1
|
Ngasotter S, Xavier KAM, Sagarnaik C, Sasikala R, Mohan CO, Jaganath B, Ninan G. Evaluating the reinforcing potential of steam-exploded chitin nanocrystals in chitosan-based biodegradable nanocomposite films for food packaging applications. Carbohydr Polym 2025; 348:122841. [PMID: 39562114 DOI: 10.1016/j.carbpol.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
Chitosan-based films, despite being biodegradable and edible, often lack the necessary requisite properties such as mechanical strength, water resistance, and thermal stability, which are critical for effective food packaging. To address these limitations, incorporating reinforcing nanofiller materials offers a promising solution. This study utilizes steam-exploded chitin nanocrystals (ChNCs) to reinforce chitosan nanocomposite films through a solution-casting technique. The resulting nanocomposite films were evaluated for their physical, mechanical, optical, and thermal properties. Our findings indicate that ChNC incorporation significantly enhanced the mechanical and thermal properties, with tensile strength improving by 88.83 %, Young's modulus by 52.82 %, and elongation at break by 126.15 %, while reducing water uptake by 61.09 % and solubility by 43.03 %. The nanocomposite films also exhibited improved UV-Vis light barrier properties and maintained reasonable transparency. Additionally, color analysis revealed increased lightness and decreased yellowness compared to pure chitosan films. FTIR confirmed the successful integration of ChNCs into the chitosan matrix, while XRD indicated higher crystallinity for composite films. SEM analysis showed a homogeneous dispersion of ChNCs in the chitosan matrix. These results underscore the potential of steam-exploded ChNC-reinforced chitosan nanocomposite films for food packaging applications, positioning them as promising candidates for sustainable and functional packaging solutions in the food industry.
Collapse
Affiliation(s)
- Soibam Ngasotter
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India; ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - K A Martin Xavier
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| | - C Sagarnaik
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India; ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Remya Sasikala
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - C O Mohan
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Bindu Jaganath
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - George Ninan
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| |
Collapse
|
2
|
Gouda M, Khalaf MM, Abo Taleb MF, Alali I, Abd El-Lateef HM. Formulation of sustainable, biodegradable chitosan films enriched with Origanum majorana extract as an eco-friendly antimicrobial food packaging for possible food preservation. Int J Biol Macromol 2025:139658. [PMID: 39793797 DOI: 10.1016/j.ijbiomac.2025.139658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
In this work, chitosan (Cs) was blended with different concentrations of Origanum majorana extract (OmE) for the formation of food packaging films. Based on the utilized volumes of OmE (2.5, 5, and 7.5 mL) that were mixed with 27.5, 25, and 22.5 mL of Cs, there different film samples (2.5 % OmE loaded Cs film, 5 % OmE loaded Cs film and 7.5 % OmE loaded Cs film) were obtained and compared with the film of pure Cs. The extraction yields of OmE were found to be 13 g and 10.4 g % when using ethyl acetate and methanol, respectively, with total phenolic content measured at 889.30 μg GAE/g for the ethyl acetate extract and 810.21 μg GAE/g for the methanol extract, indicating a substantial amount of bioactive compounds available for formulation. Antimicrobial activity was assessed against various foodborne pathogens, with the 7.5 % OmE-loaded Cs film demonstrating the highest efficacy, achieving inhibition zones of 27 mm against E. coli and 25 mm against S. aureus. This research underscores the potential of Cs-based films enriched with O. majorana extract as a viable solution for active food packaging, addressing environmental concerns and food safety.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Manal F Abo Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| |
Collapse
|
3
|
Bidooki S, Spitzer L, Petitpas A, Sánchez-Marco J, Martínez-Beamonte R, Lasheras R, Pellerin V, Rodríguez-Yoldi MJ, Navarro MA, Osada J, Fernandes SCM. Chitosan Nanoparticles, a Novel Drug Delivery System to Transfer Squalene for Hepatocyte Stress Protection. ACS OMEGA 2024; 9:51379-51393. [PMID: 39758614 PMCID: PMC11696419 DOI: 10.1021/acsomega.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025]
Abstract
The Mediterranean diet is a well-known dietary pattern that has gained considerable popularity worldwide for its ability to prevent the progression of nonalcoholic fatty liver disease. This is largely attributed to the use of virgin olive oil as the primary source of fat, which contains a substantial amount of squalene, a natural antioxidant. In order to enhance the delivery of squalene and amplify its effects due to its highly hydrophobic nature, herein, squalene has been incorporated into chitosan nanoparticles. The characterization of the resulting nanoparticles was conducted via scanning electron microscopy, dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. Reactive oxygen species (ROS) generation and cell viability assays were conducted in oxidative and endoplasmic reticulum (ER) stress in AML12 and a TXNDC5-deficient AML12 cell line, which was generated by CRISPR/Cas9 technology. The results demonstrated that squalene was successfully encapsulated in chitosan nanoparticles and exhibited rapid and efficient cellular uptake at a 150 μM squalene concentration within 48 h. In conclusion, the encapsulation of squalene in chitosan nanoparticles, compared to the poly(d,l-lactide-co-glycolic acid) and ethanol drug carriers, significantly enhanced its cellular uptake. This allows the administration of higher doses, which improve hepatocyte viability and reduce ROS levels, effectively compensating for the adverse effects of TXNDC5 deficiency under the context of hepatocyte stress protection.
Collapse
Affiliation(s)
- Seyed
Hesamoddin Bidooki
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| | - Lea Spitzer
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| | - Arnaud Petitpas
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| | - Javier Sánchez-Marco
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
| | - Roberto Lasheras
- Laboratorio
Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección
General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, Av. de Montañana, 1070B, E-50192 Zaragoza, Spain
| | - Virginie Pellerin
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
| | - María J. Rodríguez-Yoldi
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
- Departamento
de Farmacología, Fisiología, Medicina Legal y Forense,
Facultad de Veterinaria, Instituto de Investigación
Sanitaria de Aragón-Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
| | - María Angeles Navarro
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
| | - Jesús Osada
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
- Departamento
de Farmacología, Fisiología, Medicina Legal y Forense,
Facultad de Veterinaria, Instituto de Investigación
Sanitaria de Aragón-Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
| | - Susana C. M. Fernandes
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| |
Collapse
|
4
|
Falgayrac A, Pellerin V, Terrol C, Fernandes SCM. Turning black soldier fly rearing by-products into valuable materials: Valorisation through chitin and chitin nanocrystals production. Carbohydr Polym 2024; 344:122545. [PMID: 39218561 DOI: 10.1016/j.carbpol.2024.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The industry of insect-based proteins as feed and food products has been encountering a huge development since the last decade, and industrial-scale factories are now arising worldwide. Among all the species studied, Black Soldier Fly is one of the most promising and farmed. This rearing activity generates several by-products in the form of chitin-rich biomass that can be valorised to keep a virtuous production cycle embedded in the scope of the bioeconomy. Herein, we report the isolation of chitin and, for the first time, chitin nanocrystals (ChNCs) from all the BSF rearing by-products, i.e., moults (larval exuviae, puparium) and dead adults. Extraction yields, were dependent on the type of by-products and ranged from 5.8 % to 20.0 %, and the chemical structure of the extracts exhibited typical features of α-chitin, confirmed by FTIR, NMR, XRD and TGA analysis. Both STEM in SEM and AFM analysis confirmed the isolation of chitin nanocrystals presenting a rod-like morphology. The average nanocrystal height estimated by AFM ranged from 13 to 27 nm depending on the by-product sample. The following results highlighted the potential of BSF rearing by-products, promoting an approach to valorise those industrial waste and paving the way towards insect-based biorefinery.
Collapse
Affiliation(s)
- Alexis Falgayrac
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000 Pau, France; MANTA - Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64600 Anglet, France; Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France
| | - Virginie Pellerin
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000 Pau, France
| | - Cécile Terrol
- Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France
| | - Susana C M Fernandes
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000 Pau, France; MANTA - Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64600 Anglet, France.
| |
Collapse
|
5
|
Tan G, Hou J, Meng D, Zhang H, Han X, Li H, Wang Z, Ghamry M, Rayan AM. 3D printing cassava starch-ovalbumin intelligent labels: Co-pigmentation effects of gallic acid on anthocyanins. Int J Biol Macromol 2024; 281:135684. [PMID: 39393990 DOI: 10.1016/j.ijbiomac.2024.135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Anthocyanins are often chosen as signal converters of intelligent labels. However, they are degraded by high-temperature oxidation in the process of intelligent label preparation. The color fading seriously affects the sensitivity of color development. In this study, a green 3D printing intelligent label preparation technique was developed, in which gallic acid (GA) was added to a blueberry anthocyanin (BA) solution to enhance the color of the co-pigment to ensure the color sensitivity. The combined effect of GA-BA reduced the fade rate of the anthocyanins from 35.13 % to 26.44 % at 90 °C. The printing ink has shear-thinning viscosity characteristics and yield stresses in the range of 500-600 MPa for high-quality printing. Structural analysis revealed that GA-BA co-pigmentation enhanced the interaction between ovalbumin and cassava starch. In addition, the method of 3D printing to prepare labels was conducive to solving the problem of waste in traditional labeling process. The results of freshness testing of sea shrimp proved that labels can be applied to fresh boxes to reflect the freshness of food. We provide a method for enhancing the color of 3D-printed smart ink to prepare intelligent labels with reproducible and customizable batch shapes.
Collapse
Affiliation(s)
- Guixin Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dekun Meng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiue Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Sanz de León A, Pulido JA, Fernández-Delgado N, Delgado FJ, Molina SI. Chitin Nanocomposites for Fused Filament Fabrication: Flexible Materials with Enhanced Interlayer Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35554-35565. [PMID: 38941240 PMCID: PMC11247426 DOI: 10.1021/acsami.4c06358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In this work, we present a series of nanocomposites for Fused filament fabrication (FFF) based on polycaprolactone (PCL) and chitin nanocrystals (ChNCs). The ChNCs were synthesized by acid hydrolysis using HCl or lactic acid (LA). The approach using LA, an organic acid, makes the ChNCs synthesis more sustainable and modifies their surface with lactate groups, increasing their compatibility with the PCL matrix. The ChNCs characterization by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that both ChNCs presented similar morphologies and crystallinity, while differential scanning calorimetry and thermogravimetric analysis proved that they can bear temperatures up to 210 °C without degrading, which allows their processing in the manufacturing of PCL composites by twin-screw extrusion. Therefore, PCL composites in the form of filaments containing 0.5-1.0 wt % ChNCs were produced and used as feedstock in FFF, and standard tensile and flexural specimens were printed at different temperatures, up to 170 °C, to assess the influence of the ChNCs in the mechanical properties of the material. The tensile testing results showed that the presence of ChNCs enhances the strength and ductility of the PCL matrix, increasing the elongation at break around 20-50%. Moreover, the vertically printed flexural specimens showed a very different bending behavior, such that the pure PCL specimens presented a brittle fracture at 7% strain, while the ChNCs composites were able to bend over themselves. Hence, this work proves that the presence of ChNCs aims to improve the interlayer adhesion of the objects manufactured by FFF due to their good adhesive properties, which is currently a concern for the scientific community and the industrial sector.
Collapse
Affiliation(s)
- Alberto Sanz de León
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Jose A Pulido
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Natalia Fernández-Delgado
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Francisco J Delgado
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Sergio I Molina
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| |
Collapse
|
7
|
Jeong JP, Yoon I, Kim K, Jung S. Structural and Physiochemical Properties of Polyvinyl Alcohol-Succinoglycan Biodegradable Films. Polymers (Basel) 2024; 16:1783. [PMID: 39000639 PMCID: PMC11244272 DOI: 10.3390/polym16131783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Polyvinyl alcohol (PVA)-bacterial succinoglycan (SG) biodegradable films were developed through a solvent-casting method. Effects of the PVA/SG ratio on the thickness, transmittance, water holding capacity, and structural and mechanical properties were investigated by various analytical methods. All the prepared films were transparent and uniform, and XRD and FTIR analyses confirmed that PVA was successfully incorporated into SG. The films also showed excellent UV-blocking ability: up to close to 80% with increasing SG concentration. The formation of effective intermolecular interactions between these polymers was evidenced by their high tensile strength and moisture transport capacity. By measuring the biodegradation rate, it was confirmed that films with high SG content showed the fastest biodegradation rate over 5 days. These results confirm that PVA/SG films are eco-friendly, with both excellent biodegradability and effective UV-blocking ability, suggesting the possibility of industrial applications as a packaging material in various fields in the future.
Collapse
Affiliation(s)
- Jae-Pil Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Inwoo Yoon
- Department of System Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyungho Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of System Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Yue R, Zhang Y, Liu J, Sun J. Preparation of Steamed Purple Sweet Potato-Based Films Containing Mandarin Essential Oil for Smart Packaging. Molecules 2024; 29:2314. [PMID: 38792175 PMCID: PMC11124375 DOI: 10.3390/molecules29102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.
Collapse
Affiliation(s)
- Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| | - Yiren Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| |
Collapse
|
9
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
10
|
Wen P, Wu J, Wu J, Wang H, Wu H. A Colorimetric Nanofiber Film Based on Ethyl Cellulose/Gelatin/Purple Sweet Potato Anthocyanins for Monitoring Pork Freshness. Foods 2024; 13:717. [PMID: 38472830 DOI: 10.3390/foods13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, colorimetric indicator nanofiber films based on ethyl cellulose (EC)/gelatin (G) incorporating purple sweet potato anthocyanins (PSPAs) were designed via electrospinning technology for monitoring and maintaining the freshness of pork. The film presented good structural integrity and stability in a humid environment with water vapor permeability (WVP) of 6.07 ± 0.14 × 10-11 g·m-1s-1Pa-1 and water contact angle (WCA) of 81.62 ± 1.43°. When PSPAs were added into the nanofiber films, the antioxidant capacity was significantly improved (p < 0.05) with a DPPH radical scavenging rate of 68.61 ± 1.80%. The nanofiber films showed distinguishable color changes as pH changes and was highly sensitive to volatile ammonia than that of casting films. In the application test, the film color changed from light pink (fresh stage) to light brown (secondary freshness stage) and then to brownish green (spoilage stage), indicating that the nanofiber films can be used to detect the real-time freshness of pork during storage. Meanwhile, it could prolong the shelf life of pork by inhibiting the oxidation degree. Hence, these results suggested that the EC/G/PSPA film has promising future for monitoring freshness and extending shelf life of pork.
Collapse
Affiliation(s)
- Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jinling Wu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| |
Collapse
|
11
|
Chee PL, Sathasivam T, Tan YC, Wu W, Leow Y, Lim QRT, Yew PYM, Zhu Q, Kai D. Nanochitin for sustainable and advanced manufacturing. NANOSCALE 2024; 16:3269-3292. [PMID: 38265441 DOI: 10.1039/d3nr05533g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Presently, the rapid depletion of resources and drastic climate change highlight the importance of sustainable development. In this case, nanochitin derived from chitin, the second most abundant renewable polymer in the world, possesses numerous advantages, including toughness, easy processability and biodegradability. Furthermore, it exhibits better dispersibility in various solvents and higher reactivity than chitin owing to its increased surface area to volume ratio. Additionally, it is the only natural polysaccharide that contains nitrogen. Therefore, it is valuable to further develop this innovative technology. This review summarizes the recent developments in nanochitin and specifically identifies sustainable strategies for its preparation. Additionally, the different biomass sources that can be exploited for the extraction of nanochitin are highlighted. More importantly, the life cycle assessment of nanochitin preparation is discussed, followed by its applications in advanced manufacturing and perspectives on the valorization of chitin waste.
Collapse
Affiliation(s)
- Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
| | - Thenapakiam Sathasivam
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
| | - Ying Chuan Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
| | - Wenya Wu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Quentin Ray Tjieh Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Dr, Singapore 637459
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Dr, Singapore 637459
| |
Collapse
|
12
|
Hashim SBH, Tahir HE, Mahdi AA, Zhang J, Zhai X, Al-Maqtari QA, Zhou C, Mahunu GK, Xiaobo Z, Jiyong S. Enhancement of a hybrid colorimetric film incorporating Origanum compactum essential oil as antibacterial and monitor chicken breast and shrimp freshness. Food Chem 2024; 432:137203. [PMID: 37659328 DOI: 10.1016/j.foodchem.2023.137203] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
Recently, intelligent packaging has combined several functions, including monitoring and preserving food freshness in real-time. This study was developed a hybrid film (active/ colorimetric) based on AM/CPC/9%SFW as a carrier of Origanum compactum essential oil (OC) in various concentrations (0%, 1%, 1.25%, and 1.5% v/v). The film's emulsions showed homogeneity regarding particle size, polydispersity index, and ζ -potential. Hybrid films' morphological, mechanical, water and light barrier, thermal, and antioxidant properties were enhanced with an increased OC. Interestingly, all films rapidly responded to pH/NH3 and reflected different colors. In the hybrid films, an inhibition effect against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria and OC (1.5%) film exhibited a large inhibition zone attained diameters of 37.33 and 15.67 mm, respectively, in the disc diffusion test. Outstanding, AM/CPC/9%SFW/1.5 %OC film displayed the ability to preserve and monitor chicken breast and shrimp freshness to 33 and 21 h, respectively, during storage at 25 °C.
Collapse
Affiliation(s)
- Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Food Technology, Faculty of Agricultural Technology and Fish Sciences, Alneelain University, Khartoum, Sudan
| | - Haroon Elrasheid Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Junjun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Qais Ali Al-Maqtari
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Gustav Komla Mahunu
- Department of Food Science & Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
13
|
Wang S, Li R, Han M, Zhuang D, Zhu J. Intelligent active films of sodium alginate and konjac glucomannan mixed by Lycium ruthenicum anthocyanins and tea polyphenols for milk preservation and freshness monitoring. Int J Biol Macromol 2023; 253:126674. [PMID: 37660868 DOI: 10.1016/j.ijbiomac.2023.126674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
To achieve real-time monitoring of food freshness, a pH-responsive film based on sodium alginate-konjac glucomannan loaded with Lycium ruthenicum anthocyanins (LRA) was prepared, with the addition of tea polyphenols (TP) to enhance the stability of LRA. The surface structure of the films was observed by AFM. The results of FTIR and molecular docking simulation showed that LRA and TP were bound to polysaccharide by hydrogen bonds. The mechanical properties, barrier properties, and antioxidant/antibacterial properties of the films were significantly improved and the films showed obvious color response to pH. Notably, the AFM images showed TP and LRA could lead to more severe damage to the bacterial structure. The results of molecular docking simulation suggested that TP and LRA could act on different components of the bacterial cell wall, indicating their synergistic mechanism in antimicrobial activity. Moreover, the stability of LRA was improved due to the interactions of TP and polysaccharides with LRA. The aggregates formed by TP and LRA were clearly observed by AFM. Finally, the film showed excellent preservation and freshness monitoring effect in milk. In conclusion, TP-LRA-SA-KGM intelligent film exhibited excellent performance and represented a promising novel food packaging material with potential applications.
Collapse
Affiliation(s)
- Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjie Han
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Innovation Group of Biophysics, College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Innovation Group of Biophysics, College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Huang X, Zhao W, Li Z, Zhang N, Wang S, Shi J, Zhai X, Zhang J, Shen T. Preparation of a Dual-Functional Active Film Based on Bilayer Hydrogel and Red Cabbage Anthocyanin for Maintaining and Monitoring Pork Freshness. Foods 2023; 12:4520. [PMID: 38137324 PMCID: PMC10742916 DOI: 10.3390/foods12244520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, a composite film was created with the dual goal of prolonging pork shelf life and showing freshness. Hydrogel materials as solid base films were selected from gelatin (G), sodium alginate (SA) and carboxymethyl cellulose (CMC) based on their antioxidant activity, water vapor permeability, mechanical properties, as well as their stability, antimicrobial activity, and freshness, which indicates effectiveness when combined with anthocyanins. Furthermore, the effects of several concentrations of red cabbage anthocyanin (R) (3%, 6%, 12%, and 24%) on freshness indicators and bacteriostasis were investigated. The antimicrobial activity of the composite films was evaluated against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Likewise, the freshness indicates effectiveness was evaluated for NH3. Considering the mechanical properties, antibacterial ability, freshness indicator effect, and stability of the composite film, CS film combined with 12% R was selected to prepare a dual-functional intelligent film for pork freshness indicator and preservation. By thoroughly investigating the effect of composite film on pork conservation and combining with it KNN, the discriminative model of pork freshness grade was established and the recognition rate of the prediction set was up to 93.3%. These results indicated that CSR film can be used for the creation of active food packaging materials.
Collapse
Affiliation(s)
- Xiaowei Huang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
- Focusight (Jiangsu) Technology Co., Ltd., No. 258-6 Jinhua Road, Wujin Economic Development Zone, Changzhou 213146, China
| | - Wanying Zhao
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
| | - Zhihua Li
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
| | - Ning Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
| | - Sheng Wang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
| | - Jiyong Shi
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
| | - Junjun Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
| | - Tingting Shen
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, China; (X.H.); (W.Z.); (N.Z.); (S.W.); (J.S.); (X.Z.); (J.Z.); (T.S.)
| |
Collapse
|
15
|
Pandey AK, Sanches Silva A, Chávez-González ML, Singh P. Recent advances in delivering free or nanoencapsulated Curcuma by-products as antimicrobial food additives. Crit Rev Biotechnol 2023; 43:1257-1283. [PMID: 36130809 DOI: 10.1080/07388551.2022.2110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Food commodities are often contaminated by microbial pathogens in transit or during storage. Hence, mitigation of these pathogens is necessary to ensure the safety of food commodities. Globally, researchers used botanicals as natural additives to preserve food commodities from bio-deterioration, and advances were made to meet users' acceptance in this domain, as synthetic preservatives are associated with harmful effects to both consumers and environments. Over the last century, the genus Curcuma has been used in traditional medicine, and its crude and nanoencapsulated essential oils (EOs) and curcuminoids were used to combat harmful pathogens that deteriorate stored foods. Today, more research is needed for solving the problem of pathogen resistance in food commodities and to meet consumer demands. Therefore, Curcuma-based botanicals may provide a source of natural preservatives for food commodities that satisfy the needs both of the food industry and the consumers. Hence, this article discusses the antimicrobial and antioxidant properties of EOs and curcuminoids derived from the genus Curcuma. Further, the action modes of Curcuma-based botanicals are explained, and the latest advances in nanoencapsulation of these compounds in food systems are discussed alongside knowledge gaps and safety assessment where the focus of future research should be placed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Mónica L Chávez-González
- Food Research Departments, School of Chemistry, Autonomous University of Coahuila, Saltillo, México
| | - Pooja Singh
- Bacteriology and Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur, India
| |
Collapse
|
16
|
Eghbaljoo H, Alizadeh Sani M, Sani IK, Maragheh SM, Sain DK, Jawhar ZH, Pirsa S, Kadi A, Dadkhodayi R, Zhang F, Jafari SM. Development of smart packaging halochromic films embedded with anthocyanin pigments; recent advances. Crit Rev Food Sci Nutr 2023; 65:770-786. [PMID: 39760237 DOI: 10.1080/10408398.2023.2280769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Nowadays, innovative biodegradable packaging based on pH-sensitive natural dyes is being developed. These smart systems quickly inform the food quality to the consumer and monitor fresh foods in real-time. Smart packaging protects food against ambiance risks and simultaneously sends information to users for variations and alterations in the packaging settings. Anthocyanin (ACY), among the natural dyes used as indicators serves as water-soluble flavonoid pigments which made reflection in light in the red-blue range and can detect chemical and microbial alterations in foods based on their pH-susceptible conditions; on the other hand, they have considerable antimicrobial and antioxidant functions that result in the longer shelf life of food products. They also have beneficial properties including anti-cancer and anti-inflammatory functions, avoidance of heart diseases, overweight, and diabetes. Hence, this paper deals with the characteristics of smart packaging films based on anthocyanins, as well as their application in various food industries.
Collapse
Affiliation(s)
- Hadi Eghbaljoo
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Karimi Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Salar Momen Maragheh
- Biotechnology Research Center (BRC), Pateur Institute of Iran, Tehran, Iran
- Department of Biotechnology, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Dinesh Kumar Sain
- Assistant Professor, Department of Chemistry, Faculty of Science, S.P. college sirohi City- sirohi (Rajasthan), India
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, kurdistan Region, Iraq
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Rasool Dadkhodayi
- Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran
| |
Collapse
|
17
|
Xu Z, Cheng Z, Tang Q, Huang K, Li H, Zou Z. Ammonia-sensitive cellulose acetate-based films incorporated with Co-BIT microcrystals for smart packaging application. Carbohydr Polym 2023; 316:121045. [PMID: 37321738 DOI: 10.1016/j.carbpol.2023.121045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, there is an increasing demand for smart packaging materials capable of effectively monitoring the food freshness. In this study, new Co-based MOF (Co-BIT) microcrystals with ammonia-sensitivity and antibacterial function were constructed and then loaded within cellulose acetate (CA) matrix to create smart active packaging materials. The influences of Co-BIT loading upon structure, physical, and functional properties of the CA films were then thoroughly explored. It was observed that microcrystalline Co-BIT was uniformly integrated inside CA matrix, which caused significant promotions in mechanical strength (from 24.12 to 39.76 MPa), water barrier (from 9.32 × 10-6 to 2.73 × 10-6 g/m·h·Pa) and ultraviolet light protection performances of CA film. Additionally, the created CA/Co-BIT films displayed striking antibacterial efficacy (>95.0 % for both Escherichia coli and Staphylococcus aureus), favorable ammonia-sensitivity function as well as color stability. Finally, the CA/Co-BIT films were successfully applied for indicating the spoilage of shrimp through discernible color changes. These findings suggest that Co-BIT loaded CA composite films have great potential for use as smart active packaging.
Collapse
Affiliation(s)
- Zongshu Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ze Cheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Kangqi Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
18
|
Yan X, Wardana AA, Wigati LP, Meng F, Leonard S, Nkede FN, Tanaka F, Tanaka F. Characterization and bio-functional performance of chitosan/poly (vinyl alcohol)/trans-cinnamaldehyde ternary biopolymeric films. Int J Biol Macromol 2023; 246:125680. [PMID: 37406895 DOI: 10.1016/j.ijbiomac.2023.125680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Bioactive films of chitosan (CS)/polyvinyl alcohol (PVA)/trans-cinnamaldehyde (CIN) were prepared by co-blending, and the impact of varying concentrations (0.5, 1.0 and 1.5 %) of CIN on the physicochemical properties of the ternary films was investigated. The ATR/FT-IR analysis revealed that the bioactive film is modulated by Schiff base (C=N) and hydrogen-bond interactions of CS, PVA, and CIN. Inclusion of CIN into the film improved mechanical properties with tensile strength increased from 0.5 % (68.52 MPa) to 1.5 % (76.95 MPa). The presence of CIN within the CS/PVA film also remarkably affected oxygen permeability and improved light transmittance. Additionally, the water barrier and contact angle properties were improved with increasing CIN content. The morphology of the CIN-containing films appeared non-stratified and dense when observed by SEM and AFM. Moreover, spore germination and in vitro assays confirmed strong antifungal activity of the CIN-containing film against P. italicum (~90 %) and B. cinerea (~85 %). The ternary films also exhibited excellent antioxidant activity, as evidenced by DPPH radical scavenging activity (31.43 %) and ferric reducing power (OD700 nm = 0.172) at the highest CIN concentration tested. Thus, this bioactive CIN films are proposed as a versatile packaging material for the food industry.
Collapse
Affiliation(s)
- Xirui Yan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Ata Aditya Wardana
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Laras Putri Wigati
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fanze Meng
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Sergio Leonard
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Francis Ngwane Nkede
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fumina Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan.
| | - Fumihiko Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Miao Y, Chen Z, Zhang J, Li N, Wei Z, Zhang Y, Wu X, Liu J, Gao Q, Sun X, Sun Q, Zhang J. Exopolysaccharide riclin and anthocyanin-based composite colorimetric indicator film for food freshness monitoring. Carbohydr Polym 2023; 314:120882. [PMID: 37173036 DOI: 10.1016/j.carbpol.2023.120882] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023]
Abstract
Food freshness monitoring is vital to ensure food safety. Recently, packaging materials incorporating pH-sensitive films have been employed to monitor the freshness of food products in real time. The film-forming matrix of the pH-sensitive film is essential to maintain the desired physicochemical functions of the packaging. Conventional film-forming matrices, such as polyvinyl alcohol (PVA), have drawbacks of low water resistance, poor mechanical properties, and weak antioxidant ability. In this study, we successfully synthesise PVA/riclin (P/R) biodegradable polymer films to overcome these limitations. The films feature riclin, an agrobacterium-derived exopolysaccharide. The uniformly dispersed riclin conferred outstanding antioxidant activity to the PVA film and significantly improved its tensile strength and barrier properties by forming hydrogen bonds. Purple sweet potato anthocyanin (PSPA) was used as a pH indicator. The intelligent film with added PSPA provided robust surveillance of volatile ammonia and changed its color within 30 s in the pH range of 2-12. This multifunctional colorimetric film also engendered discernible color changes when the quality of shrimp deteriorated, demonstrating its great potential as an intelligent packaging material to monitor food freshness.
Collapse
Affiliation(s)
- Yaqiong Miao
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Zenghui Chen
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Jinrun Zhang
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Nan Li
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Zhenxuan Wei
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Yan Zhang
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Xinyi Wu
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Junhao Liu
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Qin Gao
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China
| | - Xiaqing Sun
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China.
| | - Qi Sun
- Key Laboratory of Molecular Metabolism, Bengbu Medical College, Bengbu 233030, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
20
|
Elsabagh R, Ibrahim SS, Abd-Elaaty EM, Abdeen A, Rayan AM, Ibrahim SF, Abdo M, Imbrea F, Şmuleac L, El-Sayed AM, Abd Elghaffar RY, Morsy MK. Chitosan edible coating: a potential control of toxic biogenic amines and enhancing the quality and shelf life of chilled tuna filets. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023; 7. [DOI: 10.3389/fsufs.2023.1177010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Edible films and coatings offer great potential to support sustainable food production by lowering packaging waste, extending product shelf life, and actively preserving food quality. Using edible coatings containing plant extracts with antioxidant and antibacterial characteristics could help to enhance the quality and shelf life of fish products. In this study, the combination effect of chitosan with beetroot, curcumin, and garlic extracts on biogenic amines (BAs) reduction, biochemical quality [pH, thiobarbituric acid index (TBA), trimethylamine (TMA), and total volatile base (TVB)], shelf life and sensory characteristics of tuna filets was investigated over 14 days of refrigerated storage compared to control (uncoated) samples. The results showed that the coated samples experienced a lower increase in BAs levels than the control samples. Among the treated samples, chitosan incorporated with curcumin (CH-C) showed the highest reduction in BAs formation (1.45 – 19.33, 0.81 – 4.45, and 1.04 – 8.14 mg/kg), followed by chitosan with garlic (CH-G) (1.54 – 21.74, 0.83 – 5.77, and 1.08 – 8.84 mg/kg), chitosan with beetroot extract (CH-B) (1.56 – 31.70, 0.84 – 6.79, and 1.07 – 10.82 mg/kg), and chitosan without extract addition (CH) (1.62 – 33.83, 0.71 – 7.82 and 1.12 – 12.66 mg/kg) compared to control samples (1.62 – 59.45, 0.80 – 11.96, and 1.14 – 20.34 mg/kg) for histamine, cadaverine, and putrescine, respectively. In addition, the rate of increase in pH, TBA, TMA, and TVB of all coated treatments was lower than in the control samples. Sensory evaluation results revealed that chitosan-treated samples incorporated with beetroot, garlic, and curcumin extracts showed good quality and acceptability characteristics. Overall, chitosan edible coatings incorporated with beetroot, garlic, and curcumin extracts reduced the formation of biogenic amine, delayed biochemical deterioration, and extended the shelf life of tuna filets. Among the treated samples, CH-C demonstrated a remarkable superiority in all the studied parameters. Therefore, this study provides a promising strategy for the incorporation of active compounds in edible coatings to improve the quality and safety of foods during storage.
Collapse
|
21
|
Ren Z, Huang X, Shi L, Liu S, Yang S, Hao G, Qiu X, Liu Z, Zhang Y, Zhao Y, Weng W. Characteristics and potential application of myofibrillar protein from golden threadfin bream (Nemipterus virgatus) complexed with chitosan. Int J Biol Macromol 2023; 240:124380. [PMID: 37044323 DOI: 10.1016/j.ijbiomac.2023.124380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The strategies to broaden the applications of proteins involve their modification with polysaccharides. However, the characteristics and application of myofibrillar proteins (MPs) from golden threadfin bream (Nemipterus virgatus) complexed with chitosan (CS) are still unclear. Therefore, the characteristics of MPs complexed with CS and their application were investigated at different MP/CS ratios (100:0-80:20 (w/w)). The turbidity of MP/CS complexes was small at the MP/CS ratio of 95:5 (w/w). Besides, CS addition induced changes in MP structure to make it hydrophilic. Secondary structure analysis showed that α-helix and β-turn interconverted with β-sheet and random coil after the addition of CS. Additionally, the thermal stability of MP/CS mixtures enhanced after the addition of CS and the MP/CS mixtures at the ratio of 95:5 (w/w) had a relatively compact structure. High internal phase emulsions (HIPEs) prepared at the MP/CS ratio of 95:5 (w/w) were relatively stable compared to those at the other ratios. Consequently, MP/CS mixtures at suitable ratios possess the potential ability to prepare HIPEs. These results exhibit that MP/CS mixtures may be applied for constructing food-graded emulsion delivery systems with a high internal phase in the food industry.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xianglan Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Gengxin Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xujian Qiu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
22
|
Espinales C, Romero-Peña M, Calderón G, Vergara K, Cáceres PJ, Castillo P. Collagen, protein hydrolysates and chitin from by-products of fish and shellfish: An overview. Heliyon 2023; 9:e14937. [PMID: 37025883 PMCID: PMC10070153 DOI: 10.1016/j.heliyon.2023.e14937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Waste processing from fish and seafood manufacturers represents a sustainable option to prevent environmental contamination, and their byproducts offer different benefits. Transforming fish and seafood waste into valuable compounds that present nutritional and functional properties compared to mammal products becomes a new alternative in Food Industry. In this review, collagen, protein hydrolysates, and chitin from fish and seafood byproducts were selected to explain their chemical characteristics, production methodologies, and possible future perspectives. These three byproducts are gaining a significant commercial market, impacting the food, cosmetic, pharmaceutical, agriculture, plastic, and biomedical industries. For this reason, the extraction methodologies, advantages, and disadvantages are discussed in this review.
Collapse
|
23
|
Nano-chitin: Preparation strategies and food biopolymer film reinforcement and applications. Carbohydr Polym 2023; 305:120553. [PMID: 36737217 DOI: 10.1016/j.carbpol.2023.120553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Current trends in food packaging systems are toward biodegradable polymer materials, especially the food biopolymer films made from polysaccharides and proteins, but they are limited by mechanical strength and barrier properties. Nano-chitin has great economic value as a highly efficient functional and reinforcing material. The combination of nano-chitin and food biopolymers offers good opportunities to prepare biodegradable packaging films with enhanced physicochemical and functional properties. This review aims to give the latest advances in nano-chitin preparation strategies and its uses in food biopolymer film reinforcement and applications. The first part systematically introduces various preparation methods for nano-chitin, including chitin nanofibers (ChNFs) and chitin nanocrystals (ChNCs). The nano-chitin reinforced biodegradable films based on food biopolymers, such as polysaccharides and proteins, are described in the second part. The last part provides an overview of the current applications of nano-chitin reinforced food biopolymer films in the food industry.
Collapse
|
24
|
Li D, Zhong W, Li L, Tong C, Yu S, Duan M, Xu J, Liu X, Pang J, Wu C. Effect of chitin nanowhiskers on structural and physical properties of konjac glucomannan hydrogels nanocomposites. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
25
|
Recent advances in biomolecule-based films and coatings for active and smart food packaging applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Zhao R, Chen J, Yu S, Niu R, Yang Z, Wang H, Cheng H, Ye X, Liu D, Wang W. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Zhao R, Guo H, Yan T, Li J, Xu W, Deng Y, Zhou J, Ye X, Liu D, Wang W. Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension. Int J Biol Macromol 2022; 223:837-850. [PMID: 36343838 DOI: 10.1016/j.ijbiomac.2022.10.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A new multifunctional film with active and intelligent effects was developed by incorporating curcumin-clove oil emulsion into natural materials. The basic properties, functional characteristics, and pH/NH3-sensitivity of films were investigated, and then these films were applied to extend shelf-life and monitor freshness of meat. Curcumin solution and emulsion illustrated significant color variations at different pH values. The incorporation of emulsion improved the UV-vis barrier and water resistance properties of films, which blocked most of UV-light and its water contact angle reached 100.03°. Meanwhile, the films had stronger mechanical strength and higher thermal stability, with elongation at break reaching 79.18 % and the maximum degradation temperature rising to 316 °C. Moreover, emulsion made films have a slow-release effect on clove oil, which not only enhanced the antioxidant property but also significantly improved their antibacterial activity. Additionally, the multifunctional films presented a significant color response to acidic/alkaline environments over a short time interval and could be easily identified by naked eyes. Finally, the films effectively extended the shelf-life of fresh meat by 3 days at 4 °C and visually monitored freshness through color changes in real-time. This knowledge provides insights and ideas for the development of novel food packaging with both active and intelligent functions.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haocheng Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
28
|
Molaei R, Moradi M, Kahyaoğlu LN, Forough M. Application of bacterial nanocellulose decorated with zeolitic imidazolate framework (ZIF-L) as a platform for food freshness monitoring. Int J Biol Macromol 2022; 223:713-721. [PMID: 36372103 DOI: 10.1016/j.ijbiomac.2022.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Recently, the food freshness indicator (FFI) has garnered great interest from consumers and food producers. A novel FFI based on bacterial nanocellulose (BNC)/zeolitic imidazolate framework-L (ZIF-L) and grape anthocyanins was developed and characterized using field emission scanning electron microscopy, Fourier-transform infrared, X-ray diffraction, water contact angle, and BET techniques. The results confirmed that the BNC fibrils were decorated by in situ growth of ZIF-L, with a 3D flower-shaped structure and randomly multiple sharp-edged petals, and hydroxyl and oxygenated heterocycle aromatic ring functional groups on its surface. The reversibility, color stability performance, and moisture sorption of FFI were studied and its applicability in a two-layer arrangement as a visual freshness monitoring of shrimp and minced beef was evaluated. The FFI was able to distinguish (ΔE > 5) the fresh, medium fresh, and spoiled minced meat and shrimp visually during 10 and 4 days of storage at 4 °C, respectively. Also, monitoring of food chemical and microbiological parameters approved the correlation of food spoilage with the color parameters of FFI. These results confirmed the function of ZIF-L in the fabrication of highly pH-sensitive food intelligent packaging material.
Collapse
Affiliation(s)
- Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | | | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
29
|
Tunuhe A, Liu P, Ullah M, Sun S, Xie H, Ma F, Yu H, Zhou Y, Xie S. Fungal-Modified Lignin-Enhanced Physicochemical Properties of Collagen-Based Composite Films. J Fungi (Basel) 2022; 8:jof8121303. [PMID: 36547636 PMCID: PMC9783068 DOI: 10.3390/jof8121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Renewable and biodegradable materials have attracted broad attention as alternatives to existing conventional plastics, which have caused serious environmental problems. Collagen is a potential material for developing versatile film due to its biosafety, renewability, and biodegradability. However, it is still critical to overcome the low mechanical, antibacterial and antioxidant properties of the collagen film for food packaging applications. To address these limitations, we developed a new technology to prepare composite film by using collagen and fungal-modified APL (alkali pretreatment liquor). In this study, five edible and medical fungi, Cunninghamella echinulata FR3, Pleurotus ostreatus BP3, Ganoderma lucidum EN2, Schizophyllum commune DS1 and Xylariaceae sp. XY were used to modify the APL, and that showed that the modified APL significantly improved the mechanical, antibacterial and antioxidant properties of APL/Collagen composite films. Particularly, the APL modified by BP3, EN2 and XY showed preferable performance in enhancing the properties of the composite films. The tensile strength of the film was increased by 1.5-fold in the presence of the APL modified by EN2. To further understand the effect of fungal-biomodified APL on the properties of the composite films, a correlation analysis between the components of APL and the properties of composite films was conducted and indicated that the content of aromatic functional groups and lignin had a positive correlation with the enhanced mechanical and antioxidant properties of the composite films. In summary, composite films prepared from collagen and fungal biomodified APL showed elevated mechanical, antibacterial and antioxidant properties, and the herein-reported novel technology prospectively possesses great potential application in the food packaging industry.
Collapse
Affiliation(s)
- Alitenai Tunuhe
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengyang Liu
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Su Sun
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Urban Construction, Wuchang Shouyi University, Wuhan 430074, China
| | - Hua Xie
- Guangxi Shenguan Collagen Technology Research Institute, Guangxi Shenguan Collagen Biological Group, Wuzhou 543000, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaxian Zhou
- Guangxi Shenguan Collagen Technology Research Institute, Guangxi Shenguan Collagen Biological Group, Wuzhou 543000, China
- Correspondence: (Y.Z.); (S.X.); Tel.: +86-0774-2035538 (Y.Z.); +86-27-87792108 (S.X.)
| | - Shangxian Xie
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.Z.); (S.X.); Tel.: +86-0774-2035538 (Y.Z.); +86-27-87792108 (S.X.)
| |
Collapse
|
30
|
Saad S, Dávila I, Morales A, Labidi J, Moussaoui Y. Cross-Linked Carboxymethylcellulose Adsorbtion Membranes from Ziziphus lotus for the Removal of Organic Dye Pollutants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8760. [PMID: 36556565 PMCID: PMC9785501 DOI: 10.3390/ma15248760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The goal of this study is to assess Ziziphus lotus's potential for producing carboxymethylcellulose adsorption membranes with the ability to adsorb methyl green from wastewaters by the revalorization of its cellulosic fraction. The cellulose from this feedstock was extracted by an alkaline process and TAPPI standard technique T 203 cm-99 and afterwards they were carboxymethylated. The obtained carboxymethylcelluloses were deeply characterized, being observed that the carboxymethylcellulose produced from the alkaline cellulose presented the higher solubility due to its lower crystallinity degree (53.31 vs. 59.4%) and its higher substitution degree (0.85 vs. 0.74). This carboxymethylcellulose was cross-linked with citric acid in an aqueous treatment in order to form an adsorption membrane. The citric acid provided rigidity to the membrane and although it was hydrophilic it was not soluble in water. By evaluating the potential of the produced membrane for the removal of pollutant dyes from wastewater, it was observed that the adsorption membrane prepared from the carboxymethylcellulose's produced from the Ziziphus lotus was able to remove 99% of the dye, methyl green, present in the wastewater. Thus, this work demonstrates the potential of the Ziziphus lotus for the production of a novel and cost-effective carboxymethylcellulose adsorption membrane with high capacity to treat wastewaters.
Collapse
Affiliation(s)
- Sara Saad
- Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Izaskun Dávila
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Calle Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
| | - Amaia Morales
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Younes Moussaoui
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
31
|
McReynolds C, Adrien A, Petitpas A, Rubatat L, Fernandes SCM. Double Valorization for a Discard-α-Chitin and Calcium Lactate Production from the Crab Polybius henslowii Using a Deep Eutectic Solvent Approach. Mar Drugs 2022; 20:717. [PMID: 36421995 PMCID: PMC9695577 DOI: 10.3390/md20110717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 04/25/2024] Open
Abstract
Polybius henslowii, an abundant yet unexploited species of swimming crab, was investigated as a potential source of α-chitin and calcium lactate using deep eutectic solvents (DES) as extracting solvents. Choline chloride-malonic acid (CCMA) and choline chloride-lactic acid (CCLA) were used to obtain high purity α-chitin from ball-milled P. henslowii exoskeleton in 2 h at 120 °C, with yields of 12.05 ± 2.54% and 12.8 ± 1.54%, respectively. The physical and chemical characteristics of the obtained chitins were assessed using CHN elemental analysis, attenuated total reflectance-Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Furthermore, the CCLA solvent was reusable three times with little effect on the extract purity, and calcium lactate was produced at the end of the recycling cycles. The ensuing calcium lactate was also characterized in terms of chemical and physical properties. The obtained chitin is a promising raw material for downstream processing and the double valorization pathway with the obtention of calcium salts may increase the viability of a DES-based approach for the processing of mineralized substrates.
Collapse
Affiliation(s)
- Colin McReynolds
- Universite de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Amandine Adrien
- Universite de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Arnaud Petitpas
- Universite de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Laurent Rubatat
- Universite de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France
| | - Susana C. M. Fernandes
- Universite de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| |
Collapse
|
32
|
Amiri H, Aghbashlo M, Sharma M, Gaffey J, Manning L, Moosavi Basri SM, Kennedy JF, Gupta VK, Tabatabaei M. Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals. NATURE FOOD 2022; 3:822-828. [PMID: 37117878 DOI: 10.1038/s43016-022-00591-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 04/30/2023]
Abstract
Crustacean waste, consisting of shells and other inedible fractions, represents an underutilized source of chitin. Here, we explore developments in the field of crustacean-waste-derived chitin and chitosan extraction and utilization, evaluating emerging food systems and biotechnological applications associated with this globally abundant waste stream. We consider how improving the efficiency and selectivity of chitin separation from wastes, redesigning its chemical structure to improve biotechnology-derived chitosan, converting it into value-added chemicals, and developing new applications for chitin (such as the fabrication of advanced nanomaterials used in fully biobased electric devices) can contribute towards the United Nations Sustainable Development Goals. Finally, we consider how gaps in the research could be filled and future opportunities could be developed to make optimal use of this important waste stream for food systems and beyond.
Collapse
Affiliation(s)
- Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Environmental Research Institute, University of Isfahan, Isfahan, Iran
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Minaxi Sharma
- Laboratoire de 'Chimie Verte et Produits Biobasés', Haute Ecole Provinciale de Hainaut-Département AgroBioscience et Chimie, Ath, Belgium
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Munster, Ireland
- BiOrbic, Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Louise Manning
- The Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK
| | | | | | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, UK.
- Center for Safe and Improved Food, SRUC, Edinburgh, UK.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.
| |
Collapse
|
33
|
Cheng H, Chen L, McClements DJ, Xu H, Long J, Zhao J, Xu Z, Meng M, Jin Z. Recent advances in the application of nanotechnology to create antioxidant active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2890-2905. [PMID: 36178259 DOI: 10.1080/10408398.2022.2128035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nanotechnology is being used to create innovative food packaging systems that can inhibit the oxidation of foods, thereby improving their quality, safety, and shelf life. These nano-enabled antioxidant packaging materials may therefore increase the healthiness and sustainability of the food supply chain. Recent progress in the application of nanotechnology to create antioxidant packaging materials is reviewed in this paper. The utilization of nanoparticles, nanofibers, nanocrystals, and nanoemulsions to incorporate antioxidants into these packaging materials is highlighted. The application of nano-enabled antioxidant packaging materials to preserve meat, seafood, fruit, vegetable, and other foods is then discussed. Finally, future directions and challenges in the development of this kind of active packaging material are highlighted to stimulate new areas of future research. Nanotechnology has already been used to create antioxidant packaging materials that inhibit oxidative deterioration reactions in foods, thereby prolonging their shelf life and reducing food waste. However, the safety, cost, efficacy, and scale-up of this technology still needs to be established before it will be commercially viable for many applications.
Collapse
Affiliation(s)
- Hao Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | | | - Hao Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
34
|
Li B, Bao Y, Li J, Bi J, Chen Q, Cui H, Wang Y, Tian J, Shu C, Wang Y, Lang Y, Zhang W, Tan H, Huang Q, Si X. A sub-freshness monitoring chitosan/starch-based colorimetric film for improving color recognition accuracy via controlling the pH value of the film-forming solution. Food Chem 2022; 388:132975. [PMID: 35447591 DOI: 10.1016/j.foodchem.2022.132975] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
The demand for intelligent packaging in food sub-freshness monitoring is increasing. Herein, a pH and NH3 responsing colorimetric film (PS-CH-LCA) was fabricated based on potato starch (PS), chitosan (CH) and Lonicera caerulea L. anthocyanins (LCA) via controlling the pH value of the film-forming solution, and was applied to the real-time monitoring of shrimp freshness. The PS-CH-LCA pH 2.5 film exhibited the highest tensile strength (6.43 MPa), the lowest water solubility (33.11%) and the most sensitive color responsiveness. Morphological and structural results revealed that CH was attached to the surface of PS via hydrogen bond, and anthocyanins were well immobilized in the film-forming matrix. The sensitive color change and its high correlation with spoilage indices demonstrated the PS-CH-LCA pH 2.5 film well indicated fresh, sub-fresh, spoiled level of shrimp. The results solved the limitation of chitosan-based packaging films in undistinguishable colorimetric endpoints, providing a new strategy for indicating the sub-freshness of food packaging.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, National Risk Assessment Laboratory of Agro-products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, National Risk Assessment Laboratory of Agro-products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxuan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qunxing Huang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
35
|
Kaya E, Kahyaoglu LN, Sumnu G. Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. Int J Biol Macromol 2022; 221:536-546. [PMID: 36089086 DOI: 10.1016/j.ijbiomac.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Composite films were prepared by combining different concentrations of curcumin with chitin and glucan complexes (CGCs) extracted from Agaricus bisporus via a solution casting method. The developed curcumin doped CGC (CGC/Cu) films were characterized in terms of surface, optical, structural, barrier, mechanical, antioxidant, and antimicrobial properties. The biodegradability of CGC/Cu films was determined in soil for 14 days. The incorporation of curcumin significantly affected the surface morphology and improved light barrier properties, radical scavenging activity, and total phenolic content of the films. The CGC/Cu films containing different concentrations of curcumin showed antibacterial activity against Escherichia coli, while antibacterial activity against Staphylococcus aureus was not observed with the developed films. Afterward, the microbial properties of the fresh chicken breast were examined during refrigerated storage for 10 days. The shelf-life of chicken samples wrapped in the developed film was extended at least 40 % compared to the control sample. In conclusion, curcumin incorporated CGC based films can serve as a promising biodegradable active packaging material to improve the shelf-life of meat products.
Collapse
Affiliation(s)
- Ecem Kaya
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | | | - Gulum Sumnu
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
36
|
Development and physicochemical characterization of a novel intelligent composite films incorporating curcumin into levan-chitosan. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Duan A, Yang J, Wu L, Wang T, Liu Q, Liu Y. Preparation, physicochemical and application evaluation of raspberry anthocyanin and curcumin based on chitosan/starch/gelatin film. Int J Biol Macromol 2022; 220:147-158. [PMID: 35963358 DOI: 10.1016/j.ijbiomac.2022.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 01/20/2023]
Abstract
Raspberry anthocyanin (RA) from Rubus idaeus L. (Rosaceae) and curcumin (Cur) from Curcuma longa L. (Zingiberaceae) can effectively improve the physicochemical properties of composite films, and as bioactive pigment components, they can impart pH-responsive properties to the film. In this study, RA and Cur were added to chitosan/starch/gelatin composite film (CSG) to prepare CSG-RA, CSG-Cur, CSG-RA/Cur82 and CSG-RA/Cur73 color films by solution casting method. The color films could change color under different pH conditions and had higher antioxidant activities using ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The results from fourier transform infrared spectroscopy and scanning electron microscopy showed that RA and Cur were well dispersed in the CSG matrix and improved the structure of the composite films. The hydrophobic Cur increased the tensile strength from 6 Mpa (CSG) to 14 Mpa (CSG-Cur), but reduced the elongation at break from 55 % (CSG) to 40 % (CSG-Cur). These color films had a good fresh-keeping effect and freshness monitoring, in particular, CSG-RA/Cur73, had the better opacity, water solubility, thickness, moisture content and water vapor permeability than the other films. Briefly, binary pigment films had the potential to become a pH-sensitive indicator/packing film.
Collapse
Affiliation(s)
- Anbang Duan
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China; Shanxi Jingxi Biotechnology Co., Ltd, Taiyuan, Shanxi, 030051, China.
| | - Liyang Wu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Tao Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Qingye Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Yongping Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| |
Collapse
|
38
|
Amaregouda Y, Kamanna K, Gasti T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int J Biol Macromol 2022; 218:799-815. [PMID: 35905759 DOI: 10.1016/j.ijbiomac.2022.07.174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The present work describes the natural anthocyanin from Jacaranda cuspidifolia (JC) flower immobilized within a biopolymer matrix composed of chitosan (CS) and polyvinyl alcohol (PVA) gave novel intelligent/active packaging films (CPC). We introduced microwave irradiation to prepare polymeric composite films noticed faster mixing of the polymers and extract take place than the conventional method. The prepared composite films are characterized by various analytical and spectroscopic techniques. The smooth SEM images demonstrated CS/PVA matrix miscibility and compatibility with anthocyanin for the film formation. The addition of anthocyanin to the CS/PVA films significantly reduced UV-Vis light transmission, while causing a slight decrease in the films transparency. An increased anthocyanin concentration on polymer films showed improved oxygen permeability (77.09 %), moisture retention capacity (11.64 %), and water vapor transmission rate (43.10 %) substantially. Additionally, the prepared CPC smart films exhibited strong antioxidant (97.92 %) as well as antibacterial activities against common foodborne pathogens such as S. aureus, and E. coli. Furthermore, the prepared smart films demonstrated pink color in acidic, while grey to yellowish in basic solvent. Further, the color response of the freshness label was consistent with the spoilage Total Volatile Basic-Nitrogen (TVB-N) content determined in the fish samples with varied time period. The CPC smart films also showed promising application in terms of monitoring freshness of the fish fillets at room temperature. The obtained results suggested that, the prepared CPC smart films have potential to be used as quality indicator in the marine food packaging system.
Collapse
Affiliation(s)
- Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India.
| | - Tilak Gasti
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
39
|
Preparation and Performance Characterization of a Composite Film Based on Corn Starch, κ-Carrageenan, and Ethanol Extract of Onion Skin. Polymers (Basel) 2022; 14:polym14152986. [PMID: 35893950 PMCID: PMC9330010 DOI: 10.3390/polym14152986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022] Open
Abstract
Using corn starch (CS) and κ-carrageenan(κC) as the raw material and active composite, respectively, films containing different concentrations of ethanol extract of onion skin were prepared. The effects of different concentrations of ethanol extract of onion skin (EEOS) on the physicochemical properties, as well as the antioxidant and antibacterial properties, of CS/κC films were also discussed. The addition of ethanol extract of onion skin inhibited the recrystallization of starch molecules in the composite films. It affected the microstructure of the composite films. The color of the composite films was deepened, the brightness was reduced, and the opacity was increased. Water vapor permeability increased, tensile strength decreased, and elongation at the break increased. The glass-transition temperature decreased. The clearance of DPPH radicals and ABTS cation radicals increased. Moreover, when the concentration of EEOS was 3%, the antioxidant effect of the films on oil was greatly improved and could effectively inhibit Staphylococcus aureus and Escherichia coli. The above results showed that adding ethanol extract of onion skin improved the physicochemical properties and biological activities of the CS/κC composite films, so CS/κC/EEOS composite films can be used as an active packaging material to extend food shelf-life. These results can provide a theoretical basis for the production and application of corn starch/κ-carrageenan/ethanol extract of onion skin composite films.
Collapse
|
40
|
Wu JH, Hu TG, Wang H, Zong MH, Wu H, Wen P. Electrospinning of PLA Nanofibers: Recent Advances and Its Potential Application for Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8207-8221. [PMID: 35775601 DOI: 10.1021/acs.jafc.2c02611] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(lactic acid), also abbreviated as PLA, is a promising biopolymer for food packaging owing to its environmental-friendly characteristic and desirable physical properties. Electrospinning technology makes the production of PLA-based nanomaterials available with expected structures and enhanced barrier, mechanical, and thermal properties; especially, the facile process produces a high encapsulation efficiency and controlled release of bioactive agents for the purpose of extending the shelf life and promoting the quality of foodstuffs. In this study, different types of electrospinning techniques used for the preparation of PLA-based nanofibers are summarized, and the enhanced properties of which are also described. Moreover, its application in active and intelligent packaging materials by introducing different components into nanofibers is highlighted. In all, the review establishes the promising prospects of PLA-based nanocomposites for food packaging application.
Collapse
Affiliation(s)
- Jia-Hui Wu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Teng-Gen Hu
- Sericultural&Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510640, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
41
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Zheng Y, Li X, Huang Y, Li H, Chen L, Liu X. Two colorimetric films based on chitin whiskers and sodium alginate/gelatin incorporated with anthocyanins for monitoring food freshness. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Matthew SAL, Egan G, Witte K, Kaewchuchuen J, Phuagkhaopong S, Totten JD, Seib FP. Smart Silk Origami as Eco-sensors for Environmental Pollution. ACS APPLIED BIO MATERIALS 2022; 5:3658-3666. [PMID: 35575686 PMCID: PMC9382635 DOI: 10.1021/acsabm.2c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Origami folding is
an easy, cost-effective, and scalable fabrication
method for changing a flat material into a complex 3D functional shape.
Here, we created semicrystalline silk films doped with iron oxide
particles by mold casting and annealing. The flat silk films could
be loaded with natural dyes and folded into 3D geometries using origami
principles following plasticization. They performed locomotion under
a magnetic field, were reusable, and displayed colorimetric stability.
The critical parameters for the design of the semi-autonomous silk
film, including ease of folding, shape preservation, and locomotion
in the presence of a magnetic field, were characterized, and pH detection
was achieved by eye and by digital image colorimetry with a response
time below 1 min. We demonstrate a practical application—a
battery-free origami silk boat—as a colorimetric sensor for
waterborne pollutants, which was reusable at least five times. This
work introduces silk eco-sensors and merges responsive actuation and
origami techniques.
Collapse
Affiliation(s)
- Saphia A. L. Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, U.K
| | - Gemma Egan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, U.K
| | - Kimia Witte
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, U.K
| | - Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, U.K
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, U.K
| | - John D. Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, U.K
| | - F. Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, U.K
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, GlasgowG1 1RD, U.K
| |
Collapse
|
44
|
Contributions of Women in Recent Research on Biopolymer Science. Polymers (Basel) 2022; 14:polym14071420. [PMID: 35406293 PMCID: PMC9003506 DOI: 10.3390/polym14071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Nowadays, biopolymers are playing a fundamental role in our society because of the environmental issues and concerns associated with synthetic polymers. The aim of this Special Issue entitled ‘Women in Polymer Science and Technology: Biopolymers’ is highlighting the work designed and developed by women on biopolymer science and technology. In this context, this short review aims to provide an introduction to this Special Issue by highlighting some recent contributions of women around the world on the particular topic of biopolymer science and technology during the last 20 years. In the first place, it highlights a selection of important works performed on a number of well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly, it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their synthesis and in their degradation. These contributions will be paving the way for the next generation of female and male scientists on this topic.
Collapse
|
45
|
Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films. COATINGS 2022. [DOI: 10.3390/coatings12020144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biobased nanomaterials have gained growing interest in recent years for the sustainable development of composite films and coatings, providing new opportunities and high-performance products. In particular, chitin and cellulose nanocrystals offer an attractive combination of properties, including a rod shape, dispersibility, outstanding surface properties, and mechanical and barrier properties, which make these nanomaterials excellent candidates for sustainable reinforcing materials. Until now, most of the research has been focused on cellulose nanomaterials; however, in the last few years, chitin nanocrystals (ChNCs) have gained more interest, especially for biomedical applications. Due to their biological properties, such as high biocompatibility, biodegradability, and antibacterial and antioxidant properties, as well as their superior adhesive properties and promotion of cell proliferation, chitin nanocrystals have emerged as valuable components of composite biomaterials and bioactive materials. This review attempts to provide an overview of the use of chitin nanocrystals for the development of bioactive composite films in biomedical and packaging systems.
Collapse
|
46
|
Grabska-Zielińska S, Gierszewska M, Olewnik-Kruszkowska E, Bouaziz M. Polylactide Films with the Addition of Olive Leaf Extract-Physico-Chemical Characterization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7623. [PMID: 34947221 PMCID: PMC8706180 DOI: 10.3390/ma14247623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
The aim of this work was to obtain and characterize polylactide films (PLA) with the addition of poly(ethylene glycol) (PEG) as a plasticizer and chloroformic olive leaf extract (OLE). The composition of OLE was characterized by LC-MS/MS techniques. The films with the potential for using in the food packaging industry were prepared using a solvent evaporation method. The total content of the phenolic compounds and DPPH radical scavenging assay of all the obtained materials have been tested. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (FTIR-ATR) allows for determining the molecular structure, while Scanning Electron Microscopy (SEM) indicated differences in the films' surface morphology. Among other crucial properties, mechanical properties, thickness, degree of crystallinity, water vapor permeation rate (WVPR), and color change have also been evaluated. The results showed that OLE contains numerous active substances, including phenolic compounds, and PLA/PEG/OLE films are characterized by improved antioxidant properties. The OLE addition into PLA/PEG increases the material crystallinity, while the WVPR values remain almost unaffected. From these studies, significant insight was gained into the possibility of the application of chloroform as a solvent for both olive leaf extraction and for the preparation of OLE, PLA, and PEG-containing film-forming solutions. Finally, evaporation of the solvent from OLE can be omitted.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Mohamed Bouaziz
- Electrochemistry and Environmental Laboratory, National Engineering School of Sfax, University of Sfax, BP1173, Sfax 3038, Tunisia;
| |
Collapse
|
47
|
Bioactive Edible Films and Coatings Based in Gums and Starch: Phenolic Enrichment and Foods Application. COATINGS 2021. [DOI: 10.3390/coatings11111393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Edible films and coatings allow preserving fresh and processed food, maintaining quality, preventing microbial contamination and/or oxidation reactions and increasing the shelf life of food products. The structural matrix of edible films and coatings is mainly constituted by proteins, lipids or polysaccharides. However, it is possible to increase the bioactive potential of these polymeric matrices by adding phenolic compounds obtained from plant extracts. Phenolic compounds are known to possess several biological properties such as antioxidant and antimicrobial properties. Incorporating phenolic compounds enriched plant extracts in edible films and coatings contribute to preventing food spoilage/deterioration and the extension of shelf life. This review is focused on edible films and coatings based on gums and starch. Special attention is given to bioactive edible films and coatings incorporating plant extracts enriched in phenolic compounds.
Collapse
|