifying capacity. Apart from the commonly used octenyl succinic anhydride (OSA) modification, the NSA-modified starches could be potential candidates as efficient Pickering emulsion stabilizers.
Collapse
Affiliation(s)
- Guantian Li
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
45
|
Analysis of synthesis, accumulation and physicochemical properties of Tartary buckwheat starches affected by nitrogen fertilizer. Carbohydr Polym 2021; 273:118570. [PMID: 34560981 DOI: 10.1016/j.carbpol.2021.118570] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
Nitrogen fertilizer is a crucial factor affecting the growth and grain quality of Tartary buckwheat. This study was to investigate the synthesis, accumulation, and physicochemical properties of Tartary buckwheat starches under four nitrogen levels (0, 90, 180, 270 kg N ha-1). The results showed that activities of four key enzymes, starch contents all first increased and then decreased with increasing nitrogen levels, and peaked at 180 kg N ha-1. All the starches showed typical A-type, while higher nitrogen levels significantly increased the relative crystallinity. The viscosities significantly decreased, onset, peak, and conclusion first decreased and then increased, while pasting temperature and gelatinization enthalpy increased with increasing nitrogen levels. Nitrogen fertilizer and year had significant effects on the synthesis, accumulation and physicochemical properties of Tartary buckwheat starch, and the nitrogen level of 180 kg N ha-1 was more suitable for planting in the northern area of the Loess Plateau.
Collapse
|
46
|
Nadian N, Azizi MH, Abbastabar Ahangar H, Aarabi A. Textural and sensory characteristics of sugar-free biscuit formulated with quinoa flour, isomalt, and maltodextrin. Food Sci Nutr 2021; 9:6501-6512. [PMID: 34925781 PMCID: PMC8645751 DOI: 10.1002/fsn3.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 07/10/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
A low-calorie biscuit formulation containing quinoa flour (cultivars TTKK), isomalt, and maltodextrin was optimized using response surface methodology. Optimized samples were evaluated in terms of total phenolic compounds (TPC), sensory properties, and nutritional value while samples containing only wheat flour (Pishgam var.) and sucrose were used as control. Morphology of isolated starch from quinoa was also investigated. The results showed that with increasing amounts of quinoa, isomalt, and maltodextrin ΔE and Browning index increased, whereas hardness and L values decreased. The formulation containing 25% quinoa flour, 3.5% maltodextrin, and 10% isomalt was found to be optimal with an overall desirability value of 0.95. The sensory evaluation showed that replacement of wheat flour with 25 g/100 g quinoa flour in biscuits was acceptable. TPC of the optimal biscuit (1,180.34 ± 0.02 μg GAE/g) was higher than that of the control sample (729.95 ± 0.007 μg GAE/g). In addition, the optimized biscuit had more protein (8.36 ± 0.035%) and dietary fiber (2.14 ± 0.035%) content compared with the control sample (7.01 ± 0.007% and 1.66 ± 0.028%, respectively). The consumption of 100 g of optimized quinoa biscuits supplies the daily requirement of Fe, Mg, Ca, and Zn at 2.43%, 44.81%, 19.46% and 1.12%, respectively.
Collapse
Affiliation(s)
- Narges Nadian
- Department of Food science and TechnologyNajafabad BranchIslamic Azad UniversityNajafabadIran
| | - Mohammad Hossain Azizi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | | | - Aazam Aarabi
- Department of Food Science and TechnologyShahreza BranchIslamic Azad UniversityShahrezaIran
| |
Collapse
|
47
|
|
48
|
Narayanamoorthy S, Zhang C, Xu Z, Ma M, Sui Z, Li K, Corke H. Genetic Diversity and Inter‐Relationships of Common Bean (
Phaseolus vulgaris
L.) Starch Traits. STARCH-STARKE 2021. [DOI: 10.1002/star.202100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shwetha Narayanamoorthy
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Chuangchuang Zhang
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Zekun Xu
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Mengting Ma
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhongquan Sui
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Kehu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education) Collaborative Innovation Center for Mountain Ecology & Agro‐Bioengineering (CICMEAB) Institute of Agro‐Bioengineering College of Life Sciences Guizhou University Guiyang Guizhou Province 550025 China
| | - Harold Corke
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 China
- Biotechnology and Food Engineering Program Guangdong Technion‐Israel Institute of Technology Shantou 515063 China
- Faculty of Biotechnology and Food Engineering Technion‐Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
49
|
Velásquez-Barreto FF, Miñano HA, Alvarez-Ramirez J, Bello-Pérez L. Structural, functional, and chemical properties of small starch granules: Andean quinoa and kiwicha. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Effect of pearling on the physicochemical properties and antioxidant capacity of quinoa (Chenopodium quinoa Willd.) flour. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|