1
|
Yang Y, Zhang W, Ai B, Zheng L, Zheng X, Xiao D, Sheng Z, Yang J, Wang S. Passion fruit peel-derived low-methoxyl pectin: De-esterification methods and application as a fat substitute in set yogurt. Carbohydr Polym 2025; 347:122664. [PMID: 39486923 DOI: 10.1016/j.carbpol.2024.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
Passion fruit pectin, originally high methoxyl pectin, undergoes substantial conversion into low methoxyl pectin (LMP) through de-esterification. This de-esterification is significance for reducing the application of sugar in food, as calcium ions can replace excessive sugar during gel formation. In this study, LMPs derived from passion fruit pectin were prepared using four methods: low-temperature alkali, room temperature alkali, enzymatic, and dielectric barrier discharge plasma (DBD)-assisted enzyme (DBDE). The de-esterification conditions were optimized, leading to the selection of LMPs with a degree of esterification for the analysis of molecular weight, monosaccharide composition, and gel properties. The results revealed significant differences in the structure and properties of LMPs depending on the de-esterification method applied. The galacturonic acid content of LMPs significantly increased, with LMP from DBDE (LMP-DBDE) exhibiting the highest increase at 47.81 %. Additionally, the molecular weights of LMPs significantly decreased, with LMP-DBDE showing the smallest decrease. LMP-DBDE demonstrated higher apparent viscosity, thermal stability, and gel properties, facilitating the formation of gels. After 21 days of storage, 0.40 % LMP-DBDE yogurt showed no whey separation, significantly extending its shelf life. Therefore, LMP-DBDE exhibits potential as a fat substitute, combining the advantages of LMP with enhanced water-holding capacity, and presenting promising applications in low-fat dairy products.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Wenxing Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zhanwu Sheng
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jinsong Yang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Shenwan Wang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
3
|
Mobasserfar R, Shiri A, Mofid V, Noghabi MS, Gharibzahedi SMT. Grape pomace high-methoxyl pectin: A new prebiotic stabilizer for low-fat synbiotic yogurt gels - Optimization and characterization. Int J Biol Macromol 2024:137139. [PMID: 39488312 DOI: 10.1016/j.ijbiomac.2024.137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
High-methoxyl pectin (HMP, 72.5 % esterification degree and galacturonic acid content of 67.9 %) was extracted from grape pomace using a sequential ultrasound-microwave extraction. The extracted HMP was used to develop low-fat synbiotic set yogurts containing probiotic cells. Higher grape pomace pectin (GPP) concentrations (0.5-2 %) increased the probiotic bacterial population of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12. Higher cell viability was observed for L. acidophilus LA-5 compared to B. bifidum BB-12. A response surface optimization showed that the presence of 8.08 Log CFU mL-1L. acidophilus LA-5 and 1.88 % HMP experimentally resulted in the best probiotic viability (10.83 ± 0.11 Log CFU mL-1), overall acceptability (8.03 ± 0.06), and pH (4.25 ± 0.05) values. Compared to pectin-free probiotic yogurts, the optimal yogurt gels presented higher probiotic survivability, lower syneresis, and superior storage-dependent sensory attributes during 21 days of storage. However, a 14-day storage period was generally deemed suitable. The GPP-containing yogurt compared to the pectin-free sample exhibited higher colloidal stability with a larger particle size (433.8 nm vs. 272.5 nm) and lower zeta potential (-20.4 mV vs. -10.6 mV). Field emission-scanning electron (FE-SEM) and fluorescent (FLM) microscopy images confirmed a denser microstructure for GPP-enriched yogurts. The chemical interactions in the yogurt were not affected by enriching with GPP as investigated by FTIR, whereas the steady and dynamic rheological properties were significantly improved. GPP-enriched yogurt had a firmer gel structure with a larger linear region and lower G' compared to the control, indicating a semi-solid state. The GPP as a multi-functional prebiotic ingredient would be promising in designing healthier food products.
Collapse
Affiliation(s)
- Reza Mobasserfar
- Department of Grape Processing and Preservation, Research Institute of Grapes and Raisin, Malayer University, Malayer, Iran
| | - Azam Shiri
- Department of Grape Processing and Preservation, Research Institute of Grapes and Raisin, Malayer University, Malayer, Iran.
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition Science & Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Shahidi Noghabi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
4
|
Li L, Zhao B, Feng Z, Wang D, Yuan T, Song G, Kim SA, Gong J. Role and influence mechanism of different concentration of hyaluronic acid on physicochemical and organoleptic properties of yogurt. J Dairy Sci 2024:S0022-0302(24)01229-3. [PMID: 39414018 DOI: 10.3168/jds.2024-25687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Hyaluronic acid (HA) has been approved to be added to milk and other dairy products, it has highly water-binding ability which can combine with a large number of water molecules through intramolecular hydrogen bonding to form high viscous gels. In addition, HA is one of the prebiotics, can provide health benefits like anti-aging, anti-inflammatory, angiogenic, is a potential additive for enhancing the quality of yogurt. Therefore, the aim of this study was to evaluate the effect of 0%, 0.02%, 0.05%, 0.1%, 0.25% and 0.5% HA on rheological properties, functional properties, thermal stability, protein stability, protein structure and protein fractions of yogurt. The addition of HA, storage modulus (G') is always larger than loss modulus (G'') in all the samples, which is a typical characteristic of gel networks, and the microstructures of the yogurt samples showed a continuous and more homogeneous spatial network structure. Overall, the higher concentration (0.5%) had positive effect on the yogurt characteristics, like higher WHC, foam stability, microstructure, and texture. In contrast, the 0.1% concentration HA lead to a very abnormal results, it had a negative effect on yogurt including water-holding capacity, texture, and protein stability, suggesting structural destabilization and disruption of inter-aggregation before protein. These findings provide a valuable fundamental data for commercialized HA adding yogurt development and quality control processes.
Collapse
Affiliation(s)
- Ling Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Beibei Zhao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ziyun Feng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Gongshuai Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jinyan Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
5
|
Ladda K, Navale J, Gharibzahedi SMT, Krishania M, Bangar SP, Khubber S. Efficacy of almond gum for coacervation with whey protein isolate- optimization, functionality and characterization: A comparison with high-methoxyl pectin. Int J Biol Macromol 2024; 274:133292. [PMID: 38914392 DOI: 10.1016/j.ijbiomac.2024.133292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Complex coacervates of whey protein isolate (WPI) and two polysaccharides (almond gum (AG) and high methoxyl pectin (HMP)) under the different pHs (2.5-6.0) and biopolymer mass ratios (1:1-6:1) were prepared to achieve the maximum coacervate yield (CY). The optimum pH and mixing ratio to obtain the maximum CY of WPI-AG (75.93 %) and WPI-HMP (53.0 %) coacervates were 4.3 and 2:1, and 3.5 and 3:1, respectively. Although higher serum layers in emulsions stabilized by WPI-AG/HMP coacervates were detected at the 90 °C, remarkable heat stability under processing temperatures was obtained in ex-situ emulsions with both complex coacervates. Significantly more cold-storage and ionic stabilities were observed for emulsions formulated with WPI-AG than WPI-HMP. Peak shifts in FTIR spectra in the WPI-AG coacervate compared to the individual WPI and AG biopolymers revealed strong electrostatic interactions between these biopolymers. The absence of crystalline peaks for AG and HMP in X-ray diffraction (XRD) spectra confirmed the complexation of AG and HMP with WPI. Thermogravimetric and microstructural analyses showed that porous, loose mesh-like WPI-AG coacervates had superior thermal stability and structural integrity compared to WPI-HMP coacervates and individual biopolymers, which evidenced a more gradual weight loss pattern. WPI-AG coacervates would be promising for efficient emulsion-based delivery systems.
Collapse
Affiliation(s)
- Kshitij Ladda
- Food Science and Technology, School of Biotechnology and Bioinformatics, DY Patil University, CBD Belapur, Sec-15, Navi Mumbai-400614, India
| | - Jagruti Navale
- Food Science and Technology, School of Biotechnology and Bioinformatics, DY Patil University, CBD Belapur, Sec-15, Navi Mumbai-400614, India
| | - Seyed Mohammed Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali-140206, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson 29634, USA
| | - Sucheta Khubber
- Food Science and Technology, School of Biotechnology and Bioinformatics, DY Patil University, CBD Belapur, Sec-15, Navi Mumbai-400614, India.
| |
Collapse
|
6
|
Wu J, Jiang D, Wei O, Xiong J, Dai T, Chang Z, Niu Y, Jia C, Zou C, Jin M, Huang J, Gao H. Optimizing Skim Milk Yogurt Properties: Combined Impact of Trans-glutaminase and Protein-Glutaminase. J Dairy Sci 2024:S0022-0302(24)01000-2. [PMID: 39004137 DOI: 10.3168/jds.2024-24916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
The lack of fat in yogurt can lead to alterations in taste and whey separation, reducing consumer acceptance. In this study, the feasibility of enhancing the quality of skim milk yogurt through a combination of transglutaminase (TG) and protein-glutaminase (PG) was investigated. The combination of TG and PG resulted in simultaneous cross-linking and deamidated of casein micelles, with PG deamidation taking priority over TG cross-linking, leading to higher solubility and lower turbidity of milk proteins compared with TG alone. When 0.06 U/mL TG and 0.03 U/mL PG were added, firmness and viscosity indexes significantly increased by 38.26 and 78.59%, respectively as compared with the control. Microscopic images revealed increased cross-linking with casein and filling of cavities by smaller sub-micelles in the combination of TG and PG treatment. Furthermore, the combination of TG and PG resolved issues of rough taste and whey separation, leading to improved overall liking. This study highlights the benefits of using both enzymes in dairy production and has important implication for future research.
Collapse
Affiliation(s)
- Jiajing Wu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Deming Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ouyang Wei
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Junjie Xiong
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Tian Dai
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhongyi Chang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yanning Niu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Caifeng Jia
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Chunjing Zou
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mingfei Jin
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jing Huang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Hongliang Gao
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
7
|
You M, Peng Z, Jiang Y, Yao C, Yang B, Ban Q, Cheng J. The properties of the rice resistant starch processing and its application in skimmed yogurt. Int J Biol Macromol 2024; 265:131087. [PMID: 38521311 DOI: 10.1016/j.ijbiomac.2024.131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Extrusion is typically employed to prepare resistant starch (RS). However, the process is complicated. In this study, the effects of twin-screw extrusion on the crystallinity, thermal properties, and functional properties of starch formed in different extrusion zones were investigated. The effects of this process on the rheological properties and microstructure of RS-added skimmed yogurt were also studied. According to the results, the RS content increased from 7.40 % in the raw material to 33.79 % in the extrudate. The A-type crystal structure of the starch was not observed. The dissociation temperature of the extruded starch ranged from 87.76 °C to 100.94 °C. The glycemic index (GI) of skimmed yogurt fortified with 0.4 % RS was 48.7, and the viscosity was also improved. The microstructure exhibited a uniform network of the starch-protein structure. The findings may serve as a theoretical basis for the application of RS in the food industry.
Collapse
Affiliation(s)
- Meiyue You
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Peng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chiyu Yao
- Heilongjiang Yihua Rice Industry Company Limited, Jiamusi 156300, China
| | - Baocai Yang
- Heilongjiang Yihua Rice Industry Company Limited, Jiamusi 156300, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining 272007, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Ahmed SA, Helmy WA, Ibrahim OA. Evaluation of lupine seeds (Lupinus albus L.) neutral extract as a texture improver in low-fat yogurt production. Int J Biol Macromol 2024; 263:130303. [PMID: 38382785 DOI: 10.1016/j.ijbiomac.2024.130303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Aqueous lupine seeds (Lupinus albus L.) extracts were evaluated as a natural fat substitute in low-fat yogurt production. Thus, the chemical composition, particle size, molecular weight, total phenolic (TPC), and total flavonoids (TFC) of the selected extract were estimated. Also, the antimicrobial activity and antioxidant capacity of selected extract were investigated. Yogurt with neutral lupine extract (NeLP) had the highest all sensorial attributes compared to other extracts. Also, the incorporation of NeLP during low-fat yogurt processing increased the solid content, and viscosity, as well as improved the textural profile and sensorial attributes without any negative effect on the yogurt's color. SEM micrographs of NeLP-yogurt microstructure showed a matrix characterized by large fused casein micelles clusters with comparatively lower porosity compared to control yogurt (without NeLP). The chemical composition of NeLP indicated that the major sugar constituents are glucose and galactose with different molar fractions. The molecular weight of NeLP is 460.5 kDa with a particle size of 1519.9 nm. Also, IC50 of NeLP is 0.589 mg/ml, while TPC and TFC are 7.17, and 0.0137 g/100 g sample, respectively. Hence, lupine neutral extract (0.25%) could be used as a fat replacer or texture improver ingredient in such low-fat yogurt which led to improved its characteristics without any negative defect during 7 days at 5 °C.
Collapse
Affiliation(s)
- Samia A Ahmed
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt.
| | - Wafaa A Helmy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Osama A Ibrahim
- Dairy Science Department, Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
Zhang K, Liu S, Tang H, Evivie SE, Guo Z, Li B. Effect of exopolysaccharides yield and addition concentration of Lactobacillus helveticus on the processing characteristics of fermented milk and its mechanism. Int J Biol Macromol 2024; 260:129480. [PMID: 38237823 DOI: 10.1016/j.ijbiomac.2024.129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Exopolysaccharides (EPS) yield and added concentration of lactic acid bacteria can greatly affect the processing characteristics of fermented milk. In order to investigate the effects and mechanisms of EPS yield and added concentration on fermented milk, researchers extracted EPS from 50 strains of Lactobacillus helvedicus (L. helvedicus) and selected the two strains with the largest difference in EPS yield (L. helvedicus LH18 and L. helvetigus LH33) for subsequent experiments. The physicochemical properties of EPS-LH18 and EPS-LH33 were analyzed. The gel characteristics and protein conformation of fermented milk were studied by means of texture analyzer, rheometer, scanning electron microscopy, nuclear magnetic resonance machine, fluorescence spectrophotometer and circular dichroism. The results indicate that the monosaccharide compositions of EPS-LH18 and EPS-LH33 are the same and have good thermal stability. The texture and rheological properties of L. helveticus LH18 fermented milk are significantly superior to other fermented milk. The reason is that L. helveticus LH18 EPS has the highest yield, which leads to a denser gel structure, lower surface hydrophobicity and free sulfhydryl content of its fermented milk. According to circular dichroism analysis, β- sheet and random coil are the internal factors leading to the difference in fermented milk gel. In addition, the fermented milk improved even more favorably as the concentration of the two EPS additions increased. As described above, L. helveticus LH18 has the potential to be an excellent yogurt starter, and both of the above EPS can be used as probiotic stabilizer alternatives for fermented dairy products.
Collapse
Affiliation(s)
- Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sibo Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Tang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Smith Etareri Evivie
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Zengwang Guo
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Wu J, Dai T, Lin R, Niu J, Li Z, Chang Z, Jia C, Zou C, Jiang D, Jin M, Huang J, Gao H. Effect of protein-glutaminase on the texture, rheology, microstructure and sensory properties of skimmed set-type yoghurt. Food Chem 2023; 429:136831. [PMID: 37480778 DOI: 10.1016/j.foodchem.2023.136831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
The effects of enzymatic deamidation by protein-glutaminase (PG) on the texture, rheology, microstructure, and sensory properties of skimmed set-type yoghurt were studied. The proportion of small-particle size milk protein micelles (10-50 nm) increased significantly from 0 to 99.39% after PG deamidation. Cryo-SEM results revealed that PG-treated yoghurt had a denser and less open 3D structure. PG was effective at inhibiting post-acidification during storage at 4 ℃. The water holding capacity of PG-treated yoghurt (0.12 U·mL-1) increased by more than 15%. The fluidity and viscosity of yoghurt were significantly improved with increasing PG dose. Sensory evaluation revealed that PG (0.06 U·mL-1) significantly improved the smoothness and creaminess of skimmed set-type yoghurt, which corresponded to the pastiness in texture. In summary, PG can effectively address the problems of post-acidification, gel fracture, and flavors change in skimmed set-type yoghurt, providing new applications for PG in the food industry.
Collapse
Affiliation(s)
- Jiajing Wu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Tian Dai
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Rongyu Lin
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jinjin Niu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhen Li
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhongyi Chang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Caifeng Jia
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Chunjing Zou
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Deming Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mingfei Jin
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jing Huang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Hongliang Gao
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
11
|
Riyamol, Gada Chengaiyan J, Rana SS, Ahmad F, Haque S, Capanoglu E. Recent Advances in the Extraction of Pectin from Various Sources and Industrial Applications. ACS OMEGA 2023; 8:46309-46324. [PMID: 38107881 PMCID: PMC10723649 DOI: 10.1021/acsomega.3c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
Pectin is a structural polysaccharide present in plants that primarily consists of galacturonic acid units. This Review discusses the chemistry of pectin, including its composition and molecular weight. Pectin is conventionally extracted from agricultural waste (fruit and vegetable peels) using an acidic or basic aqueous medium at high temperatures. These processes are time- and energy-consuming and also result in severe environmental problems due to the production of acidic effluents and equipment corrosion. As pectin usage is increasing in food industries for developing different products and it is also used as an excipient in pharmaceutical products, better extraction procedures are required to maximize the yield and purity. The Review encompasses various alternate green approaches for the extraction of pectin, including traditional acid extraction and various emerging technologies such as deep eutectic solvent-based extraction, enzyme-assisted extraction, subcritical fluid extraction, ultrasound-assisted extraction, and microwave-based extraction, and evaluates the yield and physicochemical characteristics of the extracted pectin. This work aims to provide a platform for attracting more thorough research focused on the engineering of novel and more efficient green methods for the extraction of pectin and its utilization for various biotechnological purposes.
Collapse
Affiliation(s)
- Riyamol
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Jeevitha Gada Chengaiyan
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sandeep Singh Rana
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Faraz Ahmad
- Department
of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jizan 45142, Saudi Arabia
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
12
|
Rathod G, Beckman S, Amamcharla JK. Production and functional evaluation of nonfat dry milk with whey proteins as fibrils. J Dairy Sci 2023; 106:8479-8492. [PMID: 37641309 DOI: 10.3168/jds.2023-23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/28/2023] [Indexed: 08/31/2023]
Abstract
Commercial manufacturing of dairy products involves the addition of dairy ingredients (such as nonfat dry milk and milk protein concentrates), as well as nondairy additives (such as gums, stabilizers, emulsifiers, and texture modifiers) to get the best product appearance, maintain the product quality, and extend shelf life. Though these nondairy additives are not harmful, consumers do not prefer them in dairy food formulations. Therefore, the dairy industry is working on improving the inherent functionality of dairy ingredients using different processes. Recently, fibrillation emerged as a new technique to convert globular proteins such as whey proteins into fibrils, which provide enhanced viscosity, foaming, and emulsification capacity. Therefore, skim milk was subjected to microfiltration followed by ultrafiltration of microfiltration permeate to fractionate whey proteins. Then, whey proteins were selectively fibrillated and mixed back with other streams of microfiltration and ultrafiltration to get fibrillated skim milk. Fibrillated skim milk was spray-dried to get fibrillated nonfat dry milk (NDM). Visible whey protein fibrils were observed in reconstituted fibrillated NDM, which showed survival of fibrils in fibrillated NDM. Fibrillated NDM showed significantly higher viscosity than control NDM. Fibrillated NDM also showed higher emulsification capacity, foaming capacity, and stability than the control NDM but lower gel strength. Considering the improved functionality of fibrillated NDM, they can be used in product formulations such as ice cream mix, where the thickening of a solution, good emulsification, and foaming properties are required.
Collapse
Affiliation(s)
- Gunvantsinh Rathod
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506
| | - Steven Beckman
- Department of Dairy and Food Science, Davis Dairy Plant, South Dakota State University, Brookings, SD 57007
| | - J K Amamcharla
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506.
| |
Collapse
|
13
|
Vathsala V, Saurabh V, Kumar Choupdar G, Upadhyay N, Pal Singh S, Dutta A, Kaur C. Black garlic particles as a natural pigment and emulsifier in a Pickering emulsion based low fat innovative mayonnaise: Improved rheology and bioactivity. Food Res Int 2023; 173:113484. [PMID: 37803804 DOI: 10.1016/j.foodres.2023.113484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Black garlic is rich in brown pigments and Maillard reaction products are known for antioxidant activity and health promoting effects. In the present investigation, we report a facile strategy for fabricating low-fat innovative mayonnaise (IM) using black garlic particles (BGP) as a natural pigment, and a functional ingredient. Whey protein concentrate and high methoxyl pectin at optimized concentrations were utilized for fabricating an IM which served as a control. IM5 and IM10 were ternary composites constituting whey protein, high methoxyl pectin along with BGP (@5 and 10% respectively). The formulation IM10 (BGP @10%) showed high firmness and low spreadability quotient, hence IM5 was taken forward for fabrication for two more variants namely IM-J (using low methoxyl pectin (LMP) from jackfruit peels) and IM-C (LMP from citrus). The effect of BGP and LMP on the functional quality of IM was confirmed through zeta potential, antioxidant activity, textural, rheological, and microscopic evaluation. Fluorescence microscopy confirmed the presence of solid particles over the fat phase of IM, while interaction of pectin and whey proteins was demonstrated through fluorescence emission spectroscopy which clearly displayed stabilization of IM through the formation of Pickering emulsion. Pronounced difference in color and flavor score with BGP established high sensory scores in IM5, IM-J, and IM-C. Rheology supported the stabilizing effects of LMP in IM-J and IM-C in terms of speedy recovery of thixotropy, with recovering storage modulus (G'). Enhanced viscosity of IM-C and IM-J further corroborated the dual effect of LMP and BGP in improving emulsifying and functional quality of IM. Enhanced oxidative stability of IM was established by reduced peroxide and Totox values. Overall our results suggest the promising applications of black garlic as functional ingredient in protein and pectin based Pickering emulsions.
Collapse
Affiliation(s)
- V Vathsala
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ganesh Kumar Choupdar
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Neelam Upadhyay
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
14
|
Bankole AO, Irondi EA, Awoyale W, Ajani EO. Application of natural and modified additives in yogurt formulation: types, production, and rheological and nutraceutical benefits. Front Nutr 2023; 10:1257439. [PMID: 38024362 PMCID: PMC10646222 DOI: 10.3389/fnut.2023.1257439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Yogurt, a popular fermented dairy product, is of different types and known for its nutritional and nutraceutical benefits. However, incorporating additives into yogurt has been adopted to improve its functionality and nutraceutical properties. Additives incorporated in yogurt may be natural or modified. The incorporation of diverse natural additives in yogurt formulation, such as moringa, date palm, grape seeds and argel leaf extracts, cornelian cherry paste, mulberry fruit and leaf powder, lentil flour, different types of fibers, lemongrass and spearmint essential oils, and honey, has been reported. Similarly, modified additives, such as β-glucan, pectin, inulin, sodium alginate, and gelatin, are also added to enhance the physicochemical, textural, sensory, and rheological properties of yogurt. Although additives are traditionally added for their technological impact on the yogurt, studies have shown that they influence the nutritional and nutraceutical properties of yogurt, when added. Hence, yogurts enriched with functional additives, especially natural additives, have been reported to possess an improved nutritional quality and impart several health benefits to consumers. These benefits include reducing the risk of cardiovascular disease, cancer, osteoporosis, oxidative stress, and hyperglycemia. This current review highlights the common types of yogurt, the production process, and the rheological and nutraceutical benefits of incorporating natural and modified additives into yogurt.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | |
Collapse
|
15
|
Sharma S, Singh RK. Effect of atmospheric cold plasma treatment on acid gelation properties of skim milk: Rheology and textural studies. Food Res Int 2023; 172:113212. [PMID: 37689955 DOI: 10.1016/j.foodres.2023.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Cold plasma processing is a non-thermal food processing technique that has been shown to improve the gelling properties of plant proteins by altering their structure through oxidation and crosslinking. This study aimed to investigate the effects of cold plasma treatment on the rheological properties of skim milk under different conditions, focusing on the impact of feed gas and treatment time on skim milk's sulfhydryl content, flow properties, and acid gelling behavior. Results showed that free sulfhydryl content decreased with treatment time, with a notable reduction observed after 2 min of N2-O2 plasma treatment. Skim milk treated with N2 plasma experienced a more gradual decrease in free SH content. Cold plasma increased skim milk viscosity over time. N2-O2 plasma treatment significantly affected G'40 and G'4 storage moduli, with an increase observed after 2 min of exposure but no change beyond that time. Acid gels' greenness (a* value) decreased with increasing treatment time compared to the control. Acid gel firmness of milk treated with N2-O2 plasma for 1 min significantly increased from 1.804 N to 1.912 N, and further to 2.072 N after 2 min of treatment. However, longer exposure times led to lower firmness in gels. N2 plasma treatment also significantly impacted acid gel firmness. Syneresis in acid gels decreased from 63.4 % to 57.7 % and 58.7 % after 1 and 2 min of N2-O2 plasma treatment, respectively, but increased to about 70 % after 4 min. Acid gels made from milk treated with N2 plasma experienced considerably less syneresis. The cold plasma treatment under different conditions significantly affected the properties of skim milk, with various impacts on sulfhydryl content, flow properties, and acid gelling behavior. These findings demonstrate the potential applications of cold plasma processing in the food industry to improve product properties.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Rakesh K Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Wang L, Zhang F, Zheng B, Zhang Y, Pan L. Stability and flavor of set yogurt fortified with Tremella fuciformis polysaccharide during cold storage. Curr Res Food Sci 2023; 7:100536. [PMID: 37389155 PMCID: PMC10300073 DOI: 10.1016/j.crfs.2023.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Tremella fuciformis is an edible and medicinal fungus containing excellent nutritional value. T. fuciformis polysaccharide (TFP) is the important bioactive ingredients of T. fuciformis, which has gained great attention. The aim of this study was to investigate the effect of TFP on the stability and flavor of set yogurt. Our results revealed that the addition of 0.1% TFP had a positive effect on improving the stability of set yogurt including the water holding capacity, texture, rheological properties and microstructure at the cold storage period of 1, 7, 14 and 21 days. It is remarkable that the hardness, gumminess and chewiness of the set yogurt were significantly improved by the addition of TFP during the cold storage. Moreover, the set yogurt containing TFP was able to maintain better stability in the three intervals thixotropy test. In particular, the addition of 0.1% TFP had no adverse effects on the flavor of set yogurt, including sourness, sweetness, umami, bitterness, richness and saltiness. These data suggested that TFP can be used as a natural potential stabilizer for the set yogurt.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fan Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350002, China
| |
Collapse
|
17
|
Sharma P, Osama K, Varjani S, Farooqui A, Younis K. Microwave-assisted valorization and characterization of Citrus limetta peel waste into pectin as a perspective food additive. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1284-1293. [PMID: 36936113 PMCID: PMC10020386 DOI: 10.1007/s13197-023-05672-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Machine learning techniques were employed to evaluate the effect of process parameters viz. microwave power (100 W, 300 W, 600 W); pH (1, 1.5, 2); and microwave time (the 60 s, 120 s, 180 s) on the pectin yield from Citrus limetta peel. A fourth-order polynomial function of 66.60 scales was used by the Support Vector Regression (SVR) model at an epsilon (ε) value of 0.003. The co-efficient of determination (R2) and root mean square error-values for training data and test data were 0.984; 0.77 and 0.993; 0.66 respectively. At optimized conditions, microwave power 600 W, pH 1, and time 180 s the best yield of 32.75% was obtained. The integrity of pectin skeletal was confirmed with FTIR and 1H NMR spectrums. The physicochemical analysis revealed that CLP is a high-methoxyl pectin (HMP) with a 63.20 ± 0.88% degree of esterification, 798.45 ± 26.15 equivalent weight, 8.06 ± 0.62% methoxyl content, 67.93 ± 3.36 AUA content, 6.27 ± 0.27 g water/g pectin WHC, 2.68 ± 0.20 g oil/g pectin OHC, low moisture, ash and protein content of 6.85 ± 0.10%, 3.87 ± 0.10% and 2.61 ± 0.06% respectively, which can be utilized as a food additive. Therefore, pectin extraction from Citrus limetta peel using a greener technique like MAE is an eco-friendly, time-saving approach to transform waste into a versatile food additive.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, 226026 India
| | - Khwaja Osama
- Department of Bioengineering, Integral University, Lucknow, 226026 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010 India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, 226026 India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow, 226026 India
| |
Collapse
|
18
|
Incorporation of modified okara-derived insoluble soybean fiber into set-type yogurt: Structural architecture, rheological properties and moisture stability. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
20
|
Soy-based yogurt-alternatives enriched with brewers’ spent grain flour and protein hydrolysates: Microstructural evaluation and physico-chemical properties during the storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
21
|
Gomes ER, Barroso dos Anjos Pinto C, Stephani R, Fernandes de Carvalho A, Perrone ÍT. Effect of adding different types of soluble fibre to high-protein yoghurts on water holding capacity, particle size distribution, apparent viscosity, and microstructure. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Zhang Z, Yang Y, Huang X, Jin Z, Jiao A. Stabilization of a collagen peptide-cranberry juice by three functional polysaccharides with different charge characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Sözeri-Atik D, Öztürk Hİ, Akın N, Özer B. Textural and rheological characterisation of yoghurts produced with cultures isolated from traditional back-slopped yoghurts. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Facile construction of fruit protein based natural hydrogel via intra/inter molecular cross-linking. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Impact of Apple Pomace Powder on the Bioactivity, and the Sensory and Textural Characteristics of Yogurt. Foods 2022; 11:foods11223565. [PMID: 36429157 PMCID: PMC9689545 DOI: 10.3390/foods11223565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This study focused on the development of a yogurt with an improved structure, texture and antioxidant activity level, by using apple pomace (AP) powder that was obtained in large quantities during the production of juices. The objective was to determine the sensory, physicochemical, textural and antioxidant characteristics of yogurt with the addition of AP powder (0.2-1.0%), during its shelf life. The physicochemical composition of AP was determined as follows: dietary fibers-62.73%, including pectin-23.12%; and the content of the antioxidant compounds in AP-total polyphenols (728.8 mg GAE/100 g DW), flavonoids (246.5 mg QE/100 g DW), tannins (63.54 mg TAE/100 g DW), carotenoids (4.93 mg/100 g DW) and the ability to inhibit the free radical (2433 µmol TE/100 g DW). AP addition reduces the yogurt fermentation time. The increase in the total dietary fiber content of up to 0.63% and in the insoluble fiber of up to 0.14% was attested in this study, as well as a significant increase in antioxidant activity, which correlated to the AP content. The addition of AP improved the textural properties of the yogurt during storage (20 days) and led to a significant reduction in syneresis. The influence of the AP content and the storage period on the textural characteristics and the overall acceptability of the yogurt samples were analyzed by the mutual information method. The AP content greatly influenced the yogurt's quality, with the information analysis value for the overall acceptability being 0.965 bits. The analysis of the sensory and textural parameters of the yogurt during storage (1-20 days) demonstrated that samples with AP in proportions of 0.6-0.8% were evaluated with the highest score.
Collapse
|
26
|
Naibaho J, Jonuzi E, Butula N, Korzeniowska M, Föste M, Sinamo KN, Chodaczek G, Yang B. Fortification of milk-based yogurt with protein hydrolysates from brewers' spent grain: Evaluation on microstructural properties, lactic acid bacteria profile, lactic acid forming capability and its physical behavior. Curr Res Food Sci 2022; 5:1955-1964. [PMID: 36312882 PMCID: PMC9596745 DOI: 10.1016/j.crfs.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Current study aimed to evaluate the utilization of protein from brewers' spent grain (BSGP) on microstructural formation as well as rheological behavior, acidity and lactic acid bacteria (LAB) profile during the refrigerated storage. Three different BSGPs were provided including BSGP-C (extracted without enzymatic hydrolysis), BSGP-P (with protease), and BSGP-PF (with protease co-incubated with flavourzyme). The results demonstrated that BSGPs improved lactic acid forming capability in yogurt production to a higher level than milk-protein based enrichment. BSGPs improved the growth and survival of lactic acid bacteria (LAB), particularly BSGP-P in improving the survival rate of L. bulgaricus. Confocal laser scanning microscopy showed that BSGP-P generated a denser, softer and more homogenous surface appearance as well as showed the tendency to form more compact networks; had a weaker initial gel forming, increased and preserved the consistency of the yogurt during the storage. In conclusion, BSGPs in yogurt improved and preserved the textural properties, consistency, acidity and lactic acid bacteria. Protease-extracted preserve the flow behavior of yogurt Protease-extracted soften the microstructural surface of the matrices BSG protein-rich extracts improve the survival of lactic acid bacteria
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, State University of Tetova, 1200, Tetovo, Macedonia
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Maike Föste
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Karina Nola Sinamo
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sumatera Utara, 20155, Medan, Indonesia
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
27
|
Li PW, Ma J, Wei XF, Zhang ZY, Wang RM, Xiao J, Wang JQ. Modification and application of highly active alkaline pectin lyase. AMB Express 2022; 12:130. [PMID: 36210372 PMCID: PMC9548460 DOI: 10.1186/s13568-022-01472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Alkaline pectate lyase has developmental prospects in the textile, pulp, paper, and food industries. In this study, we selected BacPelA, the pectin lyase with the highest expression activity from Bacillus clausii, modified and expressed in Escherichia coli BL21(DE3). Through fragment replacement, the catalytic activity of the enzyme was significantly improved. The optimum pH and temperature of the modified pectin lyase (PGLA-rep4) were 11.0 and 70 °C, respectively. It also exhibited a superior ability to cleave methylated pectin. The enzyme activity of PGLA-rep4, measured at 235 nm with 0.2% apple pectin as the substrate, was 554.0 U/mL, and the specific enzyme activity after purification using a nickel column was 822.9 U/mg. After approximately 20 ns of molecular dynamics simulation, the structure of the pectin lyase PGLA-rep4 tended to be stable. The root mean square fluctuation (RMSF) values at the key catalytically active site, LYS168, were higher than those of the wildtype PGLA. In addition, PGLA-rep4 was relatively stable in the presence of metal ions. PGLA-rep4 has good enzymatic properties and activities and maintains a high pH and temperature. This study provides a successful strategy for enhancing the catalytic activity of PGLA-rep4, making it the ultimate candidate for degumming and various uses in the pulp, paper, and textile industries.
Collapse
|
28
|
Zheng S, He Z, He L, Li C, Tao H, Wang X, Zeng X. Influence of adding Perilla seed oil on potato blueberry yogurt quality during storage at 4 °C. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Wang J, Munk MB, Skibsted LH, Ahrné LM. Impact of pectin and whey minerals solubilized by lime juice on calcium bioaccessibility in yogurt based snacks. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022; 11:2683. [PMID: 36076865 PMCID: PMC9455162 DOI: 10.3390/foods11172683] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Pectin is a heterogeneous hydrocolloid present in the primary cell wall and middle lamella in all dicotyledonous plants, more commonly in the outer fruit coat or peel as compared to the inner matrix. Presently, citrus fruits and apple fruits are the main sources for commercial extraction of pectin, but ongoing research on pectin extraction from alternate fruit sources and fruit wastes from processing industries will be of great help in waste product reduction and enhancing the production of pectin. Pectin shows multifunctional applications including in the food industry, the health and pharmaceutical sector, and in packaging regimes. Pectin is commonly utilized in the food industry as an additive in foods such as jams, jellies, low calorie foods, stabilizing acidified milk products, thickener and emulsifier. Pectin is widely used in the pharmaceutical industry for the preparation of medicines that reduce blood cholesterol level and cure gastrointestinal disorders, as well as in cancer treatment. Pectin also finds use in numerous other industries, such as in the preparation of edible films and coatings, paper substitutes and foams. Due to these varied uses of pectin in different applications, there is a great necessity to explore other non-conventional sources or modify existing sources to obtain pectin with desired quality attributes to some extent by rational modifications of pectin with chemical and enzymatic treatments.
Collapse
Affiliation(s)
- Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Devina Vaidya
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Verma
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Gupta
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| |
Collapse
|
31
|
Xu M, Pan L, Zhou Z, Han Y. Structural characterization of levan synthesized by a recombinant levansucrase and its application as yogurt stabilizers. Carbohydr Polym 2022; 291:119519. [DOI: 10.1016/j.carbpol.2022.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
|
32
|
Popoola-Akinola OO, Raji TJ, Olawoye B. Lignocellulose, dietary fibre, inulin and their potential application in food. Heliyon 2022; 8:e10459. [PMID: 36090233 PMCID: PMC9449745 DOI: 10.1016/j.heliyon.2022.e10459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/09/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years, due to food insecurity, lignocellulose, dietary fibre as well as inulin have received wider attention owing to their abundance and being relatively low-cost indigestible polysaccharides. Since the recognition, acceptance of the consumption and utilization of these polysaccharides, as well as their attraction in science and industry has grown tremendously. There have been further researches carried out to ascertain the fact that people who consume or utilize these polysaccharides have low exposure to some fatal life-threatening illnesses. Rich sources of indigestible polysaccharides such as vegetables, cereals, fruits and nuts are beneficial to good health as consuming them reduce the occurrence of degenerating diseases such as colon cancer, heart disease, diabetes, etc. Despite these increasing facts depicting their advantages in the state of human health, their intake and utilization still fall below the acceptable limit and the knowledge of how they work in the human body are minimal with their explicit actions not easily shown. Hence, this review gives a better understanding of the significance of lignocellulose, dietary fibre and inulin, their functions, classifications, types and applications in the food industry, thereby exposing their various uses as these polycarbohydrates were considered a waste before now.
Collapse
|
33
|
Lin Y, Xu Q, Li X, Shao P. Tremella fuciformis polysaccharides as a fat substitute on the rheological, texture and sensory attributes of low-fat yogurt. Curr Res Food Sci 2022; 5:1061-1070. [PMID: 35783666 PMCID: PMC9241049 DOI: 10.1016/j.crfs.2022.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The potential of Tremella fuciformis polysaccharides (TFPS) as a fat substitute in low-fat yogurt was evaluated in this study. The effects of adding different concentrations of TFPS solution on the physical and chemical properties, texture, rheology, microstructure and sensory properties of low-fat yogurt were evaluated. Compared with control, the addition of TFPS not only increased the solid content and water holding capacity of yogurt, but also reduced syneresis losses in low-fat yogurt. In fact, the addition of TFPS did not affect the color of yogurt but had a positive effect on the texture and sensory of yogurt. In terms of rheology, all low-yogurt samples exhibited rheological to the weak gel-like structures (G' > G″), and the storage modulus and loss modulus of the yogurt added with TFPS were higher than those of the low-fat yogurt control group. Compared with the low-fat yogurt control group, yogurt added TFPS makes the cross-linking of polysaccharides and casein more compact. In conclusion, TFPS has potential as a fat substitute in dairy products. TFPS with Medicine Food Homology can be used as a fat substitute for low-fat yogurt. TFPS significantly improved the physical and chemical properties of low-fat yogurt. 0.025% TFPS in low-fat yoghurt was most acceptable in the sensory score. Polysaccharide-protein interactions enhanced protein network structure. TFPS improved overall organoleptic quality of low-fat yogurt.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Qiaolian Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangdong, 510070, PR China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
- Corresponding author.
| |
Collapse
|
34
|
Physicochemical, Rheological and Structural Properties of Cold-set Emulsion-filled Gels Based on Whey Protein Isolate-basil Seed Gum Mixed Biopolymers. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Ge Z, Yin D, Li Z, Chen X, Dong M. Effects of Commercial Polysaccharides Stabilizers with Different Charges on Textural, Rheological, and Microstructural Characteristics of Set Yoghurts. Foods 2022; 11:1764. [PMID: 35741960 PMCID: PMC9223107 DOI: 10.3390/foods11121764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The study investigated the preparation of set yoghurts by adding three common commercial polysaccharide stabilizers, namely sodium alginate (SA), gellan gum (GG), and konjac gum (KGM), in milk fermentation to evaluate their effects on the texture, rheology, and microstructure of set yoghurts. The physicochemical properties, water-holding capacity (WHC), texture, low-field nuclear magnetic resonance (LF-NMR), rheology, and microstructure of set yoghurts added with different kinds and quantities of polysaccharides were compared and analyzed. The results showed that the set yoghurts added with anionic polysaccharide GG had more obvious effects on improving WHC, firmness, and rheological properties compared with the set yoghurt added with KGM and SA. The firmness of set yoghurts with 0.02% (w/v) GG increased from 1.17 N to 1.32 N, which significantly improved the gel structure. The transverse relaxation time (T2) of set yoghurts added with GG was the closest to that of the control. Compared with the set yoghurts added with 0.02% SA and KGM, the free water area (A23) of the one added with 0.02% GG decreased most significantly. Moreover, all samples showed shear-thinning behavior, and the apparent elastic and viscous modulus (G', G″) increased with the increase of GG concentration. The G' and G″ of set yoghurts with 0.005% SA and KGM were higher than those in the control, decreased when adding 0.010%, and then increased with the increase of SA and KGM. Additionally, the microscopic observation demonstrated that the addition of GG in set yoghurts significantly promoted the formation of larger protein clusters and showed a tighter and more uniform protein network comparing with the other two polysaccharides (SA, KGM).
Collapse
Affiliation(s)
| | | | | | | | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.G.); (D.Y.); (Z.L.); (X.C.)
| |
Collapse
|
36
|
Sharma P, Vishvakarma R, Gautam K, Vimal A, Kumar Gaur V, Farooqui A, Varjani S, Younis K. Valorization of citrus peel waste for the sustainable production of value-added products. BIORESOURCE TECHNOLOGY 2022; 351:127064. [PMID: 35351555 DOI: 10.1016/j.biortech.2022.127064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Globally the generation and mismanagement of waste from fruit processing and post-harvest impose a severe burden on waste management strategies along with environmental pollution, health hazards. Citrus waste is one of such worrying fruit waste, which is rich in several value-added chemicals, including pectin. Pectin is a prebiotic polysaccharide possessing a multitude of health benefits. Citrus pectin has excellent gelling, thickening, water holding capacity, and encapsulating properties, which pave its functionality in versatile industrial fields including food processing and preservation, drug and therapeutic agents, cosmetics, and personal care products. The utilization of citrus wastes to derive valuable bioproducts can offer an effective approach towards sustainable waste management. With the ever-increasing demand, several strategies have been devised to increase the efficiency of pectin recovery from citrus waste. This review article discusses the sources, effect, and technology-mediated valorization of citrus waste, the functional and nutritive application of pectin along with its socio-economic and environmental perspective.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Krishna Gautam
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Archana Vimal
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India.
| |
Collapse
|
37
|
Wang L, Gu Y, Lv Z. Processing properties of yogurt as affected by the EPS produced by
Leuconostoc mesenteroides
XR1. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liang Wang
- School of Food and Biological Engineering Jiangsu University Xuefu Road 301Zhenjiang212013 JiangsuChina
| | - Yachun Gu
- School of Food and Biological Engineering Jiangsu University Xuefu Road 301Zhenjiang212013 JiangsuChina
| | - Zili Lv
- School of Medical and Life Sciences/Reproductive & Women‐Children Hospital Chengdu University of Traditional Chinese Medicine Chengdu 610041 China
| |
Collapse
|
38
|
Rathod G, Boyle DL, Amamcharla J. Acid gelation properties of fibrillated model milk protein concentrate dispersions. J Dairy Sci 2022; 105:4925-4937. [DOI: 10.3168/jds.2021-20695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
|
39
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Murakonda S, Dwivedi M. Impact of maturity on mechanical and textural properties and rheological properties modeling of wood apple fruit (
Limonia acidissima
). J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sahithi Murakonda
- Department of Food Process Engineering National Institute of Technology Rourkela Rourkela India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering National Institute of Technology Rourkela Rourkela India
| |
Collapse
|
41
|
Development and characterization of standardized model, solid foods with varying breakdown rates during gastric digestion. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Pan L, Wang Q, Qu L, Liang L, Han Y, Wang X, Zhou Z. Pilot-scale production of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its application in set yogurt. J Dairy Sci 2022; 105:1072-1083. [PMID: 34998545 DOI: 10.3168/jds.2021-20997] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
Exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) is a linear dextran that is built by glucose units via α-1,6 glycosidic bond. The primary objective of this study was to investigate the yield of XG5 EPS and its application in set yogurt. In laboratory scale, the culture conditions of XG5 EPS production were optimized using the L9 (33) orthogonal test. Here, the optimized yield of XG5 EPS was 26.02 g/L under the conditions of 100 g/L sucrose, initial pH 7.0, 25°C incubation, and 100 rpm for 36 h in a shaking flask. Based on the optimized parameters of laboratory scale, a pilot fed-batch fermentation was performed in a 50-L bioreactor with an adjusted agitation speed of 20 rpm. The XG5 EPS yield reached 40.07 g/L in fed-batch fermentation, which was 54% higher than that achieved in laboratory scale. In addition, XG5 EPS was added into set yogurt to investigate its effect on the stability of set yogurt. Our data demonstrated that the XG5 EPS improved the water-holding capacity, texture profile, and viscosity of set yogurt during cold storage compared with the controls. In particular, addition of 0.5% XG5 EPS increased the structure of 3-dimensional network of set yogurt, which eventually improved the physical stability of the set yogurt. Overall, this study provided new insights for exploring the pilot scale production and application of dextran.
Collapse
Affiliation(s)
- Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Liangfan Qu
- Tianjin Research Institute of Industrial Microbiology Co., Ltd., Tianjin 300462, China
| | - Lu Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xianghe Wang
- Tianjin Research Institute of Industrial Microbiology Co., Ltd., Tianjin 300462, China; Tianjin SF-Bio Industrial Bio-Tec Co., Ltd., Tianjin 300462, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
43
|
Non-enzymatically hydrolyzed guar gum and orange peel fibre together stabilize the low-fat, set-type yogurt: A techno-functional study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review. Foods 2021; 10:foods10123004. [PMID: 34945554 PMCID: PMC8701727 DOI: 10.3390/foods10123004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plant polysaccharides, as prebiotics, fat substitutes, stabilizers, thickeners, gelling agents, thickeners and emulsifiers, have been immensely studied for improving the texture, taste and stability of fermented foods. However, their biological activities in fermented foods are not yet properly addressed in the literature. This review summarizes the classification, chemical structure, extraction and purification methods of plant polysaccharides, investigates their functionalities in fermented foods, especially the biological activities and health benefits. This review may provide references for the development of innovative fermented foods containing plant polysaccharides that are beneficial to health.
Collapse
|
45
|
Gomes ER, Montalvão Carneiro LC, Stephani R, Fernandes de Carvalho A, Toledo Renhe IR, Wolfschoon-Pombo AF, Perrone ÍT. Effect of sugar reduction and addition of corn fibre and polydextrose on pore size and syneresis of yoghurt. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Li H, Liu T, Zou X, Yang C, Li H, Cui W, Yu J. Utilization of thermal-denatured whey protein isolate-milk fat emulsion gel microparticles as stabilizers and fat replacers in low-fat yogurt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Du H, Yang H, Wang X, Zhu F, Tang D, Cheng J, Liu X. Effects of mulberry pomace on physicochemical and textural properties of stirred-type flavored yogurt. J Dairy Sci 2021; 104:12403-12414. [PMID: 34531052 DOI: 10.3168/jds.2020-20037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/30/2021] [Indexed: 11/19/2022]
Abstract
Adding functional ingredients is an important method to develop functional dairy products. Mulberry pomace (MPo), a byproduct of mulberry fruit processing, is rich in phenolic compounds and anthocyanins and can be served as the functional ingredient in functional dairy products. The aim of this work was to prepare a functional flavored yogurt by incorporating MPo into stirred yogurt and to investigate the effects of MPo on the physicochemical and textural properties of the product during cold storage. We supplemented MPo powder up to 3% (wt/wt) in fermented milk, and the changes in color, pH, titratable acidity (TA), total phenol content (TPC), total anthocyanin content (TAC), water-holding capacity, rheological behavior, texture, and microstructure of the functional flavored yogurt were monitored during storage under 4°C for 28 d. The MPo powder brought a pink to dark red color to the yogurt, decreased the lightness (L*) and yellow-blue color (b*) values, increased the red-green color (a*) values, decreased the pH value, and increased the contents of TA, TPC, and TAC in a dose-dependent manner. The addition of MPo at 1%, 2%, and 3% (wt/wt) significantly increased water-holding capacity, consistency, viscosity, and viscosity index, and reduced firmness of yogurt samples. Supplementation of MPo significantly reduced the pore spaces and channels inside the samples and improved microstructure of the functional yogurt. During the 28 d of cold storage, MPo-fortified yogurt samples kept relatively constant color, although their L*, a*, and b* showed a decreasing tendency. The pH of all yogurt samples gradually decreased with increasing of TA. Interestingly, TPC and TAC contents and the texture parameters of MPo-fortified yogurt increased gradually and continuously during the 28 d of cold storage. Mulberry pomace is beneficial to improve the physicochemical and textural properties of yogurt and has the potential as a natural stabilizer to be used in functional yogurt rich in phytochemicals.
Collapse
Affiliation(s)
- Huaxin Du
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
48
|
He Z, Liu C, Zhao J, Li W, Wang Y. Physicochemical properties of a ginkgo seed protein-pectin composite gel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Delgado-Ospina J, Lucas-González R, Viuda-Martos M, Fernández-López J, Pérez-Álvarez JÁ, Martuscelli M, Chaves-López C. Bioactive compounds and techno-functional properties of high-fiber co-products of the cacao agro-industrial chain. Heliyon 2021; 7:e06799. [PMID: 33898851 PMCID: PMC8060597 DOI: 10.1016/j.heliyon.2021.e06799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
The cacao shell (CS) and cacao pod husk (CPH), two of the most promising high-fiber co-products of the cacao agro-industrial chain, were evaluated to determine their potential incorporation into food products. This research determined bioactive compounds and techno-functional properties of CS and CPH, and was evaluated the enzymatic inactivation by thermal treatments in CPH. We found that CS is rich in protein, lipids, dietary fiber (48.1 ± 0.3 g 100 gdw -1), and antioxidant molecules such as epicatechin (1.10 ± 0.02 mg g-1) and isoquercetin (1.04 ± 0.09 mg g-1). Moreover, in CS a positive effect of hydration mechanism occur; in fact, it was observed a reduction of Lightness (L∗) value and a remarkable color difference (ΔE∗,18.8 ± 0.7) (CIEL∗a∗b∗ color space), between hydrated and dry CS samples; so, it could be used as a potential natural colorant in foods. CPH resulted equally rich in dietary fiber (35.3-37.4%) and flavonoids (2.9 ± 0.1 mg RE g-1); in this co-product, the rapid enzymatic inactivation by thermal treatments was essential to obtain the highest antioxidant activity and polyphenols content; regarding the techno-functional properties, it was found that CPH flour had high hydration capacity, so CPH can use it as a replacement for emulsifiers or water holding additives while incorporating the fiber and abundantly found antioxidants.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, 76001, Cali, Colombia
| | - Raquel Lucas-González
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Maria Martuscelli
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Clemencia Chaves-López
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
50
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|