1
|
Wang S, Li Y, Ma Z, Ma T, Fang Y, Wang X, Sun X. Ultrasound and its coupled oak blocks treatment based on absorbed energy density for comprehensive insight and scale-up consideration of phenolic and astringency profiles in red wines. Food Chem 2025; 463:141518. [PMID: 39413725 DOI: 10.1016/j.foodchem.2024.141518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Ultrasound and ultrasound-coupled oak blocks techniques on the phenolic and astringency profiles of Petit Verdot wines were discussed in this study. The relationship between techniques at varying absorbed energy density (AED) gradients and astringency was revealed, elucidating potential molecular mechanisms regarding compound interactions. Ultrasound was found to promote phenolics degradation and condensed tannins maturation, while oak blocks improved ellagitannins release into wines, facilitating polycondensation reactions to form larger complexes. Phenolics binding to salivary proteins decreased at low AED values (0-33.07 J/mL), enhanced at high AED values (66.14-165.34 J/mL), and reduced salivary proteins' precipitation ability. Treated samples significantly altered astringency's global terminology and sensory attributes across oral regions, with oak blocks enriching the astringency hierarchy. Multivariate analysis identified an optimal ultrasound AED of 0 to 33.07 J/mL, and an effective PLS-DA model was developed for industrial scale-up considerations, aiming to cost-effectively enhance the organoleptic quality of wines.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Enology, Northwest A&F University, Yangling 712100, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China
| | - Yiran Li
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Zeqiang Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China.
| | - Xiangyu Sun
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Zhou Z, Ou M, Shen W, Jin W, Yang G, Huang W, Guo C. Caffeine weakens the astringency of epigallocatechin gallate by inhibiting its interaction with salivary proteins. Food Chem 2024; 460:140753. [PMID: 39116773 DOI: 10.1016/j.foodchem.2024.140753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The astringency of green tea is an integrated result of the synergic and antagonistic effects of individual tea components, whose mechanism is highly complex and not completely understood. Herein, we used an epigallocatechin gallate (EGCG)/caffeine (CAF)/saliva model to simulate the oral conditions during tea drinking. The effect of CAF on the interaction between EGCG and salivary proteins was first investigated using molecular docking and isothermal titration calorimetry (ITC). Then, the rheological properties and the micro-network structure of saliva were studied to relate the molecular interactions and perceived astringency. The results revealed that CAF partially occupied the binding sites of EGCG to salivary proteins, inhibiting their interaction and causing changes in the elastic network structure of the salivary film, thereby reducing astringency.
Collapse
Affiliation(s)
- Zhenyu Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Miaoling Ou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Guoyan Yang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenjing Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Cheng Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
3
|
Lopes Francisco CR, Soltanahmadi S, Porto Santos T, Lopes Cunha R, Sarkar A. Addressing astringency of grape seed extract by covalent conjugation with lupin protein. Curr Res Food Sci 2024; 9:100795. [PMID: 39036623 PMCID: PMC11260025 DOI: 10.1016/j.crfs.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Astringency of phenolic-rich foods is a key tactile perception responsible for acceptability/rejection of plant extracts as ingredients in formulations. Covalent conjugation of phenolic extracts with plant proteins might be a promising strategy to control astringency, but suffers from a lack of mechanistic understanding from the lubrication point of view. To shed light on this, this ex vivo study evaluated the effect of conjugation of a phenolic grape seed extract (GSE) with legume protein (lupin, LP) on tribological and surface adsorption performance of GSE in the absence and presence of human saliva (ex vivo). Tribological results confirmed GSE had an inferior lubrication capacity as compared to LP. The lubrication performance of LP-GSE dispersions was comparable to their corresponding LP dispersion (p > 0.05) when covalently conjugated with LP (LP-GSE) with increasing LP:GSE ratio up to 1:0.04 w/w and at a specific degree of conjugation (DC: 2%). Tribological and surface adsorption measurements confirmed the tendency of GSE to interact with human saliva (ex vivo, n = 17 subjects), impairing the lubricity of salivary films. The covalent bonding of LP to GSE hindered GSE's interaction with human saliva, implying the potential influence of covalent conjugation on attenuating astringency. LP appeared to compete with human saliva for surface adsorption and governed the lubrication behaviour in LP-GSE dispersions. Findings from this study provide valuable knowledge to guide the rational design of sustainable, functional foods using conjugation of phenolics with plant proteins to incorporate larger proportions of health-promoting phenolics while controlling astringency, which needs validation by sensory trials.
Collapse
Affiliation(s)
- Cristhian Rafael Lopes Francisco
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862, São Paulo, Campinas, Brazil
| | - Siavash Soltanahmadi
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Tatiana Porto Santos
- Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Rosiane Lopes Cunha
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862, São Paulo, Campinas, Brazil
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Fan N, Shewan HM, Yakubov GE, Stokes JR. Structure Response of Preadsorbed Saliva Pellicle to the Interaction between Dairy and Saliva Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11516-11525. [PMID: 38778622 DOI: 10.1021/acs.langmuir.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Using the surface characterization techniques of quartz crystal microbalance with dissipation, atomic force microscopy, and scanning electron microscopy, the structure of the salivary pellicle was investigated before and after it was exposed to dairy proteins, including micellar casein, skim milk, whey protein isolate (WPI), and a mixture of skim milk and WPI. We have shown that the hydration, viscoelasticity, and adsorbed proteinaceous mass of a preadsorbed salivary pellicle on a PDMS surface are greatly affected by the type of dairy protein. After interaction with whey protein, the preadsorbed saliva pellicle becomes softer. However, exposure of the saliva pellicle to micellar casein causes the pellicle to partially collapse, which results in a thinner and more rigid surface layer. This structure change correlates with the measured lubrication behavior when the saliva pellicle is exposed to dairy proteins. While previous studies suggest that whey protein is the main component in milk to interact with salivary proteins, our study indicates interactions with casein are more important. The knowledge gained here provides insights into the mechanisms by which different components of dairy foods and beverages contribute to mouthfeel and texture perception, as well as influence oral hygiene.
Collapse
Affiliation(s)
- Nengneng Fan
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Heather M Shewan
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gleb E Yakubov
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jason R Stokes
- The School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Zhou X, Shan B, Liu S, Gao W, Wang X, Wang H, Xu H, Sun L, Zhu B. Sensory omics combined with mathematical modeling for integrated analysis of retronasal Muscat flavor in table grapes. Food Chem X 2024; 21:101198. [PMID: 38370303 PMCID: PMC10869294 DOI: 10.1016/j.fochx.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
This study focused on analyzing the aroma formation mechanism of retronasal muscat flavor in table grapes. The sensory characteristics and fragrance components of table grape juice with different intensities of Muscat were investigated using GC-Quadrupole-MS, quantitative descriptive analysis and three-alternate forced choice. Free monoterpenoids were the main contributors to the retronasal Muscat flavor. The contribution of Muscat compounds to this flavor was quantified by Stevens coefficient, the most and the least sensitive compounds to concentration changes were citronellol and linalool, respectively. To predict the Muscat flavor intensity by mathematical modeling, established a model between Muscat flavor intensity and monoterpenoids concentration, and an optimal partial least squares regression model with a linear relationship between natural logarithms was obtained. These findings provide reference for understanding the formation mechanism of specific aromas in fruits and provide a basis for the development and quality control of processed products such as Muscat flavor grape juice.
Collapse
Affiliation(s)
- Xiaomiao Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Bingqi Shan
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Songyu Liu
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Wenping Gao
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyue Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Huiling Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Baoqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Ferrero-Del-Teso S, Arapitsas P, Jeffery DW, Ferreira C, Mattivi F, Fernández-Zurbano P, Sáenz-Navajas MP. Exploring UPLC-QTOF-MS-based targeted and untargeted approaches for understanding wine mouthfeel: A sensometabolomic approach. Food Chem 2024; 437:137726. [PMID: 37907002 DOI: 10.1016/j.foodchem.2023.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
This study aimed to establish relationships between wine composition and in-mouth sensory properties using a sensometabolomic approach. Forty-two red wines were sensorially assessed and chemically characterised using UPLC-QTOF-MS for targeted and untargeted analyses. Suitable partial least squares regression models were obtained for "dry", "sour", "oily", "prickly", and "unctuous". "Dry" was positively contributed by flavan-3-ols, anthocyanin derivatives (AntD), valine, gallic acid and its ethyl ester, and peptides, and negatively by sulfonated flavan-3-ols, anthocyanin-ethyl-flavan-3-ols, tartaric acid, flavonols (FOL), hydroxycinnamic acids (HA), protocatechuic ethyl ester, and proline. The "sour" model included molecules involved in "dry" and "bitter", ostensibly as a result of cognitive interactions. Derivatives of FOLs, epicatechin gallate, and N-acetyl-glucosamine phosphate contributed positively to "oily", as did vanillic acid, HAs, pyranoanthocyanins, and malvidin-flavan-3-ol derivatives for "prickly", and sugars, glutathione disulfide, AntD, FOL, and one HA for "unctuous". The presented approach offers an interesting tool for deciphering the sensory-active compounds involved in mouthfeel perception.
Collapse
Affiliation(s)
- Sara Ferrero-Del-Teso
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain
| | - Panagiotis Arapitsas
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos 28, Egaleo, 12243 Athens, Greece
| | - David W Jeffery
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Chelo Ferreira
- Laboratorio de Análisis del Aroma y Enología (LAAE), Instituto Universitario de Matemáticas y Aplicaciones (IUMA-UNIZAR), Universidad de Zaragoza, c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Fulvio Mattivi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Purificación Fernández-Zurbano
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain
| | - María-Pilar Sáenz-Navajas
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain.
| |
Collapse
|
7
|
Gagliardi M, Tori G, Sanmartin C, Cecchini M. The effect of probe density coverage on the detection of oenological tannins in quartz crystal microbalance with dissipation monitoring (QCM-D) experiments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38308593 DOI: 10.1002/jsfa.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Polyphenols are a group of compounds found in grapes, musts, and wines. Their levels are crucial for grape ripening, proper must fermentation, and final wine characteristics. Standard chemical analysis is commonly used to detect these compounds, but it is costly, time consuming, and requires specialized laboratories and operators. To address this, this study explores a functionalized acoustic sensor for detecting oenological polyphenols. RESULTS The method involves utilizing a quartz crystal microbalance with dissipation monitoring (QCM-D) to detect the target analyte by using a gelatin-based probe layer. The sensor is functionalized by optimizing the probe coverage density to maximize its performance. This is achieved by using 12-mercaptododecanoic acid (12-MCA) to immobilize the probe onto the gold sensor surface, and dithiothreitol (DTT) as a reducing and competitive binding agent. The concentration of 12-MCA and DTT in the solutions is varied to control the probe density. QCM-D measurements demonstrate that the probe density can be effectively adjusted using this approach, ranging from 0.2 × 1013 to 2 × 1013 molecules cm-2 . This study also investigates the interaction between the probe and tannins, confirming the ability of the sensor to detect them. Interestingly, the lower probe coverage achieves higher detection signals when normalized to probe immobilization signals. Moreover, significant changes in mechanical properties of the functionalization layer are observed after the interaction with samples. CONCLUSION The combination of QCM-D with gelatin functionalization holds great promise for future applications in the wine industry. It offers real-time monitoring capabilities, requires minimal sample preparation, and provides high sensitivity for quality control purposes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Giorgia Tori
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
8
|
Wang S, Smyth HE, Olarte Mantilla SM, Stokes JR, Smith PA. Astringency and its sub-qualities: a review of astringency mechanisms and methods for measuring saliva lubrication. Chem Senses 2024; 49:bjae016. [PMID: 38591722 DOI: 10.1093/chemse/bjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Indexed: 04/10/2024] Open
Abstract
Astringency is an important mouthfeel attribute that influences the sensory experiences of many food and beverage products. While salivary lubricity loss and increased oral friction were previously believed to be the only astringency mechanisms, recent research has demonstrated that nontactile oral receptors can trigger astringency by responding to astringents without mechanical stimulation. Various human factors have also been identified that affect individual responses to astringents. This article presents a critical review of the key research milestones contributing to the current understanding of astringency mechanisms and the instrumental approaches used to quantify perceived astringency intensity. Although various chemical assays or physical measures mimic in-mouth processes involved in astringent mouthfeel, this review highlights how one chemical or physical approach can only provide a single measure of astringency determined by a specific mechanism. Subsequently, using a single measurement to predict astringency perception is overly idealistic. Astringency has not been quantified beyond the loss of saliva lubrication; therefore, nontactile receptor-based responses must also be explored. An important question remains about whether astringency is a single perception or involves distinct sub-qualities such as pucker, drying, and roughness. Although these sub-quality lexicons have been frequently cited, most studies currently view astringency as a single perception rather than dividing it into sub-qualities and investigating the potentially independent mechanisms of each. Addressing these knowledge gaps should be an important priority for future research.
Collapse
Affiliation(s)
- Shaoyang Wang
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Heather E Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Sandra M Olarte Mantilla
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Jason R Stokes
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul A Smith
- Wine Australia, P.O. Box 2733, Kent Town, SA 5071, Australia
| |
Collapse
|
9
|
Zhang D, Wei Z, Han Y, Duan Y, Shi B, Ma W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023; 28:6522. [PMID: 37764298 PMCID: PMC10534415 DOI: 10.3390/molecules28186522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The wine flavour profile directly determines the overall quality of wine and changes significantly during bottle aging. Understanding the mechanism of flavour evolution during wine bottle aging is important for controlling wine quality through cellar management. This literature review summarises the changes in volatile compounds and non-volatile compounds that occur during wine bottle aging, discusses chemical reaction mechanisms, and outlines the factors that may affect this evolution. This review aims to provide a deeper understanding of bottle aging management and to identify the current literature gaps for future research.
Collapse
Affiliation(s)
- Di Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Ziyu Wei
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yufeng Han
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yaru Duan
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Baohui Shi
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
10
|
Zhao Q, Du G, Zhao P, Guo A, Cao X, Cheng C, Liu H, Wang F, Zhao Y, Liu Y, Wang X. Investigating wine astringency profiles by characterizing tannin fractions in Cabernet Sauvignon wines and model wines. Food Chem 2023; 414:135673. [PMID: 36821921 DOI: 10.1016/j.foodchem.2023.135673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
Contribution of various phenols on wine astringency profiles was far from clear explanations. To effectively describe wine astringency profiles and determined the function of tannins/matrix (pH and ethanol), multiple chemical analyses combined RATA (Rate-all-that-apply) sensory method were applied in Cabernet Sauvignon and model wines. Results showed that polymeric flavanols determined the bulk of wine astringency intensity, oligomeric tannins enriched the smoothness and periodontium astringency, and monomeric phenol enhanced overall astringency intensity through synergistic effect. Astringency balance was effectively quantification, and its potential correlation relationship with epicatechin extension subunit (0.83) and fluorescence peak shift (0.75) cannot be ignored. The astringency profiles of condensed tannins with anthocyanins were enhanced. Low-pH (from 3.8 to 3.0) enhanced astringency by increasing the tannins affinity to proteins, while ethanol (from 10.0 % ∼ 15.0 %) decreased the hydrophobicity bond between tannins-protein interaction. This paper provided new insights to explain wine astringency profiles and a reference for astringency modification during winemaking.
Collapse
Affiliation(s)
- Qinghao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China
| | - Guorong Du
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, PR China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China; Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Xi'an 710119, PR China.
| | - Anque Guo
- College of Enology, Northwest A&F University, Yangling 712100, PR China
| | - Xiaomeng Cao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China
| | - Chenyaqiong Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China
| | - Hui Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China
| | - Fei Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China
| | - Yuefan Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China
| | - Yan Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 620 West Chang'an Avenue, Xi'an 710119, PR China; Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Xi'an 710119, PR China.
| |
Collapse
|
11
|
Paissoni MA, Motta G, Giacosa S, Rolle L, Gerbi V, Río Segade S. Mouthfeel subqualities in wines: A current insight on sensory descriptors and physical-chemical markers. Compr Rev Food Sci Food Saf 2023; 22:3328-3365. [PMID: 37282812 DOI: 10.1111/1541-4337.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Astringency and more generally mouthfeel perception are relevant to the overall quality of the wine. However, their origin and description are still uncertain and are constantly updating. Additionally, the terminology related to mouthfeel properties is expansive and extremely diversified, characterized by common traditional terms as well as novel recently adopted descriptors. In this context, this review evaluated the mention frequency of astringent subqualities and other mouthfeel attributes in the scientific literature of the last decades (2000-August 17, 2022). One hundred and twenty-five scientific publications have been selected and classified based on wine typology, aim, and instrumental-sensorial methods adopted. Dry resulted as the most frequent astringent subquality (10% for red wines, 8.6% for white wines), while body-and related terms-is a common mouthfeel sensation for different wine types, although its concept is still vague. Alongside, promising analytical and instrumental techniques investigating and simulating the in-mouth properties are discussed in detail, such as rheology for the viscosity and tribology for the lubrication loss, as well as the different approaches for the quantitative and qualitative evaluation of the interaction between salivary proteins and astringency markers. A focus on the phenolic compounds involved in the tactile perception was conducted, with tannins being the compounds conventionally found responsible for astringency. Nevertheless, other non-tannic polyphenolic classes (i.e., flavonols, phenolic acids, anthocyanins, anthocyanin-derivative pigments) as well as chemical-physical factors and the wine matrix (i.e., polysaccharides, mannoproteins, ethanol, glycerol, and pH) can also contribute to the wine in-mouth sensory profile. An overview of mouthfeel perception, factors involved, and its vocabulary is useful for enologists and consumers.
Collapse
Affiliation(s)
- Maria Alessandra Paissoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Giulia Motta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Vincenzo Gerbi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| |
Collapse
|
12
|
Zhao Q, Du G, Wang S, Zhao P, Cao X, Cheng C, Liu H, Xue Y, Wang X. Investigating the role of tartaric acid in wine astringency. Food Chem 2023; 403:134385. [DOI: 10.1016/j.foodchem.2022.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
13
|
Santos MJ, Correia E, Vilela A. Exploring the Impact of α-Amylase Enzyme Activity and pH on Flavor Perception of Alcoholic Drinks. Foods 2023; 12:foods12051018. [PMID: 36900535 PMCID: PMC10000705 DOI: 10.3390/foods12051018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
The introduction of a drink in the mouth and the action of saliva and enzymes cause the perception of basic tastes and some aromas perceived in a retro-nasal way. Thus, this study aimed to evaluate the influence of the type of alcoholic beverage (beer, wine, and brandy) on lingual lipase and α-amylase activity and in-mouth pH. It was possible to see that the pH values (drink and saliva) differed significantly from the pH values of the initial drinks. Moreover, the α-amylase activity was significantly higher when the panel members tasted a colorless brandy, namely Grappa. Red wine and wood-aged brandy also induced greater α-amylase activity than white wine and blonde beer. Additionally, tawny port wine induced greater α-amylase activity than red wine. The flavor characteristics of red wines due to skin maceration and the contact of the brandy with the wood can cause a synergistic effect between beverages considered "tastier" and the activity of human α-amylase. We can conclude that saliva-beverage chemical interactions may depend on the saliva composition but also on the chemical composition of the beverage, namely its constitution in acids, alcohol concentration, and tannin content. This work is an important contribution to the e-flavor project, the development of a sensor system capable of mimicking the human perception of flavor. Furthermore, a better understanding of saliva-drink interactions allow us to comprehend which and how salivary parameters can contribute to taste and flavor perception.
Collapse
Affiliation(s)
- Maria João Santos
- Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre (CQ-VR), Department of Agronomy (DAgro), School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
14
|
Wang S, Olarte Mantilla SM, Smith PA, Stokes JR, Smyth HE. Relationship between salivary lubrication and temporal sensory profiles of wine mouthfeel and astringency sub-qualities. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Agorastos G, van Nielen O, van Halsema E, Scholten E, Bast A, Klosse P. Lubrication behavior of ex-vivo salivary pellicle influenced by tannins, gallic acid and mannoproteins. Heliyon 2022; 8:e12347. [PMID: 36582694 PMCID: PMC9793261 DOI: 10.1016/j.heliyon.2022.e12347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate the influence of tannins and gallic acid on the salivary lubrication behavior. Furthermore, the effects of pH and mannoproteins in combination with gallic acid on the lubrication of saliva were studied. The addition of gallic acid and tannins were found to increase friction caused by the removal of the saliva film. Tannins resulted in higher friction compared to gallic acid. Lowering pH increased friction of gallic acid mixtures with saliva, due to stronger interactions between gallic acid and saliva. The increased friction caused by gallic acid was inhibited by the addition of mannoproteins due to the hydrogen bond interactions between gallic acid and mannoproteins, thereby decreasing the complex formation between gallic acid and salivary proteins. A correlation of 0.96 was found between the hydrodynamic diameter of the aggregate and the delta friction suggesting that the formation of aggregates determined the lubrication behavior.
Collapse
Affiliation(s)
- Georgios Agorastos
- Faculty of Science and Engineering Department, Maastricht University, Nassaustraat 36, 5911 BV, Venlo, the Netherlands
- T.A.S.T.E. Foundation, Garstkampsestraat 11, Overasselt, 6611 KS, the Netherlands
- Corresponding author.
| | - Olaf van Nielen
- Physics and Physical Chemistry of Food, Wageningen University, Bronse Weilanden 9, Wageningen, the Netherlands
| | - Emo van Halsema
- T.A.S.T.E. Foundation, Garstkampsestraat 11, Overasselt, 6611 KS, the Netherlands
| | - Elke Scholten
- Physics and Physical Chemistry of Food, Wageningen University, Bronse Weilanden 9, Wageningen, the Netherlands
| | - Aalt Bast
- Faculty of Science and Engineering Department, Maastricht University, Nassaustraat 36, 5911 BV, Venlo, the Netherlands
| | - Peter Klosse
- T.A.S.T.E. Foundation, Garstkampsestraat 11, Overasselt, 6611 KS, the Netherlands
| |
Collapse
|
16
|
Jia W, Di C, Zhang R, Shi L. Hydrogen bonds and hydrophobicity with mucin and α-amylase induced honey aroma in Feng-flavor Baijiu during 16 years aging. Food Chem 2022; 396:133679. [PMID: 35849986 DOI: 10.1016/j.foodchem.2022.133679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Honey aroma is one of the most significant factors of Feng-flavor Baijiu, which is also an essential element to attract consumers. However, the evaluation and chemical basis of honey aroma is unclear. Palmitoleic acid, lagochilin, phomotenone and ethyl behenate were confirmed to be the strongest contributors to honey aroma by time-intensity analysis and UHPLC-Q-Orbitrap-MS. Predictive modeling was developed for processing honey aroma intensity responses in order to obtain significant Feng-flavor Baijiu rankings. In this study, the effects of ex-vivo saliva on Feng-flavor Baijiu were investigated for the first time. Mucin and α-amylase, as major proteins in ex-vivo saliva, were applied to simulate molecular docking of ethyl benzoate. Mucin and α-amylase modified the aroma release, which depended on hydrogen bonds and hydrophobic interactions, respectively. It is blazing a trail in the field in sensory experience of Feng-flavor Baijiu as well as contributes to our understanding of Feng-flavor Baijiu drinking process.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
17
|
Zhang Y, Chen Y, Chen J. The starch hydrolysis and aroma retention caused by salivary α-amylase during oral processing of food. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Detection of Oenological Polyphenols via QCM-D Measurements. NANOMATERIALS 2022; 12:nano12010166. [PMID: 35010116 PMCID: PMC8746829 DOI: 10.3390/nano12010166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Polyphenols are a family of compounds present in grapes, musts, and wines. Their dosage is associated with the grape ripening, correct must fermentation, and final wine properties. Owing to their anti-inflammatory properties, they are also relevant for health applications. To date, such compounds are detected mainly via standard chemical analysis, which is costly for constant monitoring and requires a specialized laboratory. Cheap and portable sensors would be desirable to reduce costs and speed up measurements. This paper illustrates the development of strategies for sensor surface chemical functionalization for polyphenol detection. We perform measurements by using a commercial quartz crystal microbalance with dissipation monitoring apparatus. Chemical functionalizations are based on proteins (bovine serum albumin and gelatin type A) or customized peptides derived from istatine-5 and murine salivary protein-5. Commercial oenological additives containing pure gallic tannins or proanthocyanidins, dissolved in water or commercial wine, are used for the analysis. Results indicate that selected functionalizations enable the detection of the two different tannin families, suggesting a relationship between the recorded signal and concentration. Gelatin A also demonstrates the ability to discriminate gallic tannins from proanthocyanidins. Outcomes are promising and pave the way for the exploitation of such devices for precision oenology.
Collapse
|