1
|
Jiang G, Yang Y, Sheng W, Yang L, Yang H, Tang T, Wang C, Tian Y. Preparation and characterization of κ-carrageenan/dextran films blended with nano-ZnO and anthocyanin for intelligent food packaging. Int J Biol Macromol 2024:137203. [PMID: 39489236 DOI: 10.1016/j.ijbiomac.2024.137203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The κ-carrageenan/microbial-originated dextran-based multifunctional intelligent packaging films, integrated with natural anthocyanins as a colorant and ZnO as an antibacterial agent, were successfully developed using a casting method. Their applicability and functionality were systematically assessed through various analytical techniques. The addition of dextran, anthocyanins, and ZnO in the films resulted in an increased tensile strength (from 13.66 ± 0.53 to 29.70 ± 1.29 MPa) and elongation at break (from 16.69 ± 1.05 % to 39.49 ± 0.73 %), and decreased water solubility (from 64.94 ± 0.34 % to 32.84 ± 1.55 %) and water vapor barrier property (from 8.29 ± 0.12 × 10-10 g.m/m2.s.Pa to 6.92 ± 0.1 × 10-10 g.m/m2.s.Pa). Spectroscopic analysis revealed that the dextran, ZnO and anthocyanins were uniformly dispersed within the film-forming substrates, achieved through hydrogen bonds and electrostatic interactions. The addition of anthocyanins and ZnO not only enhanced the antibacterial and antioxidant properties of the film but also provided it with good pH sensitivity and color stability, making it highly promising for use in shrimp freshness monitoring. All the films were shown to be biodegradable, decomposing completely in soil within 30 days. Overall, these results suggest that the films could serve as a potential replacement for plastic food packaging and additionally monitor the freshness of food.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Yicheng Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - WenYang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Sheng W, Yang L, Yang Y, Wang C, Jiang G, Tian Y. Photo-responsive Cu-tannic acid nanoparticle-mediated antibacterial film for efficient preservation of strawberries. Food Chem 2024; 464:141711. [PMID: 39447267 DOI: 10.1016/j.foodchem.2024.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The existing films used for fruit preservation suffer from insufficient preservation abilities. This study introduces Cu-tannic acid (Cu-TA) nanoparticles, synthesized from tannic acid (TA) and Cu2+, to enhance food packaging properties. Integrated into a chitosan-gelatin (CG) matrix, the resultant Cu-TA nanocomposite films exhibit superior antibacterial efficacy and killing rates of Escherichia coli and Staphylococcus aureus more than 99 %, and double the shelf life of strawberries, underscoring the exceptional freshness preservation capabilities of film. Additionally, the tensile strength of the Cu-TA nanocomposite films increased by 1.75 times, the DPPH radical scavenging percentage increased from 29.4 % to 68.4 %, and the water vapor permeability (WVP) decreased by about 60 % compared to the pure CG films. Comprehensive cytotoxicity and migration assessments confirm the safety of film, paving the way for their application in food packaging. The excellent performance of the Cu-TA nanocomposite films positions them as a formidable solution for protecting perishable food items.
Collapse
Affiliation(s)
- Wenyang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
3
|
Zhang Y, Zhang J, Yang Q, Song Y, Pan M, Kan Y, Xiang L, Li M, Zeng H. Tuning interfacial molecular asymmetry to engineer protective coatings with superior surface anchoring, antifouling and antibacterial properties. Acta Biomater 2024:S1742-7061(24)00598-1. [PMID: 39395705 DOI: 10.1016/j.actbio.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Multifunctional robust protective coatings that combine biocompatibility, antifouling and antimicrobial properties play an essential role in reducing host reactions and infection on invasive medical devices. However, developing these protective coatings generally faces a paradox: coating materials capable of achieving robust adhesion to substrates via spontaneous deposition inevitably initiate continuous biofoulant adsorption, while those employing strong hydration capability to resist biofoulant attachment have limited substrate binding ability and durability under wear. Herein, we designed a multifunctional terpolymer of poly(dopamine methyacrylamide-co-2-methacryloyloxyethyl phoasphorylcholine-co-2-(dimethylamino)-ethyl methacrylate) (P(DMA-co-MPC-co-DMAEMA)), which integrates desired yet traditionally incompatible functions (i.e., robust adhesion, antifouling, lubrication, and antimicrobial properties). Direct normal and lateral force measurements, dynamic adsorption tests, surface ion conductance mapping were applied to comprehensively investigate the nanomechanics of coating-biofloulant interactions. Catechol groups of DMA act as basal anchors for robust substrate deposition, while the highly hydrated zwitterion of MPC provides apical protection to resist biofouling and wear. Moreover, the antimicrobial property is conferred through the protonation of tertiary amine groups on DMAEMA, inhibiting infection under physiological conditions. This work provides an effective strategy for harmonizing demanded yet incompatible properties in one coating material, with significant implications for the development of multifunctional surfaces towards the advancement of invasive biomedical devices. STATEMENT OF SIGNIFICANCE: Multifunctional robust protective coatings have been widely utilized in invasive medical devices to mitigate host responses and infection. However, modified surface coatings often encounter a trade-off between robust adhesion to substrates and strong hydration capability for antifouling and antimicrobial properties. We propose a universal strategy for surface modification by dopamine-assisted co-deposition with a multifunctional terpolymer of P(DMA-co-MPC-co-DMAEMA) that simultaneously achieves robust adhesion, antifouling, and antimicrobial properties. Through elucidating the nanomechanics with fundamentally understanding the interactions between the coating and biomacromolecules, we highlight the role of DMA for substrate adhesion, MPC for biofouling resistance, and DMAEMA for antimicrobial activity. This approach presents a promising strategy for constructing multifunctional coatings on minimally invasive medical devices by tuning interfacial molecular asymmetricity to reconcile incompatible properties within one coating.
Collapse
Affiliation(s)
- Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Jiawen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qiang Yang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Song
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostic, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostic, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yajing Kan
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Li Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
| | - Mei Li
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, Nanjing 211166, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
4
|
Guo H, Sun H, Fang Y, Qin H, Wang X, Zhang Y, Zhao M, Wu H, Zhou X, Liu Y. Eco-friendly film with highly efficient sterilization for food preservation by incorporating natural products into starch/polyvinyl alcohol matrix. Int J Biol Macromol 2024; 278:135047. [PMID: 39182859 DOI: 10.1016/j.ijbiomac.2024.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
An advanced biodegradable packaging film with antimicrobial and fresh-maintaining functions was constructed by incorporating berberine and L-arginine into the starch/polyvinyl alcohol (PVA) film matrix. The film was endowed with a dual antibacterial capacity thanks to the intrinsic antibacterial capability of berberine and cascaded photodynamic sterilization. The aggregated berberine presents an excellent photodynamic activity to generate reactive oxygen species (ROS), which further triggers the NO release from L-arginine. Under the synergetic action of ROS and NO, the as-prepared film not only has an antibacterial efficiency of over 99 % against both S. aureus and E. coli but also delays fruit ripening through antagonistic effects on ethylene to extend the shelf life of food. Meanwhile, the as-prepared film presents UV-shielding properties, thermal stability, and considerable mechanical properties. Specifically, the packaging film exhibits good biocompatibility and is biodegradable, with a degradation rate of 56 % within 16 days, which has great potential for improving food safety and environmental events.
Collapse
Affiliation(s)
- Hanqiong Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hanyue Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaomin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
5
|
Zhang D, Bu N, Zhou L, Lin L, Wen Y, Chen X, Huang L, Lin H, Mu R, Wang L, Pang J. Quercetin-loaded melanin nanoparticle mediated konjac glucomannan/polycaprolactone bilayer film with dual-mode synergistic bactericidal activity for food packaging. Int J Biol Macromol 2024; 276:133982. [PMID: 39029854 DOI: 10.1016/j.ijbiomac.2024.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
It is still difficult for a single antibacterial modality to realize satisfactory management of bacterial breeding in food preservation. To solve this problem, we developed a photothermal-derived dual-mode synergistic bactericidal konjac glucomannan (KGM)/polycaprolactone (PCL) bilayer film incorporated with quercetin-loaded melanin-like nanoparticles (Q@MNPs). The results showed that the mechanical properties (TS: 29.8 MPa, EAB: 43.1 %), UV shielding properties, and water resistance (WCA: 124.1°, WVP: 3.92 g mm/m2 day kPa) of KGM-Q@MNPs/PCL bilayer films were significantly improved. More importantly, KGM-Q@MNPs/PCL bilayer film presented outstanding photothermal inversion and controlled release behavior of Q triggered by near infrared (NIR) radiation, thus contributing to excellent dual-mode synergistic antibacterial properties against E. coli and S. aureus. Meanwhile, the KGM-Q@MNPs/PCL bilayer film possessed good biocompatibility and low toxicity. As a proof-of-concept application, we further verified the significant value of film for the preservation of cherry tomatoes. Since KGM-Q@MNPs/PCL bilayer film showed excellent biodegradability, this work will aid the development of sustainable antibacterial food packaging materials.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Lizhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifan Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Zhang S, Yi J, Yuan X, Zhang Z, Shan Z, Wang H. Fabrication and characterization of carrageenan-based multifunctional films integrated with gallic acid@ZIF-8 for beef preservation. Int J Biol Macromol 2024; 274:133319. [PMID: 38908634 DOI: 10.1016/j.ijbiomac.2024.133319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The development of environmentally friendly biodegradable films is urgently required for reducing the plastic pollution crisis and ensuring food safety. Thus, here we aimed to prepare ZIF-8 that has delivery ability for gallic acid (GA) and further incorporated this material (GA@ZIF-8) into carrageenan (CA) matrix to obtain a series of CA-GA@ZIF-8 films. This design significantly improved the mechanical strength and UV barrier and reduced water vapor permeability, moisture content, and swelling rate of the CA films. CA-GA@ZIF-8 films exhibited sustainable release of GA and controlled migration of Zn2+ up to 144 h in a high-fat food simulator. Also, the composite films performed high-efficiency antioxidant activities (83.29 % for DPPH and 62.11 % for ABTS radical scavenging activity) and 99.51 % antimicrobial effects against Escherichia coli O157:H7 after 24 h. The great biocompatibility of GA@ZIF-8 and CA-GA@ZIF-8-10 % was confirmed by hemolysis, cell cytotoxicity, and mice model. Finally, the preservation experiments showed that CA-GA@ZIF-8 films could effectively maintain freshness and reduce the growth of microorganisms and oxidation of lipids during the preservation of beef. These results suggest that CA-GA@ZIF-8 films hold promising potential for improving the quality preservation of beef.
Collapse
Affiliation(s)
- Shuqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuanxuan Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhilong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Haihua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Li Q, Gong Y, Du T, Zhang L, Ma Y, Zhang T, Wu Z, Zhang W, Wang J. Modified halloysite nanotubes as GRAS nanocarrier for intelligent monitoring and food preservation. Food Chem 2024; 444:138678. [PMID: 38330598 DOI: 10.1016/j.foodchem.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Conventional "all-in-one" methods for multi-component active packaging systems are not wholly adequate for fresh food. Given the need for multifunctional properties, introducing halloysite nanotubes (HNTs) could be a promising way to achieve controllable release of active ingredients while endowing with pH-sensitive performance. Here, we pioneered a GRAS composite with multifunctional properties, employing natural HNTs as a nanocarrier, citral (Cit) as an active antimicrobial agent, and myricetin (Myr) for monitoring freshness. The Cit-HNTs-Myr had excellent DPPH, ABTS and ·OH radical scavenging capacity, dual-model (contact and fumigant) antibacterial properties, and pH-sensitive performance. Subsequently, a smart tag prepared by dipping cellulose fibers into Cit-HNTs-Myr, which extended the shelf life of shrimp and blueberries, and provided freshness information for the shrimp. These results demonstrate the applicability of Cit-HNTs-Myr in the preservation of perishable goods and freshness monitoring.
Collapse
Affiliation(s)
- Qingqing Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuxin Gong
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiyi Wu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Li C, Xia X, Tan M, Tao Y, Lv Y, Lu J, Du J, Wang H. Mechanically robust carboxymethyl cellulose/graphene oxide composite cross-linked by polyetherimide for fruits packaging and preservation system. Int J Biol Macromol 2024; 272:132816. [PMID: 38825273 DOI: 10.1016/j.ijbiomac.2024.132816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Modulating the interactions between biopolymer matrix and nanofillers highly determined the mechanical performances of composite packaging materials. Herein, we innovatively proposed a sort of eco-friendly and mechanically robust carboxymethyl cellulose/graphene oxide/tannic acid/polyetherimide (CMC/GO/TA/PEI, CGTP) composite by employing PEI as cross-linker and TA as proton donor. The amidation reaction between -NH2 and -COOH chemically connected the CMC/GO, CMC/CMC and GO/GO and the physical interaction (e.g. hydrogen bonds and molecular entanglements) was beneficial to form dense structures. The chemical/physical bonds among polymers and nanofillers contributed to dissipate the external energy. The toughness was effectively reinforced from 1.68 MJ/m3 for CGTP0 to 4.63 MJ/m3 for CGTP1.0. Furthermore, the CGTP1.0 composite film also delivered improved gas (moisture and oxygen) barriers, UV protection and antimicrobial features. Originating from these merits, the shelf life of fresh fruits (e.g. strawberries, blueberries and cherry tomatoes) was prolonged at least 5 days under ambient conditions when the packaging box was covered by the fabricated CGTP1.0 film. Our findings not only provided a facial strategy to reinforce the interactions between biopolymer matrix and nanofillers, but also boosted the development of eco-friendly packaging materials with robust structures in the area of food packaging.
Collapse
Affiliation(s)
- Chao Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
9
|
Gong D, Zhang X, Li J, Li Y, Guo J, Zhang X, Zhang W. Carbon dot/g-C 3N 4-mediated self-activated antimicrobial nanocomposite films for active packaging applications. Food Chem 2024; 438:137939. [PMID: 38006697 DOI: 10.1016/j.foodchem.2023.137939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/27/2023]
Abstract
A novel carbon dot/g-C3N4 nanocomposite (CCN) exhibiting enhanced photocatalytic activity was developed and used as a photoactive nanofiller to construct corn starch/carboxymethyl cellulose (CS/CMC)-based functional films. The morphologies and structures of the CCN-CS/CMC composite films were investigated with scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The effects of the CCN on the physicochemical properties and antibacterial activities of the films were analyzed. The properties of the films were optimized with the addition of CCN (0.20 mg/mL), and the tensile strength of the film was increased to 11.9 MPa and the water contact angle was increased to 103.39°. The optimal active film showed > 99.9 % antibacterial efficiencies against Escherichia coli and Staphylococcus aureus under visible light and prolonged the shelf lives of bananas for more than four days compared to the 4-day shelf life of the control. This work provides a novel route for developing antimicrobial active packaging.
Collapse
Affiliation(s)
- Dezhuang Gong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jiaxu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jialiang Guo
- College of Life Sciences, Changchun Normal University, Changchun, Jilin 130032, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
10
|
Wang M, Huang D, Sun Y, Yao G, Huan H, Chen J. Antibacterial Activity of Modified Sesbania Gum Composite Film and Its Preservation Effect on Wampee Fruit ( Clausena lansium (Lour.) Skeels). Foods 2024; 13:639. [PMID: 38472754 DOI: 10.3390/foods13050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
The primary challenges in fruit and vegetable preservation include extending storage duration while preserving sensory quality and nutritional value. In this study, sesbania gum (SG) was oxidized to prepare oxidized sesbania gum (OSG). An OSG/ZnO composite film was subsequently prepared, combining OSG, sodium carboxymethyl cellulose (CMC), and nano-zinc oxide (nano-ZnO). The preparation technology was determined via a response surface optimization experiment. When the addition amount of nano-ZnO exceeded 0.3 mg/mL, the composite films exhibited an antibacterial rate of over 90% against E. coli and S. aureus. For wampee (Clausena lansium (Lour.) Skeels) preservation, a OSG/ZnO-0.3 film was directly applied as a coating. The findings demonstrated favorable results in terms of the rate of rotting, soluble solids, and titrable acidity, effectively prolonging wampee fruit storage. This suggests the potential of an OSG composite film with nano-ZnO as a promising fruit packaging material, thereby expanding the application of SG and wampee fruit preservation.
Collapse
Affiliation(s)
- Mingyan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Dongfen Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Yue Sun
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Guanglong Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Hengfu Huan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Luo L, Wang M, Su W, Zhuo J, Zhang L, Zhu W, Zhang W, Wang R, Wang J. Thermal-Driven Curcumin Release Film with Dual-Mode Synergistic Antibacterial Behavior for Efficient Tangerine Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1756-1767. [PMID: 38214269 DOI: 10.1021/acs.jafc.3c07572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Antimicrobial packing showed great potential in extending the shelf life of food. However, developing a new biocomposite film with an intelligent and efficient antimicrobial performance is still desirable. Herein, a Fe-MoOx encapsulated with curcumin (Cur) filled chitosan-based composite film (CCF films) was prepared by solvent casting method. The total color differences of the CCF films were less than 30%, and satisfactory surface color, transparency, hydrophobicity, and thermal stability were also obtained. Besides, the UV-light/water/oxygen barrier capability and mechanical properties were enhanced with the incorporation of Cur@Fe-MoOx. Moreover, CCF films showed photothermal performance and thermal-controlled curcumin release ability, which endowed the CCF0.15 film with excellent antibacterial capability toward E. coli (≥99.95%) and S. aureus (≥99.96%) due to the synergistic antibacterial effect. Fe-MoOx exhibited high cell viability and less than 5% hemolysis even under the concentration of 500 μg mL-1. Based on those unique characteristics, the CCF0.15 film was chosen for tangerine preservation. The CCF0.15 film could prolong the shelf life of tangerine by at least 9 days compared with the unpacking group, and the tangerines could maintain the freshness characteristics over a 24 day storage period. Such thermal-mediated antibacterial film proposed by our work showed promising potential in food packaging.
Collapse
Affiliation(s)
- Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Meilin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Wenqiao Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| |
Collapse
|
12
|
Zhang L, Wang W, He W, Du T, Wang S, Hu P, Pan B, Jin J, Liu L, Wang J. A tailored slow-release film with synergistic antibacterial and antioxidant activities for ultra-persistent preservation of perishable products. Food Chem 2024; 430:136993. [PMID: 37527577 DOI: 10.1016/j.foodchem.2023.136993] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Rapid decrease in antibacterial efficacy of existing active packages is difficult to promisingly prevent microbial infection during the storage of perishable products. Here, we pioneered an advanced ZnO-doped hollow carbon-encapsulated curcumin (ZHC-Cur)-chitosan (CS) slow-release film (ZHC-Cur-CS) with "nano-barricade" structure through demand-oriented tailoring of the structure and components of zeolitic imidazolate framework-8 (ZIF-8) carrier. Such an exquisite structure realized the effective sustained release of Curcumin through the dual complexity of diffusion pathway by the disordered hierarchical pore structure and steric hindrance. Prepared ZHC-Cur-CS film exhibited boosting bactericidal and antioxidant abilities by virtue of the functional synergy between curcumin and ZnO. Thus, ZHC-Cur-CS film demonstrated excellent preservation performance by significantly prolonging the shelf life of Citrus (∼2.4 times). Furthermore, the upgraded mechanical strength, improved barrier ability, and proven safety laid the foundation for its practical application. These satisfactory properties underscore the applicability of ZHC-Cur-CS film for the efficient preservation of perishable products.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wen He
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Puyuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Bing Pan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jingjing Jin
- Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Lizhi Liu
- Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA..
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Li Z, Qu J, Qian L, Li Y, Liu J, Yao X, Zhang S, Valentin N, Song W. Multifunctional composite films based on polyvinyl alcohol, quaternary ammonium salt modified cellulose nanofibers and tannic acid-iron ion coordination complexes for food packaging. Int J Biol Macromol 2023; 253:126857. [PMID: 37703973 DOI: 10.1016/j.ijbiomac.2023.126857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
The development of sustainable and well-performing food packaging materials takes on critical significance, whereas it is still challenging. To overcome the shortcomings of polyvinyl alcohol (PVA) as a degradable packaging material, in this work, hydrophobic quaternary ammonium salt (QAS) modified cellulose nanofibers (CNF) and tannic acid‑iron ion coordination complexes (TA-Fe) were adopted for the preparation of functional PVA films. The modified CNF (CNF-QAS) not only improved the mechanical properties and water resistance of PVA, but also endowed it with antibacterial ability. In addition, the synergistic antibacterial capability with CNF-QAS was achieved using TA-Fe with photothermal therapy. As a result, the modulus, elongation at break, tensile strength, and water contact angle of the prepared PVA films were examined as 88 MPa, 200 %, 11.7 MPa, and 94.8°, respectively. Furthermore, with the assistance of CNF-QAS and TA-Fe, the films inhibited the growth of E. coli and S. aureus by 99.8 % and 99.7 %, respectively, and they exhibited high cell viability of 90.5 % for L929 fibroblasts. Based on the above encouraging properties, the functional PVA films could significantly extend the shelf life of oranges for over two weeks, proving the excellent application prospects in the food packaging field.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahui Qu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yan Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingtao Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue Yao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nica Valentin
- Department of Physics, "Alexandru Ioan Cuza" University of Iasi, Carol I Blvd. 11, 700506 Iasi, Romania
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China.
| |
Collapse
|
14
|
Yang Z, Wang J, Chen H, Meng H, Guo X, Yu S. Effect of localized electrochemical pH and temperature synergistic modification on the structural and antibacterial properties of pectin/polyvinyl alcohol/zinc oxide nanorod films. Int J Biol Macromol 2023; 253:126703. [PMID: 37673139 DOI: 10.1016/j.ijbiomac.2023.126703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Two low-methoxy pectins (LMPs) were obtained by local electrochemical pH modification using an H-type double-layer water bath sealed electrochemical cell at the voltage of 180 V for 3 h. The weight-average molecular weight (Mw) of citrus peel pectin (CPP) prepared in the anodic part at room temperature (CPP-A5/RT) and in the cathodic part at 5 °C (CPP-C5/RT) were 346 kDa and 328 kDa, respectively, and the degrees of methylation (DM) were 36.8 % and 11.9 %. Moreover, the second-order kinetic model was most appropriate for the degradation processes, as free radicals were generated in the anodic part and β-elimination occurred in the cathodic part. Subsequently, CPP-A5/RT and CPP-C5/RT were utilized to fabricate food packaging film blending with polyvinyl alcohol (PVA), bcZnO (ZnO coupled with bentonite and colophony) nanorods, and Ca2+ ions by casting method. Then the prepared films were studied for their ability to maintain the freshness of strawberries. The addition of Ca2+ ions and bcZnO nanorods increased the thickness, water contact angle (WCA), and mechanical properties of the composite films, while decreased water vapor permeability (WVP). Therefore, the CPP-based films, supplemented with bcZnO nanorods and crosslinked with Ca2+ ions by "egg-box" model, can serve as an antibacterial food packaging material for food preservation.
Collapse
Affiliation(s)
- Zhanwei Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin Wang
- The State Centre of Quality Supervision and Inspection for Camellia Products (Jiangxi), Ganzhou 341000, China
| | - Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hecheng Meng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Shujuan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
15
|
Wu Y, Xu F, Zhao H, Wu H, Sun C, Li Q. Furoic acid-mediated konjac glucomannan/flaxseed gum based green biodegradable antibacterial film for Shine-Muscat grape preservation. Int J Biol Macromol 2023; 253:126883. [PMID: 37709222 DOI: 10.1016/j.ijbiomac.2023.126883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Considering the growing threats to the environment and human health, such as plastic pollution and food spoilage, the development of naturally antibacterial food packaging materials with biodegradable capabilities has recently attracted considerable attention. This work applies the concept of green environmental protection to packaging technology, and a new type of green edible antibacterial packaging film was developed. The basic idea is to incorporate furoic acid (FA), which possesses excellent antibacterial activity, into the flaxseed gum and konjac glucomannan matrix (FK) as a filler to obtain a series of FK-FA bioactive films. This incorporation simultaneously improves the hydrophobicity and UV-barrier ability by 12.28 % and 42.87 %, respectively. Meanwhile, the diameters of the antibacterial zone of the FK-FA0.4% films (composite FK films containing 0.4 % FA) against E. coli and S. aureus increased to 38.98 mm and 36.29 mm from 24.00 mm of pure FK film, respectively. As a consequence, the grape sample sealed with FK-FA0.4% film remained edible on the 18th day of storage, while those packaged with commercial PE film and pure FK were seriously rotted and lost edible value on the 12th day, further confirming the enhanced preservation capacity. Finally, the as-prepared films were established to be biodegradable and were almost completely degraded within 25 days under simulated environmental conditions. Overall, these promising results show the potential of FK-FA films for replacing plastic packaging materials as eco-friendly edible films with prolonged shelf life for active packaging.
Collapse
Affiliation(s)
- Yi Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fei Xu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongyang Zhao
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Changxia Sun
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Li
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
17
|
Mavelil-Sam R, Ouseph EM, Morreale M, Scaffaro R, Thomas S. Recent Developments and Formulations for Hydrophobic Modification of Carrageenan Bionanocomposites. Polymers (Basel) 2023; 15:polym15071650. [PMID: 37050264 PMCID: PMC10097169 DOI: 10.3390/polym15071650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Versatility of the anionic algal polysaccharide carrageenan has long been discussed and explored, especially for their affinity towards water molecules. While this feature is advantageous in certain applications such as water remediation, wound healing, etc., the usefulness of this biopolymer is extremely limited when it comes to applications such as food packaging. Scientists around the globe are carrying out research works on venturing diverse methods to integrate a hydrophobic nature into these polysaccharides without compromising their other functionalities. Considering these foregoing studies, this review was designed to have an in-depth understanding of diverse methods and techniques adopted for tuning the hydrophobic nature of carrageenan-based bionanocomposites, both via surface alterations or by changes made to their chemical structure and attached functional groups. This review article mainly focused on how the hydrophobicity of carrageenan bionanocomposites varied as a function of the type and refinement of carrageenan, and with the incorporation of additives including plasticisers, nanofillers, bioactive agents, etc. Incorporation of nanofillers such as polysaccharide-based nanoparticles, nanoclays, bioceramic and mineral based nanoparticles, carbon dots and nanotubes, metal oxide nanoparticles, etc., along with their synergistic effects in hybrid bionanocomposites are also dealt with in this comprehensive review article.
Collapse
Affiliation(s)
- Rubie Mavelil-Sam
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, India;
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686 560, India;
| | | | - Marco Morreale
- Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy
- Correspondence: (M.M.); (R.S.); (S.T.)
| | - Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (M.M.); (R.S.); (S.T.)
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, India;
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686 560, India;
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
- International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam 686 650, India
- Correspondence: (M.M.); (R.S.); (S.T.)
| |
Collapse
|
18
|
Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers (Basel) 2023; 15:polym15041023. [PMID: 36850306 PMCID: PMC9967877 DOI: 10.3390/polym15041023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A biodegradable photodynamic antibacterial film (PS-CF) was prepared using the casting method, with κ-Carrageenan (κ-Car) as the film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. Chilled pork samples were coated with PS-CF and stored at 4 °C to investigate the effects of PS-CF combined with LED light irradiation (425 nm, 45 min) (PS+L+) on pork preservation during 10 days of storage. The total viable count (TVC) of bacteria, total volatile basic nitrogen value (TVB-N) and the pH of pork treated with PS+L+ were all lower than the control, and the water-holding capacity (WHC) was higher. Ten days later, the TVB-N value was 12.35 ± 0.57 mg/100 g and the TVC value was 5.78 ± 0.17 log CFU/g, which was within the acceptable range. Sensory evaluation determined that the color, odor, and overall acceptability of pork treated with PS+L+ were significantly better than the control. These findings suggest that PS+L+ treatment effectively extended the shelf life of chilled pork from ~4-5 to 10 days. Correlation analysis showed that the sensory quality of the chilled pork significantly correlated with total bacterial counts, TVB-N and thiobarbituric acid reactive substances (TBARS) (p < 0.05), suggesting that these biomarkers could be used as standard indicators for evaluating the freshness of chilled pork. These findings demonstrate the effectiveness of Cur-β-CD photodynamic antibacterial film for the preservation of chilled pork and provide a theoretical basis for the application of the film for the preservation of fresh food in general.
Collapse
|
19
|
Liang Y, Han Y, Dan J, Li R, Sun H, Wang J, Zhang W. A high-efficient and stable artificial superoxide dismutase based on functionalized melanin nanoparticles from cuttlefish ink for food preservation. Food Res Int 2023; 163:112211. [PMID: 36596142 DOI: 10.1016/j.foodres.2022.112211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Natural superoxide dismutase (SOD), consisting of proteins and metal cofactors, is widely used in food preservation because of its good antioxidant activity. However, due to the poor stability of SOD enzyme, its activity was reduced in the process of moving into the film, resulting in limited application. Based on the structure of the active site of the natural enzyme, Cu2+ was used to functionalize the melanin nanoparticles (NMPs) in ink of cuttlefish, and an SOD-like nanozyme (Cu-NMPs) with high stability, high activity and strong free radical scavenging capacity was constructed. In order to apply the constructed simulated enzyme to food preservation, the simulated enzyme was embedded into carrageenan (Carr) films to prepare the composite film for food packaging. The results showed that when the concentration of Cu-NMPs was 10 μg/mL, the ·O2- rate could reach more than 80 %, the activity exceeded that of 60 U/mL natural SOD. In addition, the fresh-keeping test of cherry tomatoes showed that Carr/Cu-NMPs composite film extended the storage time of cherry tomatoes by more 3 days. Therefore, the present work showed that nanozymes with advanced catalytic capabilities can be constructed by metal ions and NMPs, thus successfully combined with food packaging for food preservation.
Collapse
Affiliation(s)
- Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaru Han
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Runli Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Du T, Li X, Wang S, Su Z, Sun H, Wang J, Zhang W. Phytochemicals-based edible coating for photodynamic preservation of fresh-cut apples. Food Res Int 2023; 163:112293. [PMID: 36596197 DOI: 10.1016/j.foodres.2022.112293] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nature-derived chemicals have recently gained increased attention to settle down the challenges in the food industry. Quercetin has long been used as a natural medicine but its photoactivity has been neglected. In this work, by combining photodynamic bacteria inactivation (PDI) with an edible coating (Pectin/Quercetin) derived from FDA-approved chemicals, extend shelf-life and protected commercial quality of fresh-cut apples were achieved. Firstly, the potential photoactivated antibacterial performance of Quercetin (a natural plant flavonoid) was clarified with the treatment of a simulated sunlight lamp, realizing antibacterial efficacy of 100 % towards S. aureus (50 min) and L. monocytogenes (80 min) with light treatment. To develop safe and effective preservation of fresh-cut apples, Pectin/Quercetin edible coatings with 100 μmol/L quercetin were adopted. The results showed that the prepared edible coatings form a protective barrier over the surface of apples, effectively resisting bacterial infection and extending shelf life to 10 days while maintaining good commercial quality (including preferable color, keeping 100 % hardness, 80 % sugar content and 17.3 % weightlessness rate). Therefore, the prepared light-driven Pectin/Quercetin in this work has the potential to develop as fresh-cut fruit preservation technology.
Collapse
Affiliation(s)
- Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - ShaoChi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
21
|
Dai L, Li R, Liang Y, Liu Y, Zhang W, Shi S. Development of Pomegranate Peel Extract and Nano ZnO Co-Reinforced Polylactic Acid Film for Active Food Packaging. MEMBRANES 2022; 12:1108. [PMID: 36363663 PMCID: PMC9694470 DOI: 10.3390/membranes12111108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The multifunctional packaging used for fresh food, such as antioxidant and antimicrobial packaging, can reduce food waste. In this work, a polylactic acid (PLA)-based composite film with antioxidant and antibacterial properties was prepared by using nano-zinc oxide (ZnONPs) and pomegranate peel extract (PEE) via the solvent-casting method. Different amounts of PEE (0.5, 1, 1.5 and 2 wt%) and 3 wt% ZnONPs were added to PLA to produce the active films. The results of various characterizations (SEM, XRD, etc.) showed that ZnONPs and PEE were uniformly dispersed in PLA film. Compared to PLA films, the PLA/ZnONPs/PEE films showed an increased UV barrier, water vapor permeability and elongation at break, and decreased transparency and tensile strength. In addition, the antioxidant activity of the composite film was evaluated based on DPPH and ABTS. The maximum DPPH and ABTS scavenging activities of PLA/ZnONPs/PEE were 96.2 ± 0.8% and 93.1 ± 0.5%. After 24 h, PLA/ZnONPs/PEE composite film inhibited 1.4 ± 0.05 Log CFU/mL of S. aureus and 8.2 ± 0.35 Log CFU/mL of E. coli, compared with the blank group. The results showed that PLA/ZnONPs/PEE composite film had good antibacterial and antioxidant activities. Therefore, the composite film showed great potential for food packaging.
Collapse
Affiliation(s)
- Lu Dai
- Department of Biological Engineering, Yangling Vocational and Technical College, Xianyang 712100, China
| | - Runli Li
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Yanmin Liang
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Yingsha Liu
- Department of Biological Engineering, Yangling Vocational and Technical College, Xianyang 712100, China
| | - Wentao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
22
|
Chen J, Zhang X, Bassey AP, Xu X, Gao F, Guo K, Zhou G. Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges. Crit Rev Food Sci Nutr 2022; 64:3583-3603. [PMID: 36239319 DOI: 10.1080/10408398.2022.2133077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As living standards rise, the demand for high-quality chilled meat among consumers also grows. Researchers and enterprises have been interested in ensuring the quality of chilled meat in all links of the downstream industry. Nanozyme has shown the potential to address the aforementioned requirements. Reasons and approaches for the application of nanozymes in the freshness assessment or shelf life extension of chilled meat were discussed. The challenges for applying these nanozymes to ensure the quality of chilled meat were also summarized. Finally, this review examined the safety, regulatory status, and consumer attitudes toward nanozymes. This review revealed that the freshness assessment of chilled meat is closely related to mimicking the enzyme activities of nanozymes, whereas the shelf life changes of chilled meat are mostly dependent on the photothermal activities and pseudophotodynamic activities of nanozymes. In contrast, studies regarding the shelf life of chilled meat are more challenging to develop, as excessive heat or reactive oxygen species impair its quality. Notably, meat contains a complex matrix composition that may interact with the nanozyme, reducing its effectiveness. Nanopollution and mass manufacturing are additional obstacles that must be overcome. Therefore, it is vital to choose suitable approaches to ensure meat quality. Furthermore, the safety of nanozymes in meat applications still needs careful consideration owing to their widespread usage.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen, Germany
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kaijin Guo
- Institute of Orthopedics, Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Wang Q, Chen W, Ma C, Chen S, Liu X, Liu F. Enzymatic synthesis of sodium caseinate-EGCG-carboxymethyl chitosan ternary film: Structure, physical properties, antioxidant and antibacterial properties. Int J Biol Macromol 2022; 222:509-520. [PMID: 36122777 DOI: 10.1016/j.ijbiomac.2022.09.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
Proteins and polysaccharides have been frequently used in recent years to prepare environment-friendly packaging materials. However, films based on proteins or polysaccharides alone often have poor performance as packaging, so they need to be combined to improve properties. In this work, we applied enzyme technology to prepare sodium caseinate (SC)-carboxymethyl chitosan (CMC) films, incorporating epigallocatechin gallate (EGCG) as bridging molecules and antibacterial agents. SC-EGCG-CMC ternary conjugate was firstly synthesized by tyrosinase (Tyr), and the composite films were then prepared with the aid of glycerol. Under tyrosinase catalytic conditions, EGCG could cross-link with SC and CMC covalently. The effects of different concentrations of EGCG and tyrosinase on mechanical properties, water vapor permeability, antibacterial properties and free radical scavenging ability were studied. The crosslinking degree and mechanical properties were improved with the increase of EGCG and tyrosinase content. The film showed good antibacterial activity against Gram-positive bacteria. In addition, the antibacterial activity and free radical scavenging ability increased with the increase of EGCG concentration. This work provides an efficient enzymatic method to prepare films with good strength and antibacterial properties, which can be used to improve the storage quality of foods.
Collapse
Affiliation(s)
- Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|