1
|
Yen PL, Lin TA, Chuah WL, Chang CY, Tseng YH, Huang CY, Yang JC, Hsu FL, Liao VHC. Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules 2023; 28:6923. [PMID: 37836767 PMCID: PMC10574689 DOI: 10.3390/molecules28196923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cirsium japonicum DC. var. australe Kitam. has been used as an herbal remedy and often involves using the whole plant or roots. However, the bioactivities of different parts of the plant have been far less explored. This study aimed to evaluate the antioxidative ability of methanol extracts from the flowers, leaves, stems, and roots of the Cirsium plant and their possible active components against juglone-induced oxidative stress in the nematode Caenorhabditis elegans. The results showed that the highest dry weight (12.3 g per plant) was observed in leaves, which was followed by stems (8.0 g). The methanol extract yields from the flowers, leaves, and roots were all similar (13.0-13.8%), while the yield from stems was the lowest (8.6%). The analysis of the silymarin contents in the extracts indicated that the flowers, leaves, stems, and roots contained silychristin and taxifolin; however, silydianin was only found in the leaves, stems, and roots. The flower, leaf, and stem extracts, at a concentration of 10 mg/L, significantly reduced juglone-induced oxidative stress in C. elegans, which was potentially due to the presence of silychristin and taxifolin. Overall, C. japonicum DC. var. australe Kitam. contains a significant amount of silymarin and exhibits in vivo antioxidative activity, suggesting that the prospects for the plant in terms of health supplements or as a source of silymarin are promising.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Wei Lin Chuah
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Chih-Yi Chang
- Department of Forestry, National Chung Hsing University, No. 145, Xingda Rd., Taichung 402, Taiwan;
| | - Yen-Hsueh Tseng
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Chia-Yin Huang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Jeng-Chuann Yang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Fu-Lan Hsu
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| |
Collapse
|
2
|
Li P, Sun H, Li W, Wu Q, Ye S, Zhu J, Ding Y. Isolation and purification of 12 flavonoid glycosides from Ginkgo biloba extract using sephadex LH-20 and preparative high-performance liquid chromatography. Z NATURFORSCH C 2023; 78:73-81. [PMID: 36351234 DOI: 10.1515/znc-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
An efficient and rapid preparative method for the separation and purification of flavonoid glycosides from the Ginkgo biloba extract (GBE) was developed by sephadex LH-20 and preparative high-performance liquid chromatography (HPLC). 40 g GBE of 24% flavonoids were loaded onto the sephadex LH-20 column and five fractions (1.15, 2.57, 1.32, 4.45, and 3.31 g) at flavonoid content of 72.3, 54.2, 63.5, 51.2, and 59.2% were produced. Ultimately, 12 flavonoid glycosides that are at least purities of 97.7% were obtained from 100 mg of each fraction by preparative HPLC. The fraction A, B, and D each contained two flavonoids, yielded 35, 30, 23, 20, 25, and 25 mg, respectively. The fraction C and E each contained three flavonoids, produced 20, 13, 15, 18, 15, and 20 mg, respectively. The chemical structures of the purified compounds were identified by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI/MS).
Collapse
Affiliation(s)
- Ping Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Hao Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.,Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Qi Wu
- China National Institute of Standardization, Beijing, 100088, China
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.,Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
3
|
Lněničková K, Vrba J, Kosina P, Papoušková B, Mekadim C, Mrázek J, Sova M, Sovová E, Valentová K, Křen V, Kouřilová P, Vrbková J, Ulrichová J. Metabolic profiling of silymarin constituents in urine and feces of healthy volunteers: A 90-day study. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
4
|
Křen V, Valentová K. Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 2022; 39:1264-1281. [PMID: 35510639 DOI: 10.1039/d2np00013j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2015 up to 2022 (Feb)Silymarin, an extract of milk thistle (Silybum marianum) fruits, has been used in various medicinal applications since ancient times. A major component of silymarin is the flavonolignan silybin and its relatives isosilybin, silychristin, silydianin, 2,3-dehydrosilybin, and some others. Except for silydianin, they occur in nature as two stereomers. This review focuses on recent developments in chemistry, biosynthesis, modern advanced analytical methods, and transformations of flavonolignans specifically reflecting their chirality. Recently described chemotypes of S. marianum, but also the newest findings regarding the pharmacokinetics, hepatoprotective, antiviral, neuroprotective, and cardioprotective activity, modulation of endocrine functions, modulation of multidrug resistance, and safety of flavonolignans are discussed. A growing number of studies show that the respective diastereomers of flavonolignans have significantly different activities in anisotropic biological systems. Moreover, it is now clear that flavonolignans do not act as antioxidants in vivo, but as specific ligands of biological targets and therefore their chirality is crucial. Many controversies often arise, mainly due to the non-standard composition of this phytopreparation, the use of various undefined mixtures, the misattribution of silymarin vs. silybin, and also the failure to consider the chemistry of the respective components of silymarin.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| |
Collapse
|
5
|
Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis. Int J Mol Sci 2022; 23:ijms23105743. [PMID: 35628552 PMCID: PMC9147169 DOI: 10.3390/ijms23105743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase.
Collapse
|
6
|
Stability and ultraviolet A photostability of silymarin polyphenols and its consequences for practical use in dermatology. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Abstract
The natural diastereomeric mixture of silybins A and B is often used (and considered) as a single flavonolignan isolated from the fruit extract of milk thistle (Silybum marianum), silymarin. However, optically pure silybin diastereomers are required for the evaluation of their biological activity. The separation of silybin diastereomers by standard chromatographic methods is not trivial. Preparative chemoenzymatic resolution of silybin diastereomers has been published, but its optimization and scale-up are needed. Here we present a continuous flow reactor for the chemoenzymatic kinetic resolution of silybin diastereomers catalyzed by Candida antarctica lipase B (CALB) immobilized on acrylic resin beads (Novozym® 435). Temperature, flow rate, and starting material concentration were varied to determine optimal reaction conditions. The variables observed were conversion and diastereomeric ratio. Optimal conditions were chosen to allow kilogram-scale reactions and were determined to be −5 °C, 8 g/L silybin, and a flow rate of 16 mL/min. No significant carrier degradation was observed after approximately 30 cycles (30 days). Under optimal conditions and using a 1000 × 15 mm column, 20 g of silybin per day can be easily processed, yielding 6.7 and 5.6 g of silybin A and silybin B, respectively. Further scale-up depends only on the size of the reactor.
Collapse
|
8
|
Křen V. Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci 2021; 22:ijms22157885. [PMID: 34360650 PMCID: PMC8346157 DOI: 10.3390/ijms22157885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
9
|
Metabolism of 2,3-Dehydrosilybin A and 2,3-Dehydrosilybin B: A Study with Human Hepatocytes and Recombinant UDP-Glucuronosyltransferases and Sulfotransferases. Antioxidants (Basel) 2021; 10:antiox10060954. [PMID: 34198653 PMCID: PMC8232340 DOI: 10.3390/antiox10060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
2,3-Dehydrosilybin A and 2,3-dehydrosilybin B are a pair of enantiomers formed by the oxidation of the natural flavonolignans silybin A and silybin B, respectively. However, the antioxidant activity of 2,3-dehydrosilybin molecules is much stronger than that of their precursors. Here, we investigated the biotransformation of pure 2,3-dehydrosilybin A and 2,3-dehydrosilybin B in isolated human hepatocytes, and we also aimed to identify human UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) with activity toward their respective enantiomers. After incubation with hepatocytes, both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B were converted to hydroxyl derivatives, methylated hydroxyl derivatives, methyl derivatives, sulfates, and glucuronides. The products of direct conjugations predominated over those of oxidative metabolism, and glucuronides were the most abundant metabolites. Furthermore, we found that recombinant human UGTs 1A1, 1A3, 1A7, 1A8, 1A9, and 1A10 were capable of catalyzing the glucuronidation of both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B. UGTs 1A1 and 1A7 showed the highest activity toward 2,3-dehydrosilybin A, and UGT1A9 showed the highest activity toward 2,3-dehydrosilybin B. The sulfation of 2,3-dehydrosilybin A and B was catalyzed by SULTs 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C2, 1C4, and 1E1, of which SULT1A3 exhibited the highest activity toward both enantiomers. We conclude that 2,3-dehydrosilybin A and B are preferentially metabolized by conjugation reactions, and that several human UGT and SULT enzymes may play a role in these conjugations.
Collapse
|
10
|
Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo. Antioxidants (Basel) 2021; 10:antiox10050679. [PMID: 33925336 PMCID: PMC8146032 DOI: 10.3390/antiox10050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
2,3-Dehydrosilybin (DHS) was previously shown to chelate and reduce both copper and iron ions. In this study, similar experiments with 2,3-dehydrosilychristin (DHSCH) showed that this congener of DHS also chelates and reduces both metals. Statistical analysis pointed to some differences between both compounds: in general, DHS appeared to be a more potent iron and copper chelator, and a copper reducing agent under acidic conditions, while DHSCH was a more potent copper reducing agent under neutral conditions. In the next step, both DHS and DHSCH were tested for metal-based Fenton chemistry in vitro using HPLC with coulometric detection. Neither of these compounds were able to block the iron-based Fenton reaction and, in addition, they mostly intensified hydroxyl radical production. In the copper-based Fenton reaction, the effect of DHSCH was again prooxidant or neutral, while the effect of DHS was profoundly condition-dependent. DHS was even able to attenuate the reaction under some conditions. Interestingly, both compounds were strongly protective against the copper-triggered lysis of red blood cells, with DHSCH being more potent. The results from this study indicated that, notwithstanding the prooxidative effects of both dehydroflavonolignans, their in vivo effect could be protective.
Collapse
|
11
|
Frankova J, Juranova J, Biedermann D, Ulrichova J. Influence of silymarin components on keratinocytes and 3D reconstructed epidermis. Toxicol In Vitro 2021; 74:105162. [PMID: 33839235 DOI: 10.1016/j.tiv.2021.105162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Silymarin is a flavonoid complex isolated from the plant Silybum marianum which is well known for its antioxidant, hepatoprotective and immunomodulatory effects. Since little is known about its anti-inflammatory properties and healing effects, our study focused on whether or not silymarin components reduce inflammation and support epidermis regeneration. Lipopolysaccharides (LPS) and sodium dodecyl sulfate (SDS) were used to induce inflammation in normal human epidermal keratinocytes (NHEKs) and reconstructed epidermis (RHE), respectively. The expression of pro-inflammatory cytokines (IL-1, IL-6 and IL-8) in NHEKs and RHE was measured by enzyme - linked immunosorbent assay (ELISA). The expression of cytokeratin 14 and loricrin in RHE was detected by immunofluorescent analysis. Hematoxylin and eosin staining was used for the morphological evaluation of RHE. It was determined that 2, 3 - dehydrosilybin (DHSB) downregulated the production of selected pro-inflammatory cytokines produced by NHEKs. Although all layers of RHE displayed full thickness, when SDS was applied, cell detachment was seen in the stratum corneum and loricrin expression was diminished.
Collapse
Affiliation(s)
- J Frankova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic..
| | - J Juranova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - D Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - J Ulrichova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
12
|
Dou J, Heinonen J, Vuorinen T, Xu C, Sainio T. Chromatographic recovery and purification of natural phytochemicals from underappreciated willow bark water extracts. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Fenclova M, Stranska-Zachariasova M, Benes F, Novakova A, Jonatova P, Kren V, Vitek L, Hajslova J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal Bioanal Chem 2020; 412:819-832. [PMID: 31919606 DOI: 10.1007/s00216-019-02274-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Silymarin, milk thistle (Silybum marianum) extract, contains a mixture of mostly isomeric bioactive flavonoids and flavonolignans that are extensively studied, especially for their possible liver-protective and anticancer effects. Because of the differing bioactivities of individual isomeric compounds, characterization of their proportion in a mixture is highly important for predicting its effect on health. However, because of silymarin's complexity, this is hardly feasible by common analytical techniques. In this work, ultraperformance liquid chromatography coupled with drift tube ion mobility spectrometry and quadrupole time-of-flight mass spectrometry was used. Eleven target silymarin compounds (taxifolin, isosilychristin, silychristins A and B, silydianin, silybins A and B, 2,3-cis-silybin B, isosilybins A and B and 2,3-dehydrosilybin) and five unknown flavonolignan isomers detected in the milk thistle extract were fully separated in a 14.5-min analysis run. All the compounds were characterized on the basis of their accurate mass, retention time, drift time, collision cross section and fragmentation spectra. The quantitative approach based on evaluation of the ion mobility data demonstrated lower detection limits, an extended linear range and total separation of interferences from the compounds of interest compared with the traditional approach based on evaluation of liquid chromatography-quadrupole time-of-flight mass spectrometry data. The following analysis of a batch of milk thistle-based food supplements revealed significant variability in the silymarin pattern, especially in the content of silychristin A and silybins A and B. This newly developed method might have high application potential, especially for the characterization of materials intended for bioactivity studies in which information on the exact silymarin composition plays a crucial role. Graphical Abstract.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic.
| | - Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine and Faculty General Hospital, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| |
Collapse
|
14
|
Vrba J, Papoušková B, Lněničková K, Kosina P, Křen V, Ulrichová J. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J Pharm Biomed Anal 2020; 178:112972. [PMID: 31727359 DOI: 10.1016/j.jpba.2019.112972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022]
Abstract
Silybum marianum (milk thistle) is a medicinal plant used for producing the hepatoprotective remedy silymarin. Its main bioactive constituents, including silybin and related flavonolignans, can be metabolized directly by phase II conjugation reactions. This study was designed to identify UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of six silymarin flavonolignans, namely silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin. UHPLC-MS analyses showed that all of the tested compounds, both individually and in silymarin, were glucuronidated by human liver microsomes, and that glucuronidation was the main metabolic transformation in human hepatocytes. Further, each compound was glucuronidated by multiple recombinant human UGT enzymes. UGTs 1A1, 1A3, 1A8 and 1A9 were able to conjugate all of the tested flavonolignans, and some of them were also metabolized by UGTs 1A6, 1A7, 1A10, 2B7 and 2B15. In contrast, no glucuronides were produced by UGTs 1A4, 2B4, 2B10 and 2B17. With silymarin, we found that UGT1A1 and, to a lesser extent UGT1A9, were primarily responsible for the glucuronidation of the flavonolignan constituents. It is concluded that the metabolism of silymarin flavonolignans may involve multiple UGT enzymes, of which UGT1A1 appears to play the major role in the glucuronidation. These results may be relevant for future research on the metabolism of flavonolignans in humans.
Collapse
Affiliation(s)
- Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc 77146, Czech Republic
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| |
Collapse
|
15
|
Simple and Rapid HPLC Separation and Quantification of Flavonoid, Flavonolignans, and 2,3-Dehydroflavonolignans in Silymarin. Foods 2020; 9:foods9020116. [PMID: 31973217 PMCID: PMC7073671 DOI: 10.3390/foods9020116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/27/2023] Open
Abstract
Herbal preparations from Silybum marianum have been used since the fourth century BC in liver disease treatment and against numerous other pathologies. Consumption of silymarin containing drugs and food supplements continues to increase. Precise, fast, reliable, and complex determination of all components of silymarin preparations is paramount for assessing its pharmacological quality. We present here simple and fast HPLC-DAD and LC-MS analytical methods for the determination and quantification of all known silymarin components, including 2,3-dehydroflavonolignans that has not been achieved so far. The first method, using a common C18 column, allows baseline separation of previously inseparable silychristin A, B, isosilychristin, and silydianin. Moreover, this method allowed detection of three so far unknown silymarin components. In addition, the first analytical separation of enantiomers of 2,3-dehydrosilybin was achieved using a Lux 3μ Cellulose-4 chiral column, providing even more accurate description of silymarin composition. 2,3-Dehydroflavonolignans were isolated for the first time from silymarin using preparative chromatography on C18 and ASAHIPAK columns, and 2,3-dehydrosilychristin and 2,3-dehydrosilybin were for the first time conclusively confirmed by HPLC, MS, and NMR to be silymarin components. Using the optimized analytical methods, six various silymarin preparations were analyzed showing substantial differences in the composition.
Collapse
|
16
|
Valentová K, Havlík J, Kosina P, Papoušková B, Jaimes JD, Káňová K, Petrásková L, Ulrichová J, Křen V. Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota. Metabolites 2020; 10:E29. [PMID: 31936497 PMCID: PMC7023230 DOI: 10.3390/metabo10010029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Flavonolignans occur typically in Silybum marianum (milk thistle) fruit extract, silymarin, which contains silybin, isosilybin, silychristin, silydianin, and their 2,3-dehydroderivatives, together with other minor flavonoids and a polymeric phenolic fraction. Biotransformation of individual silymarin components by human microbiota was studied ex vivo, using batch incubations inoculated by fecal slurry. Samples at selected time points were analyzed by ultrahigh-performance liquid chromatography equipped with mass spectrometry. The initial experiment using a concentration of 200 mg/L showed that flavonolignans are resistant to the metabolic action of intestinal microbiota. At the lower concentration of 10 mg/L, biotransformation of flavonolignans was much slower than that of taxifolin, which was completely degraded after 16 h. While silybin, isosilybin, and 2,3-dehydrosilybin underwent mostly demethylation, silychristin was predominantly reduced. Silydianin, 2,3-dehydrosilychristin and 2,3-dehydrosilydianin were reduced, as well, and decarbonylation and cysteine conjugation proceeded. No low-molecular-weight phenolic metabolites were detected for any of the compounds tested. Strong inter-individual differences in the biotransformation profile were observed among the four fecal-material donors. In conclusion, the flavonolignans, especially at higher (pharmacological) doses, are relatively resistant to biotransformation by gut microbiota, which, however, depends strongly on the individual structures of these isomeric compounds, but also on the stool donor.
Collapse
Affiliation(s)
- Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
| | - Jaroslav Havlík
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (J.H.); (J.D.J.)
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (J.U.)
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic;
| | - José Diógenes Jaimes
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (J.H.); (J.D.J.)
| | - Kristýna Káňová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 16628 Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (J.U.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
| |
Collapse
|
17
|
Pourová J, Applová L, Macáková K, Vopršalová M, Migkos T, Bentanachs R, Biedermann D, Petrásková L, Tvrdý V, Hrubša M, Karlíčková J, Křen V, Valentová K, Mladěnka P. The Effect of Silymarin Flavonolignans and Their Sulfated Conjugates on Platelet Aggregation and Blood Vessels Ex Vivo. Nutrients 2019; 11:nu11102286. [PMID: 31554252 PMCID: PMC6836034 DOI: 10.3390/nu11102286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Silymarin is a traditional drug and food supplement employed for numerous liver disorders. The available studies indicate that its activities may be broader, in particular due to claimed benefits in some cardiovascular diseases, but the contributions of individual silymarin components are unclear. Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively. Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers B. Interestingly, the most active compound was a metabolite—silychristin-19-O-sulfate. Although initial experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is low or negligible.
Collapse
Affiliation(s)
- Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Kateřina Macáková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Thomas Migkos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Roger Bentanachs
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXII 27-31, 08028 Barcelona, Spain.
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jana Karlíčková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives. Antioxidants (Basel) 2019; 8:antiox8080303. [PMID: 31416138 PMCID: PMC6720199 DOI: 10.3390/antiox8080303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.
Collapse
|
19
|
Fenclova M, Novakova A, Viktorova J, Jonatova P, Dzuman Z, Ruml T, Kren V, Hajslova J, Vitek L, Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci Rep 2019; 9:11118. [PMID: 31366891 PMCID: PMC6668463 DOI: 10.1038/s41598-019-47250-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Herbal-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum), is often used for the treatment of liver diseases. However, serious concerns exist regarding the efficacy, composition, as well as the safety of these over-the-counter preparations. Therefore, the aim of the present study was to investigate the composition as well as chemical and biological safety of 26 milk thistle-based dietary supplements purchased from both the U.S. and Czech markets between 2016 and 2017. The study was focused on a determination of the composition of active ingredients, as well as analyses of possible contaminants including: mycotoxins, plant alkaloids, and pesticide residues, as well as the microbial purity. High-throughput analyses were performed using advanced U-HPLC-HRMS techniques. Large differences in the silymarin content were observed among individual milk thistle preparations, often in contrast with the information provided by the manufacturers. In addition, substantial inter-batch differences in silymarin content were also demonstrated. In all milk thistle preparations tested, large numbers and high concentrations of mycotoxins and several pesticides, as well as the substantial presence of microbiological contamination were detected, pointing to serious safety issues. In conclusion, our results strongly indicate the need for strict controls of the composition, chemical contaminants, as well as the microbiological purity of commercial milk thistle extracts used for the treatment of liver diseases. Poor definition of these preparations together with contamination by biologically active substances may not only account for the inconsistency of clinical observations, but also be responsible for possible herbal-based dietary supplements-induced liver injury.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Zbynek Dzuman
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1082, 14000, Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic.
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic.
| |
Collapse
|
20
|
A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Arch Dermatol Res 2019; 311:477-490. [PMID: 31079190 DOI: 10.1007/s00403-019-01928-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
The exposure of naked unprotected skin to solar radiation may result in numerous acute and chronic undesirable effects. Evidence suggests that silymarin, a standardized extract from Silybum marianum (L.) Gaertn. seeds, and its major component silybin suppress UVB-induced skin damage. Here, we aimed to investigate the UVA-protective effects of silymarin's less abundant flavonolignans, specifically isosilybin (ISB), silychristin (SC), silydianin (SD), and 2,3-dehydrosilybin (DHSB). Normal human dermal fibroblasts (NHDF) pre-treated for 1 h with flavonolignans were then exposed to UVA light using a solar simulator. Their effects on reactive oxygen species (ROS), carbonylated proteins and glutathione (GSH) level, caspase-3 activity, single-strand breaks' (SSBs) formation and protein level of matrix metalloproteinase-1 (MMP-1), heme oxygenase-1 (HO-1), and heat shock protein (HSP70) were evaluated. The most pronounced preventative potential was found for DHSB, a minor component of silymarin, and SC, the second most abundant flavonolignan in silymarin. They had significant effects on most of the studied parameters. Meanwhile, a photoprotective effect of SC was mostly found at double the concentration of DHSB. ISB and SD protected against GSH depletion, the generation of ROS, carbonylated proteins and SSBs, and caspase-3 activation, but had no significant effect on MMP-1, HO-1, or HSP70. In summary, DHSB and to a lesser extent other silymarin flavonolignans are potent UVA-protective compounds. However, due to the in vitro phototoxic potential of DHSB published elsewhere, further studies are needed to exclude phototoxicity for humans as well as to confirm our results on human skin ex vivo and in vivo.
Collapse
|
21
|
Vostálová J, Tinková E, Biedermann D, Kosina P, Ulrichová J, Rajnochová Svobodová A. Skin Protective Activity of Silymarin and its Flavonolignans. Molecules 2019; 24:E1022. [PMID: 30875758 PMCID: PMC6470681 DOI: 10.3390/molecules24061022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Silybum marianum (L.) is a medicinal plant traditionally used in treatment of liver disorders. In last decades, silymarin (SM), a standardized extract from S. marianum seeds has been studied for its dermatological application, namely for UVB-protective properties. However, information on SM and its polyphenols effect on activity of enzymes participating in the (photo)aging process is limited. Therefore, evaluation of SM and its flavonolignans potential to inhibit collagenase, elastase, and hyaluronidase in tube tests was the goal of this study. The antioxidant and UV screening properties of SM and its flavonolignans silybin, isosilybin, silydianin, silychristin and 2,3-dehydrosilybin (DHSB) were also evaluated by a DPPH assay and spectrophotometrical measurement. DHSB showed the highest ability to scavenge DPPH radical and also revealed the highest UVA protection factor (PF-UVA) that corresponds with its absorption spectrum. SM and studied flavonolignans were found to exhibit anti-collagenase and anti-elastase activity. The most potent flavonolignan was DHSB. None of studied flavonolignans or SM showed anti-hyaluronidase activity. Our results suggest that SM and its flavonolignans may be useful agents for skin protection against the harmful effects of full-spectrum solar radiation including slowing down skin (photo)aging.
Collapse
Affiliation(s)
- Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - Eva Tinková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
22
|
Wang H, Chen B, Zhou Y, Zhou Y. A Highly Selective Fluorescence-Enhanced Probe for the Rapid Detection of SO2 Derivatives and Its Bio-Imaging in Living Cells. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Juráňová J, Aury-Landas J, Boumediene K, Baugé C, Biedermann D, Ulrichová J, Franková J. Modulation of Skin Inflammatory Response by Active Components of Silymarin. Molecules 2018; 24:molecules24010123. [PMID: 30598040 PMCID: PMC6337225 DOI: 10.3390/molecules24010123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/21/2022] Open
Abstract
In this study, we compared selected silymarin components, such as quercetin (QE), 2,3-dehydrosilybin (DHS) and silybin (SB), with the anti-inflammatory drug indomethacin (IND) in terms of their wound healing potential. In view of the fact that pathological cutaneous wound healing is associated with persistent inflammation, we studied their anti-inflammatory activity against inflammation induced by bacterial lipopolysaccharide (LPS). We investigated the regulation of crucial pro-inflammatory transcription factors—nuclear factor kappa-B (NF-κB) and activator protein 1 (AP-1)—as well as the expression of downstream inflammatory targets by Western blotting, real-time PCR (RT-PCR), electrophoretic mobility shift assay (EMSA), and/or enzyme-linked immunosorbent assay (ELISA) in vitro using primary normal human dermal fibroblasts (NHDF). We demonstrated the greater ability of DHS to modulate the pro-inflammatory cytokines production via the NF-κB and AP-1 signaling pathways when compared to other tested substances. The prolonged exposure of LPS-challenged human dermal fibroblasts to DHS had both beneficial and detrimental consequences. DHS diminished interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion but induced the significant upregulation of IL-8 mRNA associated with NF-κB and AP-1 activation. The observed conflicting results may compromise the main expected benefit, which is the acceleration of the healing of the wound via a diminished inflammation.
Collapse
Affiliation(s)
- Jana Juráňová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 5, 779 00 Olomouc, Czech Republic.
| | | | - Karim Boumediene
- EA7451 BioConnecT, Normandie University, UNICAEN, 14000 Caen, France.
| | - Catherine Baugé
- EA7451 BioConnecT, Normandie University, UNICAEN, 14000 Caen, France.
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, 14220 Praha 4, Czech Republic.
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 5, 779 00 Olomouc, Czech Republic.
| | - Jana Franková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 5, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
24
|
Hrčková G, Kubašková TM, Benada O, Kofroňová O, Tumová L, Biedermann D. Differential Effects of the Flavonolignans Silybin, Silychristin and 2,3-Dehydrosilybin on Mesocestoides vogae Larvae (Cestoda) under Hypoxic and Aerobic In Vitro Conditions. Molecules 2018; 23:molecules23112999. [PMID: 30453549 PMCID: PMC6278466 DOI: 10.3390/molecules23112999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 02/01/2023] Open
Abstract
Mesocestoides vogae larvae represent a suitable model for evaluating the larvicidal potential of various compounds. In this study we investigated the in vitro effects of three natural flavonolignans—silybin (SB), 2,3-dehydrosilybin (DHSB) and silychristin (SCH)—on M. vogae larvae at concentrations of 5 and 50 μM under aerobic and hypoxic conditions for 72 h. With both kinds of treatment, the viability and motility of larvae remained unchanged, metabolic activity, neutral red uptake and concentrations of neutral lipids were reduced, in contrast with a significantly elevated glucose content. Incubation conditions modified the effects of individual FLs depending on their concentration. Under both sets of conditions, SB and SCH suppressed metabolic activity, the concentration of glucose, lipids and partially motility more at 50 μM, but neutral red uptake was elevated. DHSB exerted larvicidal activity and affected motility and neutral lipid concentrations differently depending on the cultivation conditions, whereas it decreased glucose concentration. DHSB at the 50 μM concentration caused irreversible morphological alterations along with damage to the microvillus surface of larvae, which was accompanied by unregulated neutral red uptake. In conclusion, SB and SCH suppressed mitochondrial functions and energy stores, inducing a physiological misbalance, whereas DHSB exhibited a direct larvicidal effect due to damage to the tegument and complete disruption of larval physiology and metabolism.
Collapse
Affiliation(s)
- Gabriela Hrčková
- Department of Experimental Pharmacology, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK 040 01 Košice, Slovakia.
| | - Terézia Mačák Kubašková
- Department of Experimental Pharmacology, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK 040 01 Košice, Slovakia.
| | - Oldřich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Olga Kofroňová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Lenka Tumová
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ 501 65 Hradec Králové, Czech Republic.
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| |
Collapse
|
25
|
Bakhytkyzy I, Nuñez O, Saurina J. Size Exclusion Coupled to Reversed Phase Liquid Chromatography for the Characterization of Cranberry Products. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1390-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Valentová K, Purchartová K, Rydlová L, Roubalová L, Biedermann D, Petrásková L, Křenková A, Pelantová H, Holečková-Moravcová V, Tesařová E, Cvačka J, Vrba J, Ulrichová J, Křen V. Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties. Int J Mol Sci 2018; 19:E2349. [PMID: 30096957 PMCID: PMC6121260 DOI: 10.3390/ijms19082349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Silymarin, an extract from milk thistle (Silybum marianum) fruits, is consumed in various food supplements. The metabolism of silymarin flavonolignans in mammals is complex, the exact structure of their metabolites still remains partly unclear and standards are not commercially available. This work is focused on the preparation of sulfated metabolites of silymarin flavonolignans. Sulfated flavonolignans were prepared using aryl sulfotransferase from Desulfitobacterium hafniense and p-nitrophenyl sulfate as a sulfate donor and characterized by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). Their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging; ferric (FRAP) and Folin⁻Ciocalteu reagent (FCR) reducing activity; anti-lipoperoxidant potential; and effect on the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway were examined. Pure silybin A 20-O-sulfate, silybin B 20-O-sulfate, 2,3-dehydrosilybin-20-O-sulfate, 2,3-dehydrosilybin-7,20-di-O-sulfate, silychristin-19-O-sulfate, 2,3-dehydrosilychristin-19-O-sulfate, and silydianin-19-O-sulfate were prepared and fully characterized. Sulfated 2,3-dehydroderivatives were more active in FCR and FRAP assays than the parent compounds, and remaining sulfates were less active chemoprotectants. The sulfated flavonolignans obtained can be now used as authentic standards for in vivo metabolic experiments and for further research on their biological activity.
Collapse
Affiliation(s)
- Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Kateřina Purchartová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
- Faculty of Science, Charles University, Department of Physical and Macromolecular Chemistry, Hlavova 2030/8, 12843 Prague, Czech Republic.
| | - Lenka Rydlová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
- Faculty of Science, Charles University, Department of Physical and Macromolecular Chemistry, Hlavova 2030/8, 12843 Prague, Czech Republic.
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Alena Křenková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | | | - Eva Tesařová
- Faculty of Science, Charles University, Department of Physical and Macromolecular Chemistry, Hlavova 2030/8, 12843 Prague, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic.
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
27
|
In-Vitro Activity of Silybin and Related Flavonolignans against Leishmania infantum and L. donovani. Molecules 2018; 23:molecules23071560. [PMID: 29954145 PMCID: PMC6100512 DOI: 10.3390/molecules23071560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Flavonolignans from the seeds of the milk thistle (Silybum marianum) have been extensively used in folk medicine for centuries. Confirmation of their properties as hepatoprotective, antioxidant and anticancer has been obtained using standardized extracts and purified flavonolignans. Information on their potential effect on Leishmania is very scarce. We have investigated the effect of silymarin, silybin and related flavonolignans on the multiplication of promastigotes in vitro and ex vivo on intracellular amastigotes of L. infantum (Li) and L. donovani (Ld), causative agents of human and canine visceral leishmaniasis (VL). In addition, the potential synergistic effect of the most active molecule and well-established antileishmanial drugs against promastigotes was explored. Dehydroisosilybin A elicited the highest inhibition against Ld and Li promastigotes with an approximate IC50 of 90.23 µM. This molecule showed a moderate synergism with amphotericin B (AmB) but not with SbIII or paromomycin, although it was ineffective against amastigotes. Antileishmanial activity on intracellular amastigotes of the two diastereoisomers of dehydrosilybin (10 µM) was comparable to that elicited by 0.1 µM AmB. Antiproliferative activity and safety of flavonolignans suggest the interest of exploring their potential value in combination therapy against VL.
Collapse
|
28
|
Sepúlveda L, Wong-Paz JE, Buenrostro-Figueroa J, Ascacio-Valdés JA, Aguilera-Carbó A, Aguilar CN. Solid state fermentation of pomegranate husk: Recovery of ellagic acid by SEC and identification of ellagitannins by HPLC/ESI/MS. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Sheehan A, Messer AE, Papadaki M, Choudhry A, Kren V, Biedermann D, Blagg B, Khandelwal A, Marston SB. Molecular Defects in Cardiac Myofilament Ca 2+-Regulation Due to Cardiomyopathy-Linked Mutations Can Be Reversed by Small Molecules Binding to Troponin. Front Physiol 2018; 9:243. [PMID: 29636697 PMCID: PMC5881522 DOI: 10.3389/fphys.2018.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are relatively common, potentially life-threatening and currently untreatable. Mutations are often in the contractile proteins of cardiac muscle and cause abnormal Ca2+ regulation via troponin. HCM is usually linked to higher myofilament Ca2+-sensitivity whilst in both HCM and DCM mutant tissue there is often an uncoupling of the relationship between troponin I (TnI) phosphorylation by PKA and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline. The adrenergic response is blunted, and this may predispose the heart to failure under stress. At present there are no compounds or interventions that can prevent or treat sarcomere cardiomyopathies. There is a need for novel therapies that act at a more fundamental level to affect the disease process. We demonstrated that epigallocatechin-3 gallate (EGCG) was found to be capable of restoring the coupled relationship between Ca2+-sensitivity and TnI phosphorylation in mutant thin filaments to normal in vitro, independent of the mutation (15 mutations tested). We have labeled this property "re-coupling." The action of EGCG in vitro to reverse the abnormality caused by myopathic mutations would appear to be an ideal pharmaceutical profile for treatment of inherited HCM and DCM but EGCG is known to be promiscuous in vivo and is thus unsuitable as a therapeutic drug. We therefore investigated whether other structurally related compounds can re-couple myofilaments without these off-target effects. We used the quantitative in vitro motility assay to screen 40 compounds, related to C-terminal Hsp90 inhibitors, and found 23 that can re-couple mutant myofilaments. There is no correlation between re-couplers and Hsp90 inhibitors. The Ca2+-sensitivity shift due to TnI phosphorylation was restored to 2.2 ± 0.01-fold (n = 19) compared to 2.0 ± 0.24-fold (n = 7) in wild-type thin filaments. Many of these compounds were either pure re-couplers or pure desensitizers, indicating these properties are independent; moreover, re-coupling ability could be lost with small changes of compound structure, indicating the possibility of specificity. Small molecules that can re-couple may have therapeutic potential. HIGHLIGHTS - Inherited cardiomyopathies are common diseases that are currently untreatable at a fundamental level and therefore finding a small molecule treatment is highly desirable.- We have identified a molecular level dysfunction common to nearly all mutations: uncoupling of the relationship between troponin I phosphorylation and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline.- We have identified a new class of drugs that are capable of both reducing Ca2+-sensitivity and/or recouping the relationship between troponin I phosphorylation and Ca2+-sensitivity.- The re-coupling phenomenon can be explained on the basis of a single mechanism that is testable.- Measurements with a wide range of small molecules of varying structures can indicate the critical molecular features required for recoupling and allows the prediction of other potential re-couplers.
Collapse
Affiliation(s)
- Alice Sheehan
- NHLI, Imperial College London, London, United Kingdom
| | | | | | | | - Vladimír Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Brian Blagg
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, United States
| | | |
Collapse
|
30
|
Vrba J, Papoušková B, Roubalová L, Zatloukalová M, Biedermann D, Křen V, Valentová K, Ulrichová J, Vacek J. Metabolism of flavonolignans in human hepatocytes. J Pharm Biomed Anal 2018; 152:94-101. [PMID: 29414024 DOI: 10.1016/j.jpba.2018.01.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
This study examined the in vitro biotransformation of eight structurally related flavonolignans, namely silybin, 2,3-dehydrosilybin, silychristin, 2,3-dehydrosilychristin, silydianin, 2,3-dehydrosilydianin, isosilybin A and isosilybin B. The metabolic transformations were performed using primary cultures of human hepatocytes and recombinant human cytochromes P450 (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4). The metabolites produced were analyzed by ultra-performance liquid chromatography coupled with tandem mass spectrometry. We found that each of the tested compounds was metabolized in vitro by one or more CYP enzymes, which catalyzed O-demethylation, hydroxylation, hydrogenation and dehydrogenation reactions. In human hepatocytes, silybin, 2,3-dehydrosilybin, silychristin, 2,3-dehydrosilychristin, and isosilybins A and B were directly conjugated by sulfation or glucuronidation. Moreover, isosilybin A was also converted to a methyl derivative, while isosilybin B was hydroxylated and methylated. Silydianin and 2,3-dehydrosilydianin were found to undergo hydrogenation and/or glucuronidation. In addition, 2,3-dehydrosilydianin was found to be metabolically the least stable flavonolignan in human hepatocytes, and its main metabolite was a cleavage product corresponding to a loss of CO. We conclude that the hepatic biotransformation of flavonolignans primarily involves the phase II conjugation reactions, however in some cases the phase I reactions may also occur. These results are highly relevant for research focused on flavonolignan metabolism and pharmacology.
Collapse
Affiliation(s)
- Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 77146, Czech Republic
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
31
|
Zhao Y, Ouyang X, Chen J, Zhao L, Qiu X. Separation of aromatic monomers from oxidatively depolymerized products of lignin by combining Sephadex and silica gel column chromatography. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Chambers CS, Holečková V, Petrásková L, Biedermann D, Valentová K, Buchta M, Křen V. The silymarin composition… and why does it matter??? Food Res Int 2017; 100:339-353. [PMID: 28964357 DOI: 10.1016/j.foodres.2017.07.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
The extract from milk thistle (Silybum marianum (L.) Gaertn. (Asteraceae)), known as silymarin, contains a variety of flavonolignans and displays antioxidant, anti-inflammatory, immunomodulatory and hepatoprotective properties. As silybin is the main component of silymarin, the literature mainly focuses on this compound, ignoring all other components. This leads to problems in reproducibility of scientific results, as the exact composition of silymarin is often unknown and can vary to a certain degree depending on the processing, chemo-variety of the plant used and climatic conditions during the plant growth. There are studies dealing with the analytical separation and quantification of silymarin components as well as studies focused on silymarin content in clinically used drugs, in various plant parts, seasons, geographic locations etc. However, no comparison of detail flavonolignan profiles in various silymarin preparations is available to date. Also, as a result of the focus on the flavonolignans; the oil fraction, which contains linoleic, oleic and palmitic acids, sterols, tocopherol (vitamin E) and phospholipids, has been neglected. Due to all these factors, the whole plant is used e.g. as animal feed, the leaves can be eaten in salads and seed oil, besides culinary uses, can be also utilized for biodiesel or polymer production. Various HPLC separation techniques for the determination of the content of the flavonolignans have been vastly summarized in the present review.
Collapse
Affiliation(s)
- Christopher Steven Chambers
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Veronika Holečková
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Martin Buchta
- Stolařská 601/4, CZ74714 Ludgeřovice, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic.
| |
Collapse
|
33
|
Roubalová L, Dinkova-Kostova AT, Biedermann D, Křen V, Ulrichová J, Vrba J. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia 2017; 119:115-120. [PMID: 28450126 PMCID: PMC5476199 DOI: 10.1016/j.fitote.2017.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/11/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022]
Abstract
Silybum marianum (milk thistle) is a medicinal plant used for the treatment of various liver disorders. This study examined whether the main flavonolignans from S. marianum (i.e. silybin, silychristin, silydianin) and their 2,3-dehydro derivatives (i.e. 2,3-dehydrosilybin, 2,3-dehydrosilychristin, 2,3-dehydrosilydianin) activate the Nrf2 pathway, which regulates the expression of genes encoding many cytoprotective enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). After 48h of exposure, 2,3-dehydrosilydianin at concentrations of 25μM and higher significantly elevated the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. In contrast, other tested compounds at non-cytotoxic concentrations had a mild or negligible effect on the NQO1 activity. Using a luciferase reporter assay, 2,3-dehydrosilydianin was found to significantly activate transcription via the antioxidant response element in stably transfected human AREc32 reporter cells. Moreover, 2,3-dehydrosilydianin caused the accumulation of Nrf2 and significantly induced the expression of the Nqo1 gene at both the mRNA and protein levels in Hepa1c1c7 cells. We found that 2,3-dehydrosilydianin also increased to some extent the expression of other Nrf2 target genes, namely of the heme oxygenase-1 gene (Hmox1) and the glutamate-cysteine ligase modifier subunit gene (Gclm). We conclude that 2,3-dehydrosilydianin activates Nrf2 and induces Nrf2-mediated gene expression in Hepa1c1c7 cells.
Collapse
Affiliation(s)
- Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
34
|
Fibigr J, Šatínský D, Solich P. A new approach to the rapid separation of isomeric compounds in a Silybum marianum extract using UHPLC core-shell column with F5 stationary phase. J Pharm Biomed Anal 2017; 134:203-213. [PMID: 27915198 DOI: 10.1016/j.jpba.2016.11.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
In this paper, a new ultra-high performance liquid chromatography (UHPLC) method using a core-shell column with a pentafluorophenyl stationary phase for separation of seven active compounds of a Silybum marianum extract was developed and validated. Silymarin, an extract of Silybum marianum, is known for its abilities to protect the liver from toxic substances, hepatitis therapy, and anti-tumour activity. Silymarin is currently being widely used in commercial preparations and herbal teas. Separation of seven compounds contained in the Silybum marianum extract (taxifolin, silychristin, silydianin, silybin A, silybin B, isosilybin A, isosilybin B) and other substances occurring in real samples was performed on the Kinetex 1.7μ F5 100A (150×2.1mm), 1.7μm particle size core-shell column, with a mobile phase methanol/100mM phosphate buffer pH 2.0 according to the gradient program. A mobile phase 0.35mLmin-1 flow rate and 50°C temperature was used for the separation. The detection wavelength was set at 288nm. Under optimal chromatographic conditions, good linearity with a correlation coefficient of R2 >0.999 for all compounds was achieved. The available commercial samples of herbal teas and food supplements were extracted with methanol using an ultrasonic bath. After dilution with water and centrifugation, a 2μL sample of the filtered supernatant was directly injected into the UHPLC system. The use of a pentafluorophenyl stationary phase with methanol as the organic component of the mobile phase showed new ways to effectively separate isomeric compounds in herbal extracts, which could not be done with the conventional C18 stationary phase.
Collapse
Affiliation(s)
- Jakub Fibigr
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czechia
| | - Dalibor Šatínský
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czechia.
| | - Petr Solich
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czechia
| |
Collapse
|
35
|
Filippopoulou K, Papaevgeniou N, Lefaki M, Paraskevopoulou A, Biedermann D, Křen V, Chondrogianni N. 2,3-Dehydrosilybin A/B as a pro-longevity and anti-aggregation compound. Free Radic Biol Med 2017; 103:256-267. [PMID: 28039083 DOI: 10.1016/j.freeradbiomed.2016.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Aging is an unavoidable process characterized by gradual failure of homeostasis that constitutes a critical risk factor for several age-related disorders. It has been unveiled that manipulation of various key pathways may decelerate the aging progression and the triggering of age-related diseases. As a consequence, the identification of compounds, preferably natural-occurring, administered through diet, with lifespan-extending, anti-aggregation and anti-oxidation properties that in parallel exhibit negligible side-effects is the main goal in the battle against aging. Here we analyze the role of 2,3-dehydrosilybin A/B (DHS A/B), a minor component of silymarin used in a plethora of dietary supplements. This flavonolignan is well-known for its anti-oxidative and neuroprotective properties, among others. We demonstrate that DHS A/B confers oxidative stress resistance not only in human primary cells but also in the context of a multi-cellular aging model, namely Caenorhabditis elegans (C. elegans) where it also promotes lifespan extension. We reveal that these DHS A/B outcomes are FGT-1 and DAF-16 dependent. We additionally demonstrate the anti-aggregation properties of DHS A/B in human cells of nervous origin but also in nematode models of Alzheimer's disease (AD), eventually leading to decelerated progression of AD phenotype. Our results identify DHS A/B as the active component of silymarin extract and propose DHS A/B as a candidate anti-aging and anti-aggregation compound.
Collapse
Affiliation(s)
- Konstantina Filippopoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece
| | - Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece; Institute of Nutrition, Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, 25 Dornburger Str., 07743 Jena , Germany
| | - Maria Lefaki
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece
| | - Anna Paraskevopoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
36
|
Biedermann D, Buchta M, Holečková V, Sedlák D, Valentová K, Cvačka J, Bednárová L, Křenková A, Kuzma M, Škuta C, Peikerová Ž, Bartůněk P, Křen V. Silychristin: Skeletal Alterations and Biological Activities. JOURNAL OF NATURAL PRODUCTS 2016; 79:3086-3092. [PMID: 28006905 DOI: 10.1021/acs.jnatprod.6b00750] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silychristin is the second most abundant flavonolignan (after silybin) present in the fruits of Silybum marianum. A group of compounds containing silychristin (3) and its derivatives such as 2,3-dehydrosilychristin (4), 2,3-dehydroanhydrosilychristin (5), anhydrosilychristin (6), silyhermin (7), and isosilychristin (8) were studied. Physicochemical data of these compounds acquired at high resolution were compared. The absolute configuration of silyhermin (7) was proposed to be identical to silychristin A (3a) in ring D (10R,11S). The preparation of 2,3-dehydrosilychristin (4) was optimized. The Folin-Ciocalteau reduction and DPPH and ABTS radical scavenging assays revealed silychristin and its analogues to be powerful antioxidants, which were found to be more potent than silybin and 2,3-dehydrosilybin. Compounds 4-6 exhibited inhibition of microsomal lipoperoxidation (IC50 4-6 μM). Moreover, compounds 4-8 were found to be almost noncytotoxic for 10 human cell lines of different histogenetic origins. On the basis of these results, compounds 3-6 are likely responsible for most of the antioxidant properties of silymarin attributed traditionally to silybin (silibinin).
Collapse
Affiliation(s)
- David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Martin Buchta
- Stolařská 601/4 , CZ 747 14 Ludgeřovice, Czech Republic
| | - Veronika Holečková
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Praha 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , Flemingovo náměstí 2, CZ 166 10 Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , Flemingovo náměstí 2, CZ 166 10 Prague, Czech Republic
| | - Alena Křenková
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Ctibor Škuta
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Praha 4, Czech Republic
| | - Žaneta Peikerová
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Praha 4, Czech Republic
| | - Petr Bartůněk
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences , Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| |
Collapse
|
37
|
Biler M, Trouillas P, Biedermann D, Křen V, Kubala M. Tunable optical properties of silymarin flavonolignans. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Rajnochová Svobodová A, Zálešák B, Biedermann D, Ulrichová J, Vostálová J. Phototoxic potential of silymarin and its bioactive components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 156:61-8. [DOI: 10.1016/j.jphotobiol.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/28/2022]
|
39
|
Pyszková M, Biler M, Biedermann D, Valentová K, Kuzma M, Vrba J, Ulrichová J, Sokolová R, Mojović M, Popović-Bijelić A, Kubala M, Trouillas P, Křen V, Vacek J. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic Biol Med 2016; 90:114-25. [PMID: 26582372 DOI: 10.1016/j.freeradbiomed.2015.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
The protective constituents of silymarin, an extract from Silybum marianum fruits, have been extensively studied in terms of their antioxidant and hepatoprotective activities. Here, we explore the electron-donor properties of the major silymarin flavonolignans. Silybin (SB), silychristin (SCH), silydianin (SD) and their respective 2,3-dehydroderivatives (DHSB, DHSCH and DHSD) were oxidized electrochemically and their antiradical/antioxidant properties were investigated. Namely, Folin-Ciocalteau reduction, DPPH and ABTS(+) radical scavenging, inhibition of microsomal lipid peroxidation and cytoprotective effects against tert-butyl hydroperoxide-induced damage to a human hepatocellular carcinoma HepG2 cell line were evaluated. Due to the presence of the highly reactive C3-OH group and the C-2,3 double bond (ring C) allowing electron delocalization across the whole structure in the 2,3-dehydroderivatives, these compounds are much more easily oxidized than the corresponding flavonolignans SB, SCH and SD. This finding was unequivocally confirmed not only by experimental approaches, but also by density functional theory (DFT) calculations. The hierarchy in terms of ability to undergo electrochemical oxidation (DHSCH~DHSD>DHSB>>SCH/SD>SB) was consistent with their antiradical activities, mainly DPPH scavenging, as well as in vitro cytoprotection of HepG2 cells. The results are discussed in the context of the antioxidant vs. prooxidant activities of flavonolignans and molecular interactions in complex biological systems.
Collapse
Affiliation(s)
- Michaela Pyszková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Michal Biler
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic; INSERM UMR 850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, 87025 Limoges, France
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Romana Sokolová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Martin Kubala
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, 87025 Limoges, France; Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
40
|
Regioselective alcoholysis of silychristin acetates catalyzed by lipases. Int J Mol Sci 2015; 16:11983-95. [PMID: 26016503 PMCID: PMC4490424 DOI: 10.3390/ijms160611983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.
Collapse
|