1
|
Tilwani YM, Wani BA, Jom M, Khumbha SB, Varsha P, Saini B, Karthik S, Arul V. Preparation and physicochemical characterization of different biocomposite films blended with bacterial exopolysaccharide EPS MC-5 and bacteriocin for food packaging applications. Int J Biol Macromol 2025; 297:139832. [PMID: 39814298 DOI: 10.1016/j.ijbiomac.2025.139832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The study aims to evaluate how bacteriocin and extracellular polymeric substances (EPS) can influence the development of active packaging for food. The components might enhance the performance of packaging materials in terms of their physicochemical properties and their effectiveness in preserving food. Bacteriocin and EPS exert a significant effect in blocking the transmission of UV and visible light radiations. The molecular stability among the different functional groups of the composite films was evaluated using FT-IR analysis. The MG5 film exhibited the lowest percentage of water solubility (11.27 %) and the highest antibacterial activity against L. monocytogenes and E. coli, with a zone of inhibition measured as 21.32 ± 0.76 and 18.81 ± 0.29 mm, respectively. The TGA results indicated a noteworthy level of thermal stability in the composite films. Specifically, the MG5 bacteriocin blended film exhibited an approved metal chelation activity and demonstrated superior antioxidant activity, as evidenced by enhanced DPPH and ABTS+ scavenging activities. The incorporation of bacteriocin enhanced the interactions among the film components, and surface roughness was greatly impacted as revealed by the FE-SEM analysis. MG5 film exhibited excellent biodegradability in the natural soil environment, according to a soil burial study. To sum up, MG5 films can be an effective food packaging material, particularly for fried or high-fat items that are prone to contamination from microorganisms.
Collapse
Affiliation(s)
- Younus Mohd Tilwani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Bilal Ahmad Wani
- Department of Environmental Science, Sri Pratap College, M.A. Road, Srinagar, Jammu and Kashmir 190001, India
| | - Magna Jom
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Shekar Babu Khumbha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Prabhakaran Varsha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Bharat Saini
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sundaram Karthik
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
2
|
Scarcella JV, Lopes MS, Silva EK, Andrade GSS. Valorization of okara by-product for obtaining soluble dietary fibers and their use in biodegradable carboxymethyl cellulose-based film. Int J Biol Macromol 2024; 280:136032. [PMID: 39332560 DOI: 10.1016/j.ijbiomac.2024.136032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
In the face of mounting environmental concerns and the need for sustainable innovation, the use of agro-industrial wastes as raw materials offers a promising pathway. In this context, this study investigated the okara, a by-product of soy processing, as a novel source of soluble dietary fiber for the enrichment of carboxymethyl cellulose (CMC) biodegradable films based on environmental benefits of waste reduction with the creation of renewable packaging alternatives. Okara soluble dietary fiber (OSDF)-enriched CMC film was compared with films made from traditional and innovative soluble dietary fibers, such as pectin, inulin, and β-glucan. OSDF was obtained through acid hydrolysis at 121 °C, achieving a yield of 5.31 % relative to its initial dry weight. All the produced films exhibited a maximum crystallinity of 5 %, as revealed by X-ray diffraction (XRD), indicative of their largely amorphous structure, while scanning electron microscopy (SEM) ensured their uniformity and flawlessness. The CMC film enriched with okara soluble dietary fiber exhibited key properties, such as thickness, water vapor permeability, and thermal stability, comparable to other soluble fibers studied. These characteristics are essential for effective packaging applications. A notable distinction of the OSDF-enriched film was its capacity to block UV light, offering protection for light-sensitive items. The solubility tests showed that okara and β-glucan contributed to films with a higher solubility percentage. Mechanical testing underscored the influence of fiber on tensile strength, with the film enriched with β-glucan outperforming others at 27.5 MPa. All films showed rapid biodegradation within one week, emphasizing their eco-friendliness and the study alignment with sustainable development objectives in packaging.
Collapse
Affiliation(s)
- Jose Vitor Scarcella
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Melina S Lopes
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| | - Grazielle S S Andrade
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| |
Collapse
|
3
|
Shi C, Jia L, Tao H, Hu W, Li C, Aziz T, Al-Asmari F, Sameeh MY, Cui H, Lin L. Fortification of cassava starch edible films with Litsea cubeba essential oil for chicken meat preservation. Int J Biol Macromol 2024; 276:133920. [PMID: 39029840 DOI: 10.1016/j.ijbiomac.2024.133920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Chicken meat is highly perishable and mainly preserved by plastic packaging materials, whereas their widely used have increased environmental burden and threatened human health. Bioactive packaging materials fabricated by biopolymers are promising alternatives for meat preservation. Herein, cassava starch (CS)/sodium carboxymethyl cellulose (CMC) edible films fortified with Litsea cubeba essential oil (LC-EO) were fabricated and characterized. Results showed the textural, mechanical and barrier properties of the CS/CMC edible films were significantly improved after incorporating with LC-EO. Moreover, the composite edible films exhibited potent antibacterial properties, biodegradability, hydrophobicity, and thermal stability. Whereas the water solubility and moisture content was reduced up to 29.68 % and 24.37 %, respectively. The release behavior of LC-EO suggested the suitability of the composite edible films for acidic foods. Comparing with the control group, the pH values of the meat samples packaged with CS/CMC/LCEO-4 mg/mL edible films maintained at around 6.7, and weight loss rate was 15 %. The color and texture changes, and the lipid oxidation of the meat samples with CS/CMC/LCEO-4 mg/mL packaging were also markedly delayed. The microbial growth was retarded at 6.35 log CFU/g after storage for 10 days. These findings suggested the CS/CMC/LCEO-4 mg/mL edible films had great potential for chicken meat preservation.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Clinical, Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China; Department of Clinical, Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.
| |
Collapse
|
4
|
Torres Vargas OL, Rodríguez Agredo IA, Galeano Loaiza YV. Effect of incorporating white pepper ( Piper nigrum L.) oleoresin on starch/alginate films. RSC Adv 2024; 14:15293-15301. [PMID: 38741955 PMCID: PMC11089458 DOI: 10.1039/d4ra00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The development of films based on natural components has demonstrated their potential for food preservation. In this research, the effect of the inclusion of white pepper oleoresin (WPO) in a film made from cassava starch and sodium alginate (FWPO) on the antimicrobial, physicochemical, mechanical, optical, and structural properties was evaluated. The films were formulated with different concentrations of WPO (0.0, 0.5, 1.0 and 1.5%). The results obtained indicated that the incorporation of WPO in the film increased the antioxidant activity against the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH), and an inhibitory effect against Escherichia coli and Staphylococcus aureus bacteria was also observed. Elongation at break (EB), water vapor permeability (WVP), moisture content, solubility, and luminosity (L*) decreased significantly (p < 0.05) with the addition of WPO. On the other hand, the tensile strength (TS), the value of b* (tendency toward yellow) and the opacity increased. Scanning electron microscopy (SEM) images showed a smooth, uniform appearance, and continuous dispersion between cassava starch, alginate and WPO. FTIR spectra showed the interactions between the film components. X-ray diffraction (XRD) patterns showed that the addition of WPO did not affect the structural stability of the films. The results obtained indicate the possible use of WPO in the packaging of food products, contributing to the improvement of food quality and safety.
Collapse
Affiliation(s)
- Olga Lucía Torres Vargas
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| | - Iván Andrés Rodríguez Agredo
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| | - Yessica Viviana Galeano Loaiza
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| |
Collapse
|
5
|
Li M, Yang Z, Zhai X, Li Z, Huang X, Shi J, Zou X, Lv G. Incorporation of Lactococcus lactis and Chia Mucilage for Improving the Physical and Biological Properties of Gelatin-Based Coating: Application for Strawberry Preservation. Foods 2024; 13:1102. [PMID: 38611406 PMCID: PMC11011328 DOI: 10.3390/foods13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, a gelatin/chia mucilage (GN/CM) composite coating material doped with Lactococcus lactis (LS) was developed for strawberry preservation applications. The results of the scanning electron microscope and Fourier transform infrared spectroscopy stated that the enhanced molecular interaction between the CM and GN matrix strengthened the density and compactness of the GN film. Antifungal results indicated that the addition of LS significantly (p < 0.05) improved the ability of the GN coating to inhibit the growth of Botrytis cinerea (inhibition percentage = 62.0 ± 4.6%). Adding CM significantly (p < 0.05) decreased the water vapour permeability and oxygen permeability of the GN coating by 32.7 ± 4.0% and 15.76 ± 1.89%, respectively. In addition, the incorporated CM also significantly (p < 0.05) improved the LS viability and elongation at break of the film by 13.11 ± 2.05% and 42.58 ± 1.21%, respectively. The GN/CM/LS composite coating material also exhibited an excellent washability. The results of this study indicated that the developed GN/CM/LS coating could be used as a novel active material for strawberry preservation.
Collapse
Affiliation(s)
- Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaobo Zou
- Institute of Future Food Technology, JITRI, Yixing 214200, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| |
Collapse
|
6
|
Abdulla SF, Shams R, Dash KK. Edible packaging as sustainable alternative to synthetic plastic: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32806-z. [PMID: 38462564 DOI: 10.1007/s11356-024-32806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The choice of an appropriate packaging materials enhances the shelf life and improves quality of food during transportation, storage, and distribution. Development and innovations in food packaging systems have become essential in the food industry. Most widely used packaging materials are non-biodegradable plastics and are harmful to environment and human health. Thus, food industry is replacing non-biodegradable plastics with biodegradable plastics to reduce environmental pollution, health hazards, and food waste. Edible packaging may reduce food waste and keep perishables fresh. This review article compares edible packaging materials to synthetic ones and discusses their pollution-reducing effects. The several types of food packaging discussed in the review include those produced from polysaccharides, proteins, lipids, and composite films. The various characteristics of edible packaging are reviewed, including its barrier qualities, carrier properties, mechanical capabilities, and edibility. The carrier properties describe the capacity to transport and manage the release of active substances, and the edibility indicates acceptance of these items by the customers. Plasticizers, antimicrobials, antioxidants, and emulsifiers were included in the edible packaging to enhance the characteristics of the film. The development and implementation of edible packaging on food products from the laboratory to large-scale industrial levels, as well as their potential industrial applications in the dairy, meat, confectionary, poultry, fish, fruit, and vegetable processing sectors are addressed.
Collapse
Affiliation(s)
- Subhan Farook Abdulla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| |
Collapse
|
7
|
Liu Y, Xia X, Li X, Wang F, Huang Y, Zhu B, Feng X, Wang Y. Design and characterization of edible chitooligosaccharide/fish skin gelatin nanofiber-based hydrogel with antibacterial and antioxidant characteristics. Int J Biol Macromol 2024; 262:130033. [PMID: 38342261 DOI: 10.1016/j.ijbiomac.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose. The behavior of conductivity, viscosity, and surface tension in the spinning solutions was analyzed to understand their variation patterns. Scanning electron microscopy (SEM) results revealed that the crosslinked COS/FSG nanofiber membranes possessed a uniform yet disordered fiber structure, with the diameter of the nanofibers increasing as the COS content increased. Remarkably, when the COS content reached 25 %, the COS/FSG nanofiber membranes (CF-C-25) exhibited a suitable fiber diameter of 437.16 ± 63.20 nm. Furthermore, the thermal crosslinking process involving glucose supplementation enhanced the hydrophobicity of CF-C-25. Upon hydration, the CF-H-25 hydrogel displayed a distinctive porous structure, exhibiting a remarkable swelling rate of 954 %. Notably, the inclusion of COS significantly augmented the antibacterial and antioxidant properties of the hydrogel-based nanofiber membranes. CF-H-25 demonstrated an impressive growth inhibition of 90.56 ± 5.91 % against E. coli, coupled with excellent antioxidant capabilities. In continuation, we performed a comprehensive analysis of the total colony count, pH, TVB-N, and TBA of crucian carp. The CF-H-25 hydrogel proved highly effective in extending the shelf life of crucian carp by 2-4 days, suggesting its potential application as an edible membrane for aquatic product packaging.
Collapse
Affiliation(s)
- Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Botian Zhu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xuyang Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China.
| |
Collapse
|
8
|
Martins VFR, Pintado ME, Morais RMSC, Morais AMMB. Recent Highlights in Sustainable Bio-Based Edible Films and Coatings for Fruit and Vegetable Applications. Foods 2024; 13:318. [PMID: 38275685 PMCID: PMC10814993 DOI: 10.3390/foods13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.
Collapse
Affiliation(s)
| | | | | | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
9
|
Chang S, Guo Q, Du G, Tang J, Liu B, Shao K, Zhao X. Probiotic-loaded edible films made from proteins, polysaccharides, and prebiotics as a quality factor for minimally processed fruits and vegetables: A review. Int J Biol Macromol 2023; 253:127226. [PMID: 37802455 DOI: 10.1016/j.ijbiomac.2023.127226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Minimally processed fruits and vegetables (MPFVs) are gaining popularity in households because of their freshness, convenience, and rapid consumption, all of which align with today's busy lifestyles. However, their exposure of large surface areas during peeling and slicing can result in contamination by foodborne pathogens and spoilage bacteria, posing potential food safety concerns. In addition, enzymatic browning of MPFVs can significantly reduce their consumer appeal. Therefore, it is necessary to adopt certain methods to protect MPFVs. Recent studies have shown that utilizing biopolymer-based edible films containing probiotics is a promising approach to preserving MPFVs. These active food packaging films exhibit barrier function, antioxidant function, and antimicrobial function while protecting the viability of probiotics, which is essential to maintain the nutritional value and quality of MPFVs. This paper reviews microbial contamination in MPFVs and the preparation of probiotic-loaded edible films with common polysaccharides (alginate, gellan gum, and starch), proteins (zein, gelatin, and whey protein isolate), prebiotics (oligofructose, inulin, and fructooligosaccharides). It also explores the potential application of probiotic-loaded biopolymer films/coatings on MPFVs, and finally examines the practical application requirements from a consumer perspective.
Collapse
Affiliation(s)
- Shuaidan Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Guo
- Henan Agr Univ, Coll Food Sci & Technol, Zhengzhou 450002, China
| | - Gengan Du
- Henan Univ Technol, Sch Food & Strateg Reserv, Zhengzhou 450001, China
| | - Jiayao Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, Indiana 47405, United States
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
10
|
Wang D, Du L, Sun Z, Liu F, Zhang D, Wang D. Characterisation, slow-release, and antibacterial properties of carboxymethyl chitosan/inulin hydrogel film loaded with novel antilisterial durancin GL. Carbohydr Polym 2023; 318:121143. [PMID: 37479449 DOI: 10.1016/j.carbpol.2023.121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
This paper reports the development of a hydrogel film with antibacterial activity and controlled release characteristics. Carboxymethyl chitosan (CMCS) is grafted onto durancin GL and inulin via a mediated reaction between N-hydroxysuccinimide and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. Rheology tests, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and lap shear tests confirmed the formation of a stable chemical cross-linking and excellent adhesion hydrogel with 4 % CMCS and 8 % inulin. The CMCS/inulin hydrogel film loaded with durancin GL appears transparent and uniform. FTIR spectroscopy results reveal the interaction mode among CMCS, inulin, durancin GL, and the hydrogel film structure. Cross-linking improved thermal stability and water-vapour barrier performance. The hydrophobicity of CMCS/inulin @Durancin GL increased under a durancin GL concentration of 0.036 g/30 mL, and the release of active substances is prolonged. In-vitro antibacterial capacity and salmon preservation experiments show that the addition of durancin GL enhanced the antibacterial activity of the hydrogel film. Therefore, CMCS/inulin@Durancin GL hydrogel films can be used as fresh-keeping packaging materials in practical applications.
Collapse
Affiliation(s)
- Debao Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
11
|
Parın FN, El-Ghazali S, Yeşilyurt A, Parın U, Ullah A, Khatri M, Kim IS. PVA/Inulin-Based Sustainable Films Reinforced with Pickering Emulsion of Niaouli Essential Oil for Potential Wound Healing Applications. Polymers (Basel) 2023; 15:1002. [PMID: 36850285 PMCID: PMC9966936 DOI: 10.3390/polym15041002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
In this study, sustainable water-based films were produced via the solvent-casting method. Petroleum-free-based polyvinyl alcohol (PVA) and carbohydrate-based inulin (INL) were used as matrices. Vegetable-waste pumpkin powder was used in the study because of its sustainability and antibacterial properties. Pickering emulsions were prepared using β-cyclodextrin. The influence of the different ratios of the β-cyclodextrin/niaouli essential oil (β-CD/NEO) inclusion complex (such as 1:1, 1:3, and 1:5) on the morphological (SEM), thermal (TGA), physical (FT-IR), wettability (contact angle), and mechanical (tensile test) characteristics of PVA/inulin films were investigated. Moreover, the antibacterial activities against the Gram (-) (Escherichia coli and Pseudomonas aeruginosa) and Gram (+) (Staphylococcus aureus) bacteria of the obtained films were studied. From the morphological analysis, good emulsion stability and porosity were obtained in the Pickering films with the highest oil content, while instability was observed in the Pickering films with the lowest concentration of oil content. Thermal and spectroscopic analysis indicated there was no significant difference between the Pickering emulsion films and neat films. With the addition of Pickering emulsions, the tensile stress values decreased from 7.3 ± 1.9 MPa to 3.3 ± 0.2. According to the antibacterial efficiency results, films containing pumpkin powder and Pickering emulsion films containing both pumpkin powder and a ratio of 1:1 (β-CD/NEO) did not have an antibacterial effect, while Pickering emulsion films with a ratio of (β-CD/NEO) 1:3 and 1:5 showed an antibacterial effect against Escherichia coli, with a zone diameter of 12 cm and 17 cm, respectively. Among the samples, the films with ratio of (β-CD/NEO) 1:5 had the highest antioxidant capacity, as assessed by DPPH radical scavenging at 12 h intervals. Further, none of the samples showed any cytotoxic effects the according to LDH and WST-1 cytotoxicity analysis for the NIH3T3 cell line. Ultimately, it is expected that these films are completely bio-based and may be potential candidates for use in wound healing applications.
Collapse
Affiliation(s)
- Fatma Nur Parın
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Sofia El-Ghazali
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan
| | - Ayşenur Yeşilyurt
- Central Research Laboratory, Bursa Technical University, Bursa 16310, Turkey
| | - Uğur Parın
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09100, Turkey
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan
| | - Muzamil Khatri
- Department of Chemistry and Materials, Shinshu University, Ueda 386-8567, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan
| |
Collapse
|
12
|
New Bioactive Edible Packing Systems: Synbiotic Edible Films/Coatings as Carries of Probiotics and Prebiotics. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Ghalehjooghi HD, Tajik H, Shahbazi Y. Development and characterization of active packaging nanofiber mats based on gelatin‑sodium alginate containing probiotic microorganisms to improve the shelf-life and safety quality of silver carp fillets. Int J Food Microbiol 2023; 384:109984. [DOI: 10.1016/j.ijfoodmicro.2022.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
14
|
Yang Z, Zhai X, Li M, Li Z, Shi J, Huang X, Zou X, Yan M, Qian W, Gong Y, Holmes M, Povey M, Xiao J. Saccharomyces cerevisiae-incorporated and sucrose-rich sodium alginate film: An effective antioxidant packaging film for longan preservation. Int J Biol Macromol 2022; 223:673-683. [PMID: 36368365 DOI: 10.1016/j.ijbiomac.2022.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/23/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
A sodium alginate (SA) film incorporated with Saccharomyces cerevisiae (SE) and sucrose (SU) was fabricated to control the quality and pericarp browning of longan. The SE with satisfactory glutathione production was selected as the antioxidant agent. The scanning electron microscopy (SEM) results revealed that the SU-rich SA film could be used as an effective carrier to protect the cell integrity of SE. The FTIR and mechanical property results indicated that the SA-SE film with the incorporation of SU has good flexibility due to the existence of hydrogen bonds. Notably, the cell viability of the SE was significantly improved with the addition of SU, which positively affects the antioxidant property of the film during the storage period. Finally, the SA-SE-3.0%SU films obviously improved the quality and pericarp browning of longan. The SA-based film incorporated with SU and SE may be established as a novel antioxidant fruit packaging material.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Ma Yan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wu Qian
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| |
Collapse
|
15
|
Characterization of synbiotic films based on carboxymethyl cellulose/β-glucan and development of a shelf life prediction model. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kalantarmahdavi M, Salari A, Pasdar Z, Amiryousefi M. Hyaluronic acid-rich burger separator edible disc prepared from slaughterhouse waste. Food Sci Nutr 2022; 10:3562-3573. [PMID: 36348787 PMCID: PMC9632220 DOI: 10.1002/fsn3.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, the edible films from chicken feet (CF), ovine muscle fascia (MF), and bovine bone gelatin (Gel) were prepared and their characteristics were analyzed, and we also evaluated the sensory quality of raw and cooked hamburgers using the edible films. The quantities of the CF and MF hyaluronic acid were evaluated using colorimetry and spectrophotometry. The CF, MF, and Gel films were prepared by solvent casting method. Results indicated that the concentration of hyaluronic acid in CF (124.11 ppm) was greater than MF (101.11 ppm). The antioxidative property of the CF film (18.47%) was greater than the Gel (1.88%) and MF (Undetectable) film. The CF film was more resistant to water vapor permeability (2.75 × 10-9 g/m.s.pa) than the MF (1.57 × 10-8 g/m.s.pa) and Gel (1.5 × 10-7 g/m.s.pa) films. The Gel film had more appropriate mechanical properties than CF and MF films. The films kept burgers patties independent from one another and prevented them from sticking and freezing together. MF and CF films were able to promote the organoleptic properties of raw and cooked hamburgers in taste and texture.
Collapse
Affiliation(s)
- Mahboubeh Kalantarmahdavi
- Department of Food Hygiene and AquacultureFaculty of Veterinary MedicineFerdowsi University of Mashhad (FUM)MashhadIran
| | - Amir Salari
- Department of Food Hygiene and AquacultureFaculty of Veterinary MedicineFerdowsi University of Mashhad (FUM)MashhadIran
| | - Zahra Pasdar
- School of medicine, medical science and nutritionUniversity of AberdeenAberdeenUK
| | | |
Collapse
|
17
|
V AK, M P, Srivastav PP, Mangaraj S, R P, Hasan M. Development of soy-based nanocomposite film: Modeling for barrier and mechanical properties and its application as cheese slice separator. J Texture Stud 2022; 53:809-819. [PMID: 34580884 DOI: 10.1111/jtxs.12636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
In the current study, soybean aqueous extract (SAE)-based nanocomposite film was developed by incorporating cellulose nanofiber (CNF) at various concentrations (0-10%). Effect of nanoreinforcement on essential properties of the nanocomposite film such as barrier, mechanical, water affinity, and optical properties were evaluated. Homogeneous films with improved barrier and mechanical properties were observed until 6% CNF, beyond which considerable reduction in desirable properties was noticed due to nanoparticle's agglomeration effect. Furthermore, the prediction of the mechanical and barrier properties of nanocomposite film was performed with mathematical models such as modified Halpin-Tsai and modified Nielsen equations, respectively. The model-fitting results reveal that the theoretically predicted values were in close agreement with the experimental values. Hence, these models were well suited for predicting respective properties. Model prediction also implies that the increase in the aspect ratio of fillers can considerably cause a reduction in water vapor permeability and improvement in mechanical properties. Suitability of developed film as cheese slice separator was evaluated: they had equivalent outcomes in terms of easiness in slice separation and wholeness of slices after separation compared to the commercial material.
Collapse
Affiliation(s)
- Ajesh Kumar V
- Centre of Excellence on Soybean Processing and Utilization, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Pravitha M
- Agro Produce Processing Division, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shukadev Mangaraj
- Centre of Excellence on Soybean Processing and Utilization, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Pandiselvam R
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute, Kasaragod, India
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
18
|
Kalantarmahdavi M, Salari A, Pasdar Z, Amiryousefi MR. Edible hyaluronic acid-rich burger separator discs prepared from slaughterhouse waste. Food Sci Nutr 2022; 10:3515-3526. [PMID: 36249976 PMCID: PMC9548350 DOI: 10.1002/fsn3.2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, edible films from chicken feet extract (CF), ovine muscle fascia extract (MF), and bovine bone gelatin powder (Gel) were prepared and their characteristics were analyzed. We also used the films as separators of burger cuts and evaluated the organoleptic characteristics of cooked burgers. Hyaluronic acid quantities of CF and MF were measured using colorimetric and spectrophotometry. Results indicated that the concentration of hyaluronic acid in CF (124.11 ppm) was greater than MF (101.11 ppm). The antioxidative property of the CF film (18.47%) was greater than the Gel (1.88%) and MF (Undetectable) films. The CF film was more resistant to water vapor permeability (2.75 × 10-9 g/m.s.pa) than the MF (1.57 × 10-8 g/m.s.pa) and Gel (1.5 × 10-7 g/m.s.pa) films. The Gel film had more appropriate mechanical properties than CF and MF films. The films kept burgers patties independent from one another and prevented them from sticking and freezing together. MF and CF films were able to promote the organoleptic properties of cooked burgers in taste and texture.
Collapse
Affiliation(s)
- Mahboubeh Kalantarmahdavi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of Mashhad (FUM)MashhadIran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of Mashhad (FUM)MashhadIran
| | - Zahra Pasdar
- School of Medicine, Medical Science and NutritionUniversity of AberdeenAberdeenUK
| | | |
Collapse
|
19
|
Seyedzade Hashemi S, Khorshidian N, Mohammadi M. An insight to potential application of synbiotic edible films and coatings in food products. Front Nutr 2022; 9:875368. [PMID: 35967779 PMCID: PMC9363822 DOI: 10.3389/fnut.2022.875368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Edible films and coatings have gained significant consideration in recent years due to their low cost and decreasing environmental pollution. Several bioactive compounds can be incorporated into films and coatings, including antioxidants, antimicrobials, flavoring agents, colors, probiotics and prebiotics. The addition of probiotics to edible films and coatings is an alternative approach for direct application in food matrices that enhances their stability and functional properties. Also, it has been noted that the influence of probiotics on the film properties was dependent on the composition, biopolymer structure, and intermolecular interactions. Recently, the incorporation of probiotics along with prebiotic compounds such as inulin, starch, fructooligosaccharide, polydextrose and wheat dextrin has emerged as new bioactive packaging. The simultaneous application of probiotics and prebiotics improved the viability of probiotic strains and elevated their colonization in the intestinal tract and provided health benefits to humans. Moreover, prebiotics created a uniform and compact structure by filling the spaces within the polymer matrix and increased opacity of edible films. The effects of prebiotics on mechanical and barrier properties of edible films was dependent on the nature of prebiotic compounds. This review aims to discuss the concept of edible films and coatings, synbiotic, recent research on synbiotic edible films and coatings as well as their application in food products.
Collapse
Affiliation(s)
- Sahar Seyedzade Hashemi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Chen J, Zheng M, Tan KB, Lin J, Chen M, Zhu Y. Polyvinyl alcohol/xanthan gum composite film with excellent food packaging, storage and biodegradation capability as potential environmentally-friendly alternative to commercial plastic bag. Int J Biol Macromol 2022; 212:402-411. [PMID: 35613676 DOI: 10.1016/j.ijbiomac.2022.05.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023]
Abstract
Polyvinyl alcohol (PVA)-xanthan gum (XG) composite films with good degradation properties were prepared by casting method. The effects of XG amount on thickness, moisture content, water solubility, water vapor transmission (WVP), transmittance and mechanical properties of the composite film were investigated. All composite films produced uniform and transparent films and Fourier transform infrared (FT-IR) spectroscopy, as well as X-ray diffraction (XRD) had proven the formation of hydrogen bonds and subsequently compatibility of the two polymers. In general, addition of XG in PVA was able to decrease moisture content, water solubility and WVP more than the pure PVA films, with sample PX30 demonstrated the best performance. This sample also had the best mechanical properties. It also demonstrated food packaging and capability better than that of commercial plastic bag. More importantly, our sample can be fully decomposed in soil and water within 12 h, which was not only significantly shorter than commercial plastic bag, but also other biodegradable materials. Therefore, PVA/XG-based food packaging material has demonstrated huge potential to be commercialized and replaces commercial plastic bag as an alternative packing material which is renewable, sustainable and environmentally friendly.
Collapse
Affiliation(s)
- Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, PR China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Kok Bing Tan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, Xiamen 361021, PR China.
| | - Junyan Lin
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, PR China
| | - Meichun Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China.
| |
Collapse
|
21
|
Liu Y, Wang R, Wang D, Sun Z, Liu F, Zhang D, Wang D. Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Optimisation and characterisation of prebiotic concentration of edible films containing Bifidobacterium animalis subsp. lactis BB-12® and its application to block type processed cheese. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Physicochemical, antibacterial, and biodegradability properties of green Sichuan pepper (Zanthoxylum armatum DC.) essential oil incorporated starch films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight. J Colloid Interface Sci 2022; 612:525-535. [PMID: 35016016 DOI: 10.1016/j.jcis.2021.12.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS The emulsifying ability of starch is influenced by its molecular weight. Reducing the molecular weight of starch is expected to influence interfacial adsorption and membrane elasticities, thereby affecting its emulsifying ability through Pickering effects. Hence, it should be possible to tailor the emulsifying ability of starch by adjusting its molecular weight. EXPERIMENTS Waxy corn starch (CS) and rice starch (RS) were hydrolyzed with pullulanase to obtain high (HM) and low molecular weight (LM) fractions. After the molecular weight was determined by size exclusion chromatography, the fractions were used to prepare model oil-in-water emulsions. The stability, microscopy, and particle size of the emulsions were characterized, and the underlying emulsification mechanism was subsequently studied through dynamic laser scattering, surface tension analysis, interfacial rheology, and Pearson's correlation calculations. FINDINGS In the molecular weight range obtained in this study, the smaller the molecular weight of starch, the stronger its emulsifying ability. The decrease in molecular weight resulted in considerable different adsorption and interfacial elasticities with smaller fractions occupying less area on the interface and forming interfaces with higher elasticities, resulting in higher stabilities through Pickering effects. Results thus suggest that the emulsifying ability of starch may be tailored by adjusting its molecular weight.
Collapse
|
25
|
Sanchez LT, Pinzon MI, Villa CC. Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chem 2022; 371:131121. [PMID: 34555709 DOI: 10.1016/j.foodchem.2021.131121] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 11/04/2022]
Abstract
Active packaging that can be used to release active molecules food products during storage has been a central part in food science research over the last decades. This paper presents the development of an active film made from banana starch incorporated with curcumin-loaded orange oil nanoemulsion. Results showed that inclusion of the curcumin-loaded nanoemulsions reduced water vapor permeability, given the hydrophobic nature of curcumin. Likewise, elongation at break was also increased due to the plasticizing effect of the nanoemulsion. Finally, this paper reports the release profiles of curcumin from the active film into different food simulants. Results showed that curcumin release is diffusion driven in both aqueous and non-aqueous food simulants, however it seems that while the complete nanoemulsion droplets are released in the aqueous simulant, in non-aqueous simulant only curcumin molecules are released.
Collapse
Affiliation(s)
- Leidy T Sanchez
- Programa de Ingenieria de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia
| | - Magda I Pinzon
- Programa de Ingenieria de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia
| | - Cristian C Villa
- Programa de Quimica, Facultad de Ciencias Basicas y Tecnologias, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia.
| |
Collapse
|
26
|
Sáez-Orviz S, Marcet I, Rendueles M, Díaz M. Preparation of Edible Films with Lactobacillus plantarum and Lactobionic Acid Produced by Sweet Whey Fermentation. MEMBRANES 2022; 12:membranes12020115. [PMID: 35207037 PMCID: PMC8875862 DOI: 10.3390/membranes12020115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
Cheese whey, one of the most abundant by-products of the dairy industry, causes economic losses and pollution problems. In this study, deproteinised sweet whey was fermented by Pseudomonas taetrolens LMG 2336 to produce a prebiotic compound (lactobionic acid, LBA). Endotoxins produced by these microorganisms were successfully removed using microfiltration techniques, allowing the fermented whey permeate to be used in the food industry. The fermented whey permeate was used to develop prebiotic edible films by adding two different concentrations of gelatine (0.45 and 0.9 g gelatine g−1 LBA; LBA45 and LBA90). Furthermore, Lactobacillus plantarum CECT 9567 was added as a probiotic microorganism (LP45 and LP90), creating films containing both a prebiotic and a probiotic. The mechanical properties, water solubility, light transmittance, colour, and microstructure of the films were fully characterised. Additionally, the LBA and probiotic concentration in LP45 and LP90 were monitored under storage conditions. The strength and water solubility of the films were affected by the presence of LBA, and though all these films were homogeneous, they were slightly opaque. In LP45 and LP90, the presence of LBA as a prebiotic improved the viability of L. plantarum during cold storage, compared to the control. Therefore, these films could be used in the food industry to coat different foodstuffs to obtain functional products.
Collapse
|
27
|
Zong X, Zhang X, Bi K, Zhou Y, Zhang M, Qi J, Xu X, Mei L, Xiong G, Fu M. Novel emulsion film based on gelatin/polydextrose/camellia oil incorporated with Lactobacillus pentosus: Physical, structural, and antibacterial properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Abdillah AA, Charles AL. Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging. Int J Biol Macromol 2021; 191:618-626. [PMID: 34582908 DOI: 10.1016/j.ijbiomac.2021.09.141] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Future food packaging trends are shifting to natural and eco-friendly materials developed from biopolymers such as starch and other hydrocolloids, to reduce pollution from synthetic polymers. Arrowroot starch (AS) (3.5, 3, 2.5, and 2%) and iota-carrageenan (IC) (0.5, 1, 1.5, and 2%) were blended to develop biodegradable edible films (AS/IC-BEF), which were compared against AS-BEF (4%, control). All films were characterized based on their physico-mechanical and barrier properties, functional group properties, crystallinity properties, thermal properties, and soil and seawater biodegradation. AS-BEF exhibited smooth surface, high transparency, and completed composting soil biodegradation in 7 days whereas AS/IC-BEF samples exhibited higher tensile strength, water solubility, swelling properties, and barrier properties, but completed biodegradation after 30 days. XRD analysis indicated IC fractions contributed to increase in degree of crystallinity (28.35°) and FTIR signaled strong hydrogen bond interactions between polymers. AS/IC-BEF samples demonstrated melting temperatures between 158 and 190 °C while glass transition temperatures ranged from 153 to 176 °C, which resulted in maximum weight loss around 50-55% at melting temperatures. Finally, AS/IC-BEF samples successfully inhibited weight loss of cherry tomatoes at room temperature and extended their shelf life to 10 days, which indicated that the AS/IC composite material produced a BEF with potential food and industrial applications.
Collapse
Affiliation(s)
- Annur Ahadi Abdillah
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu 91201, Pingtung, Taiwan; Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu 91201, Pingtung, Taiwan; Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
29
|
Bioactive packaging based on delipidated egg yolk protein edible films with lactobionic acid and Lactobacillus plantarum CECT 9567: Characterization and use as coating in a food model. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Current Advances on the Development and Application of Probiotic-Loaded Edible Films and Coatings for the Bioprotection of Fresh and Minimally Processed Fruit and Vegetables. Foods 2021; 10:foods10092207. [PMID: 34574315 PMCID: PMC8470204 DOI: 10.3390/foods10092207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
The application of probiotics has emerged as an innovative bioprotection technology to preserve fresh and minimally processed fruit and vegetables. This review discusses the most recent advances on the development and application of probiotic-loaded edible films/coatings as a strategy to preserve fresh or minimally processed fruit and vegetables. Available studies have shown a variety of materials, including hydrocolloids (polysaccharides and proteins) and lipids, used alone or in combination to formulate edible films/coatings loaded with probiotics. Plasticizers and surfactants are usually required to formulate these edible films/coatings. The reported antimicrobial effects of probiotic-loaded edible films/coating and quality parameters of coated fruit and vegetables could vary according to the characteristics of the materials used in their formulation, loaded probiotic strain and its dose. The antimicrobial effects of these films/coatings could be linked to the action of various metabolites produced by embedded probiotic cells with inhibitory effects on microorganisms contaminating fruit and vegetable surfaces. The implication of the use of probiotic-loaded edible films/coatings should be their antimicrobial effects against pathogenic and spoilage microorganisms and efficacy to control the ripening of fruit and vegetables, helping the coated products to maintain their safety, quality, nutritional and functional characteristics for a more prolonged storage period.
Collapse
|
31
|
Paulo AFS, Baú TR, Ida EI, Shirai MA. Edible coatings and films with incorporation of prebiotics -A review. Food Res Int 2021; 148:110629. [PMID: 34507773 DOI: 10.1016/j.foodres.2021.110629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Prebiotics are compounds naturally present in some foods or can be synthesized by microorganisms and enzymes. Among the benefits associated with prebiotic consumption are the modulation of the intestinal microbiota that increase the production of short chain fatty acids and prevent the development of some disorders such as colon cancer, irritable bowel syndrome, diabetes, obesity, among others. Traditionally, prebiotics have been used in diverse food formulations to enhance their healthy potential or to improve their technological and sensory properties. However, different alternatives for the production of prebiotic products are being explored, such as edible coatings and films. Therefore, this review aims to highlight recent research on edible coatings and films incorporated with different prebiotics, the concept of prebiotics, the general characteristics of these materials, and the main production methods, as well as presenting the perspectives of uses in the food industry. Current works describe that polyols and oligosaccharides are the most employed prebiotics, and depending on their structure and concentration, they can also act as film plasticizer or reinforcement agent. The use of prebiotic in the coating can also improve probiotic bacteria survival making it possible to obtain fruits and vegetables with synbiotic properties. The most common method of production is casting, suggesting that other technologies such as extrusion can be explored aiming industrial scale. The use of film and coating carried of prebiotic is an emerging technology and there are still several possibilities for study to enable its use in the food industry. This review will be useful to detect the current situation, identify problems, verify new features, future trends and support new investigations and investments.
Collapse
Affiliation(s)
- Ana Flávia Sampaio Paulo
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, SC, Brazil
| | - Elza Iouko Ida
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Marianne Ayumi Shirai
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil.
| |
Collapse
|
32
|
Kalantarmahdavi M, Khanzadi S, Salari A. Edible Films Incorporating with
Lactobacillus plantarum
Based on Sourdough, Wheat Flour, and Gelatin: Films Characterization and Cell Viability During Storage and Simulated Gastrointestinal Condition. STARCH-STARKE 2021. [DOI: 10.1002/star.202000268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahboubeh Kalantarmahdavi
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| |
Collapse
|
33
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Sani IK, Geshlaghi SP, Pirsa S, Asdagh A. Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106719] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Kayode BI, Kayode RM, Salami KO, Obilana AO, George TT, Dudu OE, Adebo OA, Njobeh PB, Diarra SS, Oyeyinka SA. Morphology and physicochemical properties of starch isolated from frozen cassava root. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Amin U, Khan MU, Majeed Y, Rebezov M, Khayrullin M, Bobkova E, Shariati MA, Chung IM, Thiruvengadam M. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int J Biol Macromol 2021; 183:2184-2198. [PMID: 34062159 DOI: 10.1016/j.ijbiomac.2021.05.182] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Bio-based packaging materials are gaining importance due to their biodegradability, sustainability and environmental friendliness. To control the food quality and improve the food safety standards, proteins polysaccharide and lipid-based packaging films are enriched with bioactive and functional substances. However, poor permeability and mechanical characteristics are the challenging areas in their commercialization. Scientists and researchers are using a combination of techniques i.e. hydrogels, crosslinking, etc. to improve the intermolecular forces between different components of the film formulation to counter these challenges More recently, biodegradable packaging materials, sometimes edible, are also used for the delivery of functional ingredients which reveals their potential for drug delivery to counter the nutrient deficiency problems. This study highlights the potentials of bio-based materials i.e. proteins, polysaccharides, lipids, etc. to develop biodegradable packaging materials. It also explores the additives used to improve the physicochemical and mechanical properties of biodegradable packaging materials. Furthermore, it highlights the novel trends in biodegradable packaging from a food safety and quality point of view.
Collapse
Affiliation(s)
- Usman Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Yaqoob Majeed
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow 119991, Russian Federation
| | - Mars Khayrullin
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Elena Bobkova
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Ill Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
37
|
Khedri S, Sadeghi E, Rouhi M, Delshadian Z, Mortazavian AM, de Toledo Guimarães J, fallah M, Mohammadi R. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Shi Y, Li X, Huang A. Multivariate analysis approach for assessing coated dry-cured ham flavor quality during long-term storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:651-659. [PMID: 33568859 PMCID: PMC7847921 DOI: 10.1007/s13197-020-04579-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to investigate the effect of coatings on the quality of ripened dry-cured hams during long-term storage, especially the profile of volatile compounds. The coatings were made up of 33% palm oil, 16.5% water, 39.7% cassava starch, 6.8% corn starch, 1.6% mono- and diglycerides of fatty acids, 0.6% tert-butylhydroquinone (TBHQ), and 1.8% sodium carbonate. The results showed that the moisture content of the coated ham (48.93-49.59%) was higher than that of the noncoated ham (44.37%). The average peroxide value (POV) and b* value were lower in the coated hams than in the noncoated hams (5.52 and 8.99 meq/kg, respectively), and the sensory attributes of the coated hams had better overall acceptability scores. The changes in the contents of 39 volatile flavor compounds were evaluated through a multivariate statistical analysis, revealing that 20 identified compounds could be related to the decrease in fat pungent aroma, and most belonged to the long-chain benzene and carboxylic acid family. Meanwhile, 2-nonanone, nonanal, amyl alcohol, and 2-heptanone indicated that they could be used as markers to distinguish between the coated and noncoated groups.
Collapse
Affiliation(s)
- Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan People’s Republic of China
| | - Xiang Li
- Yunnan Dong Heng Economic and Trade Group Co., Ltd., Qujing, 655000 Yunnan People’s Republic of China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan People’s Republic of China
| |
Collapse
|
39
|
Fabrication and characterization of probiotic Lactobacillus plantarum loaded sodium alginate edible films. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00619-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Wang B, Yu B, Yuan C, Guo L, Liu P, Gao W, Li D, Cui B, Abd El-Aty AM. An overview on plasticized biodegradable corn starch-based films: the physicochemical properties and gelatinization process. Crit Rev Food Sci Nutr 2021; 62:2569-2579. [PMID: 33401939 DOI: 10.1080/10408398.2020.1868971] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With increasing awareness of environmental protection, petroleum-based raw materials are continuously decreasing, which in turn necessitated the development of eco-friendly sustainable biomaterials, as alternative strategy. Starch could be an ideal substitute. Corn starch has been used as a renewable material for development of biodegradable packaging, owing to great varieties, low cost, large-scale industrial production, and good films forming properties. Unfortunately, its poor mechanical and barrier properties have limited the application of starch-based films. Thence, plasticizers were added to overcome the aforementioned pitfalls and improve the films elongation, distribution, flexibility, elasticity, and rigidity. Addition of plasticizers can change the continuity and therefore would enhance the properties of corn starch-based films. While plasticization can improve the tensile strength and percent elongation, it can reduce the water resistance in prepared films. Herein, we focused on changes of starch granules during gelatinization process, types of biodegradable films, as well as the types of modified starch with plasticizers. Furthermore, the influence of plasticizers on corn starch-based films and the physicochemical properties of various types of corn starch-based films were also addressed.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,Department of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,Department of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dapeng Li
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
41
|
de Lima Barizão C, Crepaldi MI, Junior ODOS, de Oliveira AC, Martins AF, Garcia PS, Bonafé EG. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int J Biol Macromol 2020; 165:582-590. [DOI: 10.1016/j.ijbiomac.2020.09.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
|
42
|
Li S, Ma Y, Ji T, Sameen DE, Ahmed S, Qin W, Dai J, Li S, Liu Y. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr Polym 2020; 248:116805. [DOI: 10.1016/j.carbpol.2020.116805] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
|
43
|
Castellino M, Renna M, Leoni B, Calasso M, Difonzo G, Santamaria P, Gambacorta G, Caponio F, De Angelis M, Paradiso VM. Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Cortés-Rodríguez M, Villegas-Yépez C, Gil González JH, Rodríguez PE, Ortega-Toro R. Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon 2020; 6:e04884. [PMID: 32984596 PMCID: PMC7492850 DOI: 10.1016/j.heliyon.2020.e04884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/20/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
Films and edible coatings based on biopolymers have been developed as a packaging, which can be obtained from biodegradable materials and have properties similar to common plastics. These edible materials have many applications in the food industry, preventing mass transfer between the product and the surrounding environment. The objective of this study was to develop and evaluate the physicochemical and mechanical properties of edible films based on cassava starch (CS), whey protein (WP), and beeswax (BW). Response surface methodology has been used and the experiments were carried out based on face-centred composite design. On the other hand, three CS-based controls were formulated to evaluate the effect of the inclusion of WP and BW. The optimization of multiple responses established the optimal formulation: CS (3.17 %), WP (1.30 %), BW (0.50 %), presenting the following response variables: tensile stress (1.92 MPa), elongation (40.4 %), Young's modulus (42.1 MPa), water vapor permeability 1.79 × 10-11 (g mm/s cm2 Pa), swelling capacity (300.3 %), thickness (0.128 mm), moisture content (6.74 %), and colour: lightness (89.9), chromaticity a∗ (-1.8), chromaticity b∗ (7.7), saturation (9.9), tone (101.1°), and yellowness index (17.7). The selection and evaluation of this optimal formulation are essential because it is the material that shows the best possible mechanical and physicochemical properties using the studied components. The results, especially its good mechanical properties and low permeability to water vapour, would allow its application as a coating for fruits, vegetables, among others, effectively delaying its weight loss due to dehydration.
Collapse
Affiliation(s)
- Misael Cortés-Rodríguez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
- Corresponding author.
| | - Camilo Villegas-Yépez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
| | - Jesús H. Gil González
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
| | | | - Rodrigo Ortega-Toro
- Universidad de Cartagena, Programa de Ingeniería de Alimentos, Food Packaging and Shelf Life Research Group (FP&SL), Research Group in Complex Fluids Engineering and Food Rheology (IFCRA), Avenida del Consulado Calle 30 No. 48 – 152, Cartagena de Indias D.T. y C., Colombia
| |
Collapse
|
45
|
Lan W, Zhang R, Ji T, Sameen DE, Ahmed S, Qin W, Dai J, He L, Liu Y. Improving nisin production by encapsulated Lactococcus lactis with starch/carboxymethyl cellulose edible films. Carbohydr Polym 2020; 251:117062. [PMID: 33142614 DOI: 10.1016/j.carbpol.2020.117062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
In this study, Lactococcus lactis was embedded in a film of corn starch (NS) and carboxymethyl cellulose (CMC) prepared using a casting method. At a CMC:NS ratio of 5:5, the composite film had the best comprehensive properties. Scanning electron microscopy images clearly showed that L. lactis was effectively embedded. The film with 1.5 % L. lactis showed the best performance and the lowest water vapor transmission rate (5.54 × 10-11 g/m s Pa. In addition, the edible film retained a viable count of 5.64 log CFU/g of L. lactis when stored at 4 °C for 30 days. The composite film with 1.5 % L. lactis showed the highest release of nisin (3.35 mg/mL) and good antibacterial activity against Staphylococcus aureus (53.53 %) after 8 days. Therefore, this edible film is a viable alternative antimicrobial strategy for the active packaging of foods containing low moisture content.
Collapse
Affiliation(s)
- Wenting Lan
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Tengteng Ji
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China; California Nano Systems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
46
|
Influence of Replacement Part of Starch with Inulin on the Rheological Properties of Pastes and Gels Based on Potato Starch. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:7642041. [PMID: 32908861 PMCID: PMC7474758 DOI: 10.1155/2020/7642041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
The objective of the present study was to determine the influence of replacement part of starch with inulin on the rheological characteristics of pastes and gels obtained on the basis of potato starch. Replacement of the starch by inulin varied from 0 to 40%. Flow curves for pastes and gels were determined, and the viscoelastic properties were characterized using dynamic tests and creep and recovery tests. It was determined that the replacement of part of potato starch with inulin significantly modifies rheological properties of starch pastes and gels, weakening their structure. With the increasing amount of inulin, an increase of viscous properties was becoming more apparent. Moreover, an irregular influence of inulin addition on the parameters of rheological characteristics was determined. Initially, the differences were minor, and the differences at the lowest addition were typically statistically insignificant, followed by strong increase with local restrictions to structural weakening.
Collapse
|
47
|
Oliveira-Alcântara AV, Abreu AAS, Gonçalves C, Fuciños P, Cerqueira MA, Gama FM, Pastrana LM, Rodrigues S, Azeredo HM. Bacterial cellulose/cashew gum films as probiotic carriers. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Ballesteros-Mártinez L, Pérez-Cervera C, Andrade-Pizarro R. Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS JOURNAL 2020. [DOI: 10.1016/j.nfs.2020.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Hellebois T, Tsevdou M, Soukoulis C. Functionalizing and bio-preserving processed food products via probiotic and synbiotic edible films and coatings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:161-221. [PMID: 32892833 DOI: 10.1016/bs.afnr.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Edible films and coatings constitute an appealing concept of innovative, cost-effective, sustainable and eco-friendly packaging solution for food industry applications. Edible packaging needs to comply with several technological pre-requisites such as mechanical durability, low permeability to water vapor and gases, good optical properties, low susceptibility to chemical or microbiological alterations and neutral sensory profile. Over the past few years, functionalization of edible films and coatings via the inclusion of bioactive compounds (antioxidants, micronutrients, antimicrobials, natural coloring and pigmentation agents) and beneficial living microorganisms has received much attention. As for living microorganisms, probiotic bacterial cells, primarily belonging to the Lactobacilli or Bifidobacteria genera, have been exploited to impart bespoke health and biopreservation benefits to processed food. Given that the health benefit conferring and biopreservation potential of probiotics is dependent on several extrinsic and intrinsic parameters, the development of probiotic and synbiotic edible packaging concepts is a quite challenging task. In the present chapter, we aimed at a timely overview of the technological advances in the field of probiotic, symbiotic and synbiotic edible films and coatings. The individual or combined effects of intrinsic (matrix composition and physical state, pH, dissolved oxygen, water activity, presence of growth stimulants or inhibitors) and extrinsic (film forming method, food processing, storage time and conditions, exposure to gastrointestinal conditions) factors on maintaining the biological activity of probiotic cells were addressed. Moreover, the impact of living cells inclusion on the mechanical, physicochemical and barrier properties of the edible packaging material as well as on the shelf-life and quality of the coated or wrapped food products, were duly discussed.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg; Université de Lorraine, LIBio, Nancy, France
| | - Maria Tsevdou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|