1
|
Mao R, Xiong G, Zheng H, Qi J, Zhang C. Effect of ultrasound on the functional properties and structural changes of chicken liver insoluble proteins isolated by isoelectric solubilization/precipitation. ULTRASONICS SONOCHEMISTRY 2025; 112:107165. [PMID: 39612756 PMCID: PMC11634992 DOI: 10.1016/j.ultsonch.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The studies investigated the effects of different ultrasonic powers (180, 360 and 540 W) on the functional properties and structural changes of chicken liver insoluble proteins (CLIPs) isolated by isoelectric solubilization/precipitation (ISP) (with alkaline solubilization at pH 11.0 and pH 12.0 respectively, and acid precipitation at pH 5.5). Results indicated that ultrasonic significantly increased the solubility of ISP-isolated CLIPs, and narrowed the particle size distribution of D3,2 and D4,3 (P < 0.05). The highest solubility was observed at pH 11.0 and 360 W ultrasound treatment, reaching 77.26 %. The ultrasonic with 360 W exhibited higher shear stress and apparent viscosity. Spectroscopy revealed that compared to without ultrasonic treatment, there was an increase in β-sheet and random curling content accompanied by a decrease in β-turn and α-helix structure when ultrasonication. Ultrasound altered the tyrosine hydrophobic residues to be exposed to the surface of the ISP-isolated CLIPs, thus improving the hydrophilicity. Overall, ultrasound combined with ISP treatment effectively improved the functional properties of CLIPs, and it might be a potential, safe and efficient method for improving the processing properties and broadening the application of insoluble animal-derived proteins.
Collapse
Affiliation(s)
- Rongrong Mao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guoyuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China.
| | - Haibo Zheng
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Kaushik N, Falch E, Slizyte R, Kumari A, Khushboo, Hjellnes V, Sharma A, Rajauria G. Valorization of fish processing by-products for protein hydrolysate recovery: Opportunities, challenges and regulatory issues. Food Chem 2024; 459:140244. [PMID: 38991448 DOI: 10.1016/j.foodchem.2024.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Protein-rich fish processing by-products, often called rest raw materials (RRM), account for approximately 60% of the total fish biomass. However, a considerable amount of these RRM is utilized for low-value products such as fish meal and silage. A promising and valuable approach for maximizing the utilization of RRM involves the extraction of bioactive fish protein hydrolysate (FPH). This review assesses and compares different hydrolyzation methods to produce FPH. Furthermore, the review highlights the purification strategy, nutritional compositions, and bioactive properties of FPH. Finally, it concludes by outlining the application of FPH in food products together with various safety and regulatory issues related to the commercialization of FPH as a protein ingredient in food. This review paves the way for future applications by highlighting efficient biotechnological methods for valorizing RRM into FPH and addressing safety concerns, enabling the widespread utilization of FPH as a valuable and sustainable source of protein.
Collapse
Affiliation(s)
- Nutan Kaushik
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India.
| | - Eva Falch
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Asha Kumari
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Khushboo
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Veronica Hjellnes
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abhishek Sharma
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Gaurav Rajauria
- School of Microbiology, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; SUSFERM Centre for Sustainable Fermentation and Bioprocessing Systems for Food and the Bioeconomy, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Nan YD, Mu BD, Ge CX, Chen SQ, Cui MX, Li HM, Zhao CC, Wang J, Piao CX, Li GH. Exploring the novel antioxidant peptides in low-salt dry-cured ham: Preparation, purification, identification and molecular docking. Food Chem 2024; 446:138697. [PMID: 38402773 DOI: 10.1016/j.foodchem.2024.138697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Dry-cured ham is important source of bioactive peptides. In this study, the antioxidant activities of peptides and components from low and fully salted dry-cured hams were compared by peptidomics. And novel antioxidant peptides were identified and characterized. The results showed that the peptides (<3 KDa) extracted from low-salt dry-cured ham had higher antioxidant activity. Therefore, the antioxidant peptides in low-salt dry-cured ham were further characterized and the mechanism of their antioxidant activity was investigated. From the five candidate peptides selected, we found DWPDARGIWHND (DD12) to be highly stable, non-sensitizing, and non-toxic with the highest free radical scavenging activity. Molecular docking predicted that DD12 interacted with Keap1 through hydrogen-bond formation and hydrophobic interactions, suggesting that DD12 had good cellular antioxidant activity. DD12 peptide can bind to DPPH• and ABTS•+, resulting in strong free radical scavenging activity. Our findings support the development and application of natural antioxidant peptides in dry-cured ham.
Collapse
Affiliation(s)
- Ying-Dao Nan
- Integration Science College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Bai-de Mu
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chang-Xin Ge
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Si-Qi Chen
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Ming-Xun Cui
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Hong-Mei Li
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chang-Cheng Zhao
- Life Sciences College, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juan Wang
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chun-Xiang Piao
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Guan-Hao Li
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| |
Collapse
|
4
|
Hur H, Kim HJ, Lee D, Jo C. Beef peptides mitigate skeletal muscle atrophy in C2C12 myotubes through protein degradation, protein synthesis, and the oxidative stress pathway. Food Funct 2024; 15:4564-4574. [PMID: 38584588 DOI: 10.1039/d3fo03911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study aimed to investigate the potential of beef peptides (BPs) in mitigating muscle atrophy induced by dexamethasone (DEX) with underlying three mechanisms in vitro (protein degradation, protein synthesis, and the oxidative stress pathway). Finally, the anti-atrophic effect of BPs was enhanced through purification and isolation. BPs were generated using beef loin hydrolyzed with alcalase/ProteAX/trypsin, each at a concentration of 0.67%, followed by ultrafiltration through a 3 kDa cut-off. BPs (10-100 μg mL-1) dose-dependently counteracted the DEX-induced reductions in myotube diameters, differentiation, fusion, and maturation indices (p < 0.05). Additionally, BPs significantly reduced FoxO1 protein dephosphorylation, thereby suppressing muscle-specific E3 ubiquitin ligases such as muscle RING-finger containing protein-1 and muscle atrophy F-box protein in C2C12 myotubes at concentrations exceeding 25 μg mL-1 (p < 0.05). BPs also enhanced the phosphorylation of protein synthesis markers, including mTOR, 4E-BP1, and p70S6K1, in a dose-dependent manner (p < 0.05) and increased the mRNA expression of antioxidant enzymes. Fractionated peptides derived from BPs, through size exclusion and polarity-based fractionation, also demonstrated enhanced anti-atrophic effects compared to BPs. These peptides downregulated the mRNA expression of primary muscle atrophy markers while upregulated that of antioxidant enzymes. Specifically, peptides GAGAAGAPAGGA (MW 924.5) and AFRSSTKK (MW 826.4) were identified from fractionated peptides of BPs. These findings suggest that BPs, specifically the peptide fractions GAGAAGAPAGGA and AFRSSTKK, could be a potential strategy to mitigate glucocorticoid-induced skeletal muscle atrophy by reducing the E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Hyeonjin Hur
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dongheon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of Animal Product Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, West Java 45363, Indonesia
| |
Collapse
|
5
|
Hoffmann RG, Moraes GP, da Silva CB, Daroit DJ. Enzymatic processing of animal by-products: production of antioxidant hydrolysates with Bacillus sp. CL18 crude protease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26737-26746. [PMID: 38456978 DOI: 10.1007/s11356-024-32819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Protein hydrolysates might display diverse bioactivities with potential relevance to human and animal health and food technology. Enzymatic hydrolysis of agro-industrial by-products is increasingly focused. In this study, a crude protease from Bacillus sp. CL18 was applied to obtain antioxidant protein hydrolysates from porcine, bovine, poultry, and fish by-products. The crude enzyme hydrolyzed all the twelve investigated by-products, as detected by increased soluble protein contents after 4 h of proteolysis. Hydrolysates exhibited higher radical-scavenging, Fe2+-chelating and reducing power capacities than non-hydrolyzed by-products. Hydrolysis times (0-8 h) and enzyme-to-substrate (E/S) ratios (384, 860, and 1,400 U/g) were assessed to produce antioxidant bovine lung hydrolysates. The highest E/S ratio accelerated both hydrolysis and increases in antioxidant activities; however, it did not result in bioactivities higher than hydrolysates obtained with the intermediate E/S ratio. Optimal antioxidant activities could be reached after 6 h of hydrolysis using 860 U/g. Animal by-products are interesting sources of bioactive protein hydrolysates, which could be produced with a non-commercial bacterial protease. This might represent a promising strategy for the valorization of animal by-products generated in large amounts by the agri-food sector.
Collapse
Affiliation(s)
- Rubia Godoy Hoffmann
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Gabriela Poll Moraes
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Carolina Becker da Silva
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil.
| |
Collapse
|
6
|
Pimchan T, Tian F, Thumanu K, Rodtong S, Yongsawatdigul J. Anti-Salmonella Activity of a Novel Peptide, KGGDLGLFEPTL, Derived from Egg Yolk Hydrolysate. Antibiotics (Basel) 2023; 13:19. [PMID: 38247578 PMCID: PMC10812675 DOI: 10.3390/antibiotics13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The present study aimed to characterize the mode of action of a novel antimicrobial peptide isolated from egg yolk hydrolysate. The EYHp6, KGGDLGLFEPTL, exhibited inhibition against Salmonella enterica serovar Typhimurium TISTR 292 and S. enterica serovar Enteritidis DMST 15679 with a MIC value of 2 mM. In contrast, S. enterica serovar Newport ATCC 6962 and other strains of Typhimurium and Enteritidis were inhibited at 4 mM. EYHp6 increased the cell membrane permeability of S. Typhimurium TISTR 292, leading to DNA leakage. Membrane integrity determined by propidium iodide and SYTO9 staining visualized by confocal microscopy demonstrated that EYHp6 at 1 × MIC induced disruption of cell membranes. Electron microscopy revealed that treatment of S. Typhimurium with EYHp6 led to damage to the cell membrane, causing the leakage of intracellular contents. Synchrotron-based Fourier-transform infrared spectroscopy indicated that EYHp6 killed S. Typhimurium by targeting fatty acids and nucleic acids in the cell membrane. The peptide did not show hemolytic activity up to 4 mM. These findings suggest that EYHp6 could be a promising antibacterial agent for controlling the growth of S. enterica.
Collapse
Affiliation(s)
- Thippawan Pimchan
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China;
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand;
| | - Sureelak Rodtong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
7
|
Outman A, Deracinois B, Flahaut C, Diab MA, Gressier B, Eto B, Nedjar N. Potential of Human Hemoglobin as a Source of Bioactive Peptides: Comparative Study of Enzymatic Hydrolysis with Bovine Hemoglobin and the Production of Active Peptide α137-141. Int J Mol Sci 2023; 24:11921. [PMID: 37569300 PMCID: PMC10418852 DOI: 10.3390/ijms241511921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Cruor, the main component responsible for the red color of mammalian blood, contains 90% haemoglobin, a protein considered to be a rich source of bioactive peptides. The aim of the present study is to assess the potential of human hemoglobin as a source of bioactive peptides, compared with bovine hemoglobin, which has been extensively studied in recent years. More specifically, the study focused on the α137-141 fragment of bovine haemoglobin (TSKYR), a small (653 Da) hydrophilic antimicrobial peptide. In this work, the potential of human hemoglobin to contain bioactive peptides was first investigated in silico in comparison with bovine hemoglobin-derived peptides using bioinformatics tools. The blast results showed a high identity, 88% and 85% respectively, indicating a high similarity between the α and β chains. Peptide Cutter software was used to predict cleavage sites during peptide hydrolysis, revealing major conservation in the number and location of cleavage sites between the two species, while highlighting some differences. Some peptides were conserved, notably our target peptide (TSKYR), while others were specific to each species. Secondly, the two types of hemoglobin were subjected to similar enzymatic hydrolysis conditions (23 °C, pH 3.5), which showed that the hydrolysis of human hemoglobin followed the same reaction mechanism as the hydrolysis of bovine hemoglobin, the 'zipper' mechanism. Concerning the peptide of interest, α137-141, the RP-UPLC analyses showed that its identification was not affected by the increase in the initial substrate concentration. Its production was rapid, with more than 60% of the total α137-141 peptide production achieved in just 30 min of hydrolysis, reaching peak production at 3 h. Furthermore, increasing the substrate concentration from 1% to 10% (w/v) resulted in a proportional increase in α137-141 production, with a maximum concentration reaching 687.98 ± 75.77 mg·L-1, approximately ten-fold higher than that obtained with a 1% (w/v) concentration. Finally, the results of the UPLC-MS/MS analysis revealed the identification of 217 unique peptides in bovine hemoglobin hydrolysate and 189 unique peptides in human hemoglobin hydrolysate. Of these, 57 peptides were strictly common to both species. This revealed the presence of several bioactive peptides in both cattle and humans. Although some had been known previously, new bioactive peptides were discovered in human hemoglobin, such as four antibacterial peptides (α37-46 PTTKTYFPHF, α36-45 FPTTKTYFPH, α137-141 TSKYR, and α133-141 STVLTSKYR), three opioid peptides (α137-141 TSKYR,β31-40 LVVYPWTQRF,β32-40, VVYPWTQRF), an ACE inhibitor (β129-135 KVVAGVA), an anticancer agent (β33-39 VVYPWTQ), and an antioxidant (α137-141 TSKYR). To the best of our knowledge, these peptides have never been found in human hemoglobin before.
Collapse
Affiliation(s)
- Ahlam Outman
- UMR Transfrontalière BioEcoAgro N°1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, F-59000 Lille, France; (A.O.); (B.D.); (C.F.); (M.A.D.); (N.N.)
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, University of Lille, 3, rue du Professeur Laguesse, F-59000 Lille, France
| | - Barbara Deracinois
- UMR Transfrontalière BioEcoAgro N°1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, F-59000 Lille, France; (A.O.); (B.D.); (C.F.); (M.A.D.); (N.N.)
| | - Christophe Flahaut
- UMR Transfrontalière BioEcoAgro N°1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, F-59000 Lille, France; (A.O.); (B.D.); (C.F.); (M.A.D.); (N.N.)
| | - Mira Abou Diab
- UMR Transfrontalière BioEcoAgro N°1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, F-59000 Lille, France; (A.O.); (B.D.); (C.F.); (M.A.D.); (N.N.)
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, University of Lille, 3, rue du Professeur Laguesse, F-59000 Lille, France;
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, University of Lille, 3, rue du Professeur Laguesse, F-59000 Lille, France
| | - Naïma Nedjar
- UMR Transfrontalière BioEcoAgro N°1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, F-59000 Lille, France; (A.O.); (B.D.); (C.F.); (M.A.D.); (N.N.)
| |
Collapse
|
8
|
Sabbagh M, Gutierrez L, Lai R, Nocella G. Consumer Intention towards Buying Edible Beef Offal and the Relevance of Food Neophobia. Foods 2023; 12:2340. [PMID: 37372551 DOI: 10.3390/foods12122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Enhancing the willingness to eat edible offal can be a valuable strategy to mitigate the greenhouse gas (GHG) emissions related to growing meat production and to provide food with high protein content to a growing global population. Although some edible offal is considered delicacies, we hardly find such foods in Western countries' everyday diet, and their human consumption has decreased during the last decades. This study analyses the consumer purchase intention of BEEF edible offal using an extended version of the Theory of Planned Behaviour (TPB), where food neophobia and food disgust sensitivity play an essential role in determining consumers' willingness to eat beef edible offal. An online survey was conducted among a sample of Italian adult regular meat eaters (n = 720), stratified by age, gender, education and residence. The results showed a direct negative impact of food neophobia on the intention to consume offal. Further, we were able to quantify a negative indirect impact of food neophobia on intention through the mediation of food disgust sensitivity and attitudes, subjective norms and perceived behavioural control, which all exert an essential role in determining the willingness to consume beef edible offal. We found that the mediated impact of food neophobia on the intention to consume beef offal is much higher than the direct impact. In conclusion, recommendations and implications, such as promoting cooking shows with celebrity chefs, new products or new packaging of edible offal, were developed based on the results to increase edible beef consumption.
Collapse
Affiliation(s)
- Maria Sabbagh
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Luciano Gutierrez
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Roberto Lai
- Cooperativa Produttori Arborea-Società Agricola, 09092 Arborea, Italy
| | - Giuseppe Nocella
- Department of Applied Economics and Marketing, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6UR, UK
| |
Collapse
|
9
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
10
|
Gathercole J, Maes E, Thomas A, Wieliczko R, Grosvenor A, Haines S, Clerens S, Deb-Choudhury S. Unlocking the bioactivity of meat proteins: Comparison of meat and meat hydrolysate via simulated gastrointestinal digestion. J Proteomics 2023; 273:104806. [PMID: 36587727 DOI: 10.1016/j.jprot.2022.104806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Understanding the functional attributes of meat proteins is crucial for determining their nutritional benefits. Depending on the form in which meat proteins are available, the digestive process can release peptides which are valuable for nutrition and may also possess bioactive properties, affecting physiology. Liquid chromatography - mass spectrometry (LC-MS) was used to quantitatively compare the molecular peptide features (representing non-redundant peptides), during the different stages of a simulated gastrointestinal digestion process of a minimally processed powdered meat and its enzymatically produced hydrolysate. Results from a principal component analysis (PCA) indicated that the hydrolysate did not undergo extensive additional digestion whereas the powdered meat was digested both at the gastric and in the intestinal phases. Bioactive peptide sequence prediction identified the meat hydrolysate but not the meat powder as the only source of exact and partial bioactive matches in the angiotensin-I converting enzyme and dipeptidyl peptidase IV inhibition categories. Also, a higher source of cryptides (encrypted bioactive peptides), indicated that meat hydrolysates are potentially a better substrate for the release of these enzyme inhibitory peptides. These observations thus suggest that pre-digestion of a complex food matrix such as meat, may enhance its bioavailability following oral consumption early in the digestion process. SIGNIFICANCE: This work highlights enzymatic hydrolysis of meat proteins prior to ingestion allows for potentially higher bioavailability of bioactive peptides that inhibit angiotensin-I converting enzyme and dipeptidyl peptidase IV, thus possibly aiding high blood pressure and type 2 diabetes management.
Collapse
Affiliation(s)
| | - Evelyne Maes
- Smart Foods & Bioproducts, AgResearch Lincoln, New Zealand
| | - Ancy Thomas
- Smart Foods & Bioproducts, AgResearch Lincoln, New Zealand
| | | | | | - Stephen Haines
- Smart Foods & Bioproducts, AgResearch Lincoln, New Zealand
| | - Stefan Clerens
- Smart Foods & Bioproducts, AgResearch Lincoln, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
11
|
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023; 15:457. [PMID: 36678328 PMCID: PMC9864718 DOI: 10.3390/nu15020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Almudena García-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
12
|
Volatilomic evaluation of protein hydrolysates from free-range chicken bones treated with hot-pressure process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Cordeiro ARRDA, Bezerra TKA, Madruga MS. Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use. Animals (Basel) 2022; 12:ani12233277. [PMID: 36496799 PMCID: PMC9736461 DOI: 10.3390/ani12233277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Goat and sheep meat production is a challenge for the meat industry as well as for environmental management. Yet within cultures, certain by-products, such as liver, the lungs, heart, brain, spleen, blood, tail and ears, are traditionally used in the production of typical dishes for regional or local cuisine. These by-products are a rich source of lipids, proteins, essential amino acids, B-complex vitamins, and minerals. They can be effectively exploited for higher (value-added) applications, including functional foods or feed ingredients, food supplements, enzymes and other chemical products such as hydrolyzed proteins and flavorings. This review article gathers data on: (i) the production of by-products obtained from slaughter and available for processing, and (ii) potential strategies for using and applying these by-products in obtaining new value-added ingredients. Other than proteins, the review discusses other macromolecules and possible uses of these by-products in culinary dishes, as hydrolyzed enzymes, and as food additives. Even though these by-products undoubtedly present themselves as rich in nutrients, there remains an unfortunate lack of documented information on the potential use of these by-products for their bioactive components, peptides that have various biological and technological properties, and the use of hydrolyzed versions of these by-products as precursors for the production of flavorings.
Collapse
|
14
|
Isolation and structural characterization of antioxidant peptides from horse bone marrow protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Sbeghen AL, Lira AL, Fernandes IA, Steffens C, Brião VB, Zeni J, Steffens J. Use of ultrafiltration in the separation of hydrolysates from mechanically separated chicken meat and evaluation of antioxidant activity. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Lima Sbeghen
- Department of Food Engineering Universidade Regional Integrada do Alto Uruguai e Missões Erechim Brazil
| | - Ana Luisa Lira
- Department of Food Engineering Universidade Regional Integrada do Alto Uruguai e Missões Erechim Brazil
| | | | - Clarice Steffens
- Department of Food Engineering Universidade Regional Integrada do Alto Uruguai e Missões Erechim Brazil
| | - Vandré Barbosa Brião
- Program in Environmental and Civil Engineering, Department of Food Engineering University of Passo Fundo (UPF) Passo Fundo Brazil
| | - Jamile Zeni
- Department of Food Engineering Universidade Regional Integrada do Alto Uruguai e Missões Erechim Brazil
| | - Juliana Steffens
- Department of Food Engineering Universidade Regional Integrada do Alto Uruguai e Missões Erechim Brazil
| |
Collapse
|
16
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
18
|
Barido FH, Kim HJ, Kang SM, Jang A, Pak JI, Lee SK. The effect of hydrolysis pre-treatment by flavourzyme on meat
quality, antioxidative profiles, and taste-related compounds in Samgyetang
breast supplemented with black garlic. Food Sci Anim Resour 2022; 42:625-638. [PMID: 35855271 PMCID: PMC9289802 DOI: 10.5851/kosfa.2022.e26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to carefully investigate the effect of hydrolysis using Flavourzyme on meat quality, antioxidative status, and taste-related compounds in breast of Samgyetang that was supplemented with black garlic (BG). Four different treatment groups were compared: (1) conventional Samgyetang (control), (2) Samgyetang hydrolyzed with Flavourzyme (1%, v/w) (FS), (3) Samgyetang made with the BG extract without hydrolysis (NBG), and (4) BG samgyetang pre-treated with Flavourzyme (1%, v/w) in a water bath at 55°C for 2.5 h and hydrolyzed before being processed (HBG). All the treatment groups were cooked by retorting at conditions 121°C and 1.5 kg/cm2 for 1 h. Improved umami profiles through the increase of umami-related nucleotides (5’-GMP, 5’-IMP) and free amino acids—aspartic acid and glumtamic acid, in Samgyetang breast was recorded following hydrolysis. The HBG group tended to impart stronger scavenging activity toward free radicals compared with the other two groups, while not differing with NBG group regarding suppressing malondialdehyde. Textural properties were improved through hydrolysis, wherein the shear force value decreased from 2.29 kgf in the control to 1.19 and 1.25 kgf in the FS and HBG group. Moisture percentages were highly retained, with the redness score increasing and the lightness color decreasing following hydrolysis. In conclusion, the results of this study can be a preliminary information of the effect of hydrolysis pre-treatment for BG samgyetang. Further experiments are required to compare various enzymes along with its organoleptic acceptances.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Hee Ju Kim
- Highlandinnovation Co., Ltd., Icheon 17392, Korea
| | - Sun Moon Kang
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Aera Jang
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jae In Pak
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Sung Ki Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
- Corresponding author: Sung Ki Lee, Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea, Tel: +82-33-250-8646, Fax: +82-33-259-5574, E-mail:
| |
Collapse
|
19
|
Toldrá F, Mora L. Peptidomics as a useful tool in the follow-up of food bioactive peptides. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:1-47. [PMID: 35659349 DOI: 10.1016/bs.afnr.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is an intense research activity on bioactive peptides derived from food proteins in view of their health benefits for consumers. However, their identification is quite challenging as a consequence of their small size and low abundance in complex matrices such as foods or hydrolyzates. Recent advances in peptidomics and bioinformatics are getting improved sensitivity and accuracy and therefore such tools are contributing to the development of sophisticated methodologies for the identification and quantification of peptides. These developments are very useful for the follow-up of peptides released through proteolysis either in the food itself through the action of endogenous peptidases during processing stages like fermentation, drying or ripening, or from food proteins hydrolyzed by commercial peptidases or microorganisms with proteolytic activity. This chapter is presenting the latest advances in peptidomics and its use for the identification and quantification of peptides, and as a useful tool for controlling the proteolysis phenomena in foods and protein hydrolyzates.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain.
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| |
Collapse
|
20
|
Sánchez-Torres EA, Abril B, Benedito J, Bon J, Toldrà M, Parés D, García-Pérez JV. Airborne ultrasonic application on hot air-drying of pork liver. Intensification of moisture transport and impact on protein solubility. ULTRASONICS SONOCHEMISTRY 2022; 86:106011. [PMID: 35483166 PMCID: PMC9171244 DOI: 10.1016/j.ultsonch.2022.106011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 05/05/2023]
Abstract
Nowadays, there is increasing interest in developing strategies for the efficient and sustainable use of animal by-products, such as pork liver. In order to stabilize the product, a prior dehydration stage may be required due to its high perishability. The water removal process of pork liver is energy costly and time consuming, which justifies its intensification using novel technologies. In this sense, the aim of this study was to assess the effect of the airborne application of power ultrasound on the hot air-drying of pork liver. For that purpose, drying experiments were carried out at 30, 40, 50, 60 and 70 °C on pork liver cylinders at 2 m·s-1 with (US) and without ultrasonic application (AIR). The drying process was modeled from the diffusion theory and, in the dried pork liver, the protein solubility was analyzed in order to determine the effect of drying on the protein quality. The ultrasound application increased the drying rate, shortening the drying time by up to 40% at 30 °C. The effect of power ultrasound at high temperatures (60 and 70 °C) was of lesser magnitude. Drying at 70 °C involved a noticeable reduction in the protein solubility for dried liver, while the impact of ultrasound application on the solubility was not significant (p > 0.05).
Collapse
Affiliation(s)
- E A Sánchez-Torres
- UPV, Universitat Politècnica de València. Department of Food Technology. Camí de Vera, s/n, 46022, Valencia, Spain
| | - B Abril
- UPV, Universitat Politècnica de València. Department of Food Technology. Camí de Vera, s/n, 46022, Valencia, Spain
| | - J Benedito
- UPV, Universitat Politècnica de València. Department of Food Technology. Camí de Vera, s/n, 46022, Valencia, Spain
| | - J Bon
- UPV, Universitat Politècnica de València. Department of Food Technology. Camí de Vera, s/n, 46022, Valencia, Spain
| | - M Toldrà
- UdG, University of Girona, Institute of Food and Agricultural Technology (INTEA), XIA (Catalonian Network on Food Innovation), Escola Politècnica Superior, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - D Parés
- UdG, University of Girona, Institute of Food and Agricultural Technology (INTEA), XIA (Catalonian Network on Food Innovation), Escola Politècnica Superior, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - J V García-Pérez
- UPV, Universitat Politècnica de València. Department of Food Technology. Camí de Vera, s/n, 46022, Valencia, Spain.
| |
Collapse
|
21
|
Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study. J Food Biochem 2022; 46:e14137. [PMID: 35352361 DOI: 10.1111/jfbc.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
An in silico approach was used for hydrolysis of sheep milk proteins (α-s1, α-s2, β-casein, κ-Cn, α-lactalbumin, and β-lactoglobulin) by gastrointestinal enzymes in order to generate bioactive peptides (BAPs) that can inhibit ACE and DPP-IV. Sheep milk proteins showed higher similarity with goat milk proteins. These data were acquired via the Clustal Omega tool to perform sequence alignment analysis. The BIOPEP-UWM database was used to examine the ability of sheep milk protein sequences to generate BAPs, which included a description of their potential bioactivity as well as the frequency of fragments with specified activities. Using the "Enzyme(s) action" tool (BIOPEP-UWM), digestive enzymes pepsin, trypsin, and chymotrypsin, and three enzyme combinations were selected to computationally hydrolyze milk proteins for obtaining information about ACE and DPP-IV inhibitory peptides. Other online programs were used to test potential peptides for bioactivity, toxicity, and physicochemical properties. BAPs produced from PTC-hydrolyzed proteins were analyzed using a peptide ranker, and their inhibitory effects on ACE and DPP-IV were determined using molecular docking. Consequently, the results of molecular docking analysis show that the peptide PSGAW (αS1-Cn f155-159) binds to DPP-IV with binding energy (-8.9 kcal/mol). But in the case of ACE, two potential BAPs were selected: QPPQPL (β-Cn f161-166) and PSGAW. These two BAPs revealed a higher binding affinity for ACE with a binding energy of -9.8 kcal/mol. Thus, the results showed that sheep milk proteins were a promising source of antidiabetic and hypotensive peptides. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects. PRACTICAL APPLICATIONS: Sheep milk proteins are known as a high-quality milk protein resource. Effective enzymatic hydrolysis of sheep milk proteins can release bioactive peptides and also release potential ACE and DPP-IV inhibitory peptides. This in silico study specifies a theoretical root for sheep milk proteins as a novel source of potential bioactive peptides and may offer guidance for invitro hydrolysis of proteins for the production of bioactive peptides valuable for human consumption.
Collapse
Affiliation(s)
- Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
22
|
López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022; 27:1343. [PMID: 35209132 PMCID: PMC8878547 DOI: 10.3390/molecules27041343] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, the demand for food proteins in the market has increased due to a rise in degenerative illnesses that are associated with the excessive production of free radicals and the unwanted side effects of various drugs, for which researchers have suggested diets rich in bioactive compounds. Some of the functional compounds present in foods are antioxidant and antimicrobial peptides, which are used to produce foods that promote health and to reduce the consumption of antibiotics. These peptides have been obtained from various sources of proteins, such as foods and agri-food by-products, via enzymatic hydrolysis and microbial fermentation. Peptides with antioxidant properties exert effective metal ion (Fe2+/Cu2+) chelating activity and lipid peroxidation inhibition, which may lead to notably beneficial effects in promoting human health and food processing. Antimicrobial peptides are small oligo-peptides generally containing from 10 to 100 amino acids, with a net positive charge and an amphipathic structure; they are the most important components of the antibacterial defense of organisms at almost all levels of life-bacteria, fungi, plants, amphibians, insects, birds and mammals-and have been suggested as natural compounds that neutralize the toxicity of reactive oxygen species generated by antibiotics and the stress generated by various exogenous sources. This review discusses what antioxidant and antimicrobial peptides are, their source, production, some bioinformatics tools used for their obtainment, emerging technologies, and health benefits.
Collapse
Affiliation(s)
- Guadalupe López-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Octavio Dublan-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Daniel Arizmendi-Cotero
- Department of Industrial Engineering, Engineering Faculty, Campus Toluca, Universidad Tecnológica de México (UNITEC), Estado de México, Toluca 50160, Mexico;
| | - Leobardo Manuel Gómez Oliván
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| |
Collapse
|
23
|
Nehring P, Lorenzo JM, Santos SP, Wagner R, de Menezes CR, dos Santos BA, Barin JS, Campagnol PCB, Cichoski AJ. Effect of ultrasound application on the growth of S. xylosus inoculated in by-products from the poultry industry. Curr Res Food Sci 2022; 5:345-350. [PMID: 35198993 PMCID: PMC8841956 DOI: 10.1016/j.crfs.2022.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022] Open
Abstract
A wide variety of by-products are produced by the industry when animals are slaughtered. However, the proteins present in these by-products, are not being fully useable, in the elaboration of value-added products. Staphylococcus xylosus is commonly used as a starter culture in meat products subjected to ripening for a long period, as it produces proteolytic and lipolytic enzymes that improve the sensory quality of the products. Ultrasound (US) has been arousing interest in the meat industry, as it reduces processing time and also improves the technological and sensory quality of meat products. However, the stimulate effect of US on the growth of S. xylosus in by-products from the poultry industry is still unknown. Thus, this study aimed to evaluate the stimulate effect of US on the growth of S. xylosus inoculated in by-products from the poultry industry. S. xylosus was inoculated (5.63 log CFU/g) in sterilized by-products from the poultry, which were then sonicated at 37 °C for 0, 15, 30, and 45 min according to the following parameters: frequencies of 130 and 35 kHz, amplitudes of 50% and 80% and normal and degas operating modes. The sonicated samples were incubated at 37 °C for 0, 24, 48, and 72 h. Soon after sonication, no stimulate effect of US was observed on the growth of S. xylosus. However, after 24 h of incubation, the samples sonicated for 15 and 30 min in normal mode, at 35 and 130 kHz, and amplitudes of 50 and 80% exhibited better stimulate effect at the growth S. xylosus counts (p < 0.01) when compared to the Control, with values of 8.23 and 7.77 log CFU/g, respectively. These results can be exploited to obtain new added-value products, having as raw material by-products from the poultry industry. We studied the effect of US on the growth of S. xylosus in poultry waste. Frequency, amplitude and US time had a great impact on the growth of S. xylosus. Constant ultrasonic waves stimulated the growth of S. xylosus. This study found a promising new field of application for US in the meat industry.
Collapse
|
24
|
Jogi N, Yathisha UG, Bhat I, Mamatha BS. Antihypertensive activity of orally consumed ACE-I inhibitory peptides. Crit Rev Food Sci Nutr 2022; 62:8986-8999. [PMID: 34213991 DOI: 10.1080/10408398.2021.1938508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food proteins are sources for ACE-I inhibitory peptides that can be extracted by enzymatic hydrolysis exhibiting anti-hypertensive activity. However, these peptides are prone to further degradation by gastrointestinal enzymes during oral consumption. Bio-activity of these peptides is dependent on the resultant peptide post gastrointestinal digestion. To exhibit the bio-activity, they need to be absorbed in intact form. Although studies suggest di and tri-peptides show better ACE-I inhibitory activity, few peptides show altered IC50 values under simulated gastrointestinal digestion. Moreover, ACE-I inhibitory peptides with low IC50 values have not shown effective anti-hypertensive activity in spontaneously hypertensive rats when administered orally. Few ACE-I inhibitory peptides have reported effective reduction in systolic blood-pressure when administered through intravenously. During oral consumption of such peptides, the actual peptide sequence responsible for reducing blood-pressure is a result of breakdown in gastrointestinal tract. The fate of targeted peptides during digestion depends on amino acid sequence of the protein containing the specific site for cleavage where the action of digestive enzymes takes place. Therefore, this review attempts to explain the factors that affect the anti-hypertensive activity of ACE-I inhibitory peptides during oral consumption. It also highlights subsequent absorption of ACE-I inhibitory peptides after gastrointestinal digestion.
Collapse
Affiliation(s)
- Nishithkumar Jogi
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Undiganalu Gangadharappa Yathisha
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Ishani Bhat
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
25
|
Weng S, Sáez-Orviz S, Marcet I, Rendueles M, Díaz M. Novel Bovine Plasma Protein Film Reinforced with Nanofibrillated Cellulose Fiber as Edible Food Packaging Material. MEMBRANES 2021; 12:membranes12010031. [PMID: 35054557 PMCID: PMC8781310 DOI: 10.3390/membranes12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022]
Abstract
Proteins, such as those in blood from slaughterhouses, are a good option for developing edible films. However, films made exclusively from proteins have low strength and high water solubility, which makes them difficult to use in the food industry. The use of cellulosic material, such as nanofibrillated cellulose (NFC), can improve the properties of these films. In the present work, bovine plasma was acidified and treated with ethanol to precipitate its proteins, and these proteins were used to prepare films reinforced with several concentrations of NFC. In addition, control films prepared with untreated bovine plasma and reinforced with NFC were prepared as well. These new edible films were characterized according to their mechanical properties, water vapor permeability, light transmittance, and microstructure. Furthermore, the film with the best properties was selected to be additivated with nisin to test its antimicrobial properties by wrapping meat previously contaminated with Staphylococcus aureus. In this sense, films prepared with the extracted proteins showed better properties than the films prepared with untreated plasma. In addition, the results showed that the reinforcement of the films with a 10% (w/w) of NFC decreased their water solubility and improved their puncture strength and water vapor barrier properties. Finally, the addition of nisin to the films prepared with extracted protein from bovine plasma and NFC gave them antimicrobial properties against S. aureus.
Collapse
|
26
|
Shirsath AP, Henchion MM. Bovine and ovine meat co-products valorisation opportunities: A systematic literature review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Pramualkijja T, Pirak T, Euston SR. Valorization of chicken slaughterhouse by-products: Production and properties of chicken trachea hydrolysates using commercial proteases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1986522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Teeda Pramualkijja
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Tantawan Pirak
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Stephen R. Euston
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
28
|
Sanlier N, Üstün D. Egg consumption and health effects: A narrative review. J Food Sci 2021; 86:4250-4261. [PMID: 34472102 DOI: 10.1111/1750-3841.15892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
This study was planned and conducted to investigate the effects of egg consumption on metabolic syndrome components and potential mechanisms of action on humans. Egg, an important source of animal protein, is defined as a functional food containing various bioactive compounds that can affect the proinflammatory and anti-inflammatory pathways. As a matter of fact, the egg can show immunomodulatory, anti-inflammatory, antioxidant, anticancer, or antihypertensive effects with its bioactive components. It is claimed that egg consumption may protect individuals against metabolic syndrome by increasing HDL-C levels and reducing inflammation. The increase in egg consumption creates the perception that it may lead to cardiovascular diseases due to its cholesterol content. However, there is insufficient evidence as to whether dietary cholesterol-lowers LDL-C. The possible potential mechanisms of egg impact on human health, MEDLINE, Embase, the Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, Google Scholar, and selected websites including) and databases were examined in this regard. With a view to delving into the rather mysterious relationship between egg cholesterol and blood cholesterol, it is necessary to understand the absorption of cholesterol from the egg and to know the functioning of the intestinal microbiota. Studies conducted to date have generally yielded inconsistent results regarding egg consumption and risks of CVD, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Dilara Üstün
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
29
|
Sánchez-Torres E, Abril B, Benedito J, Bon J, García-Pérez J. Water desorption isotherms of pork liver and thermodynamic properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Xing L, Li G, Toldrá F, Zhang W. The physiological activity of bioactive peptides obtained from meat and meat by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:147-185. [PMID: 34311899 DOI: 10.1016/bs.afnr.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meat and meat products constitute an important source of nutrients and play vital roles for growth, maintenance and repair of the body. In addition to the high quality of proteins, meat is also regarded as a major resource to produce bioactive peptides. Meat processing industry also produces by-products such as bones, blood and viscera, which could be further used for the production of bioactive compounds. In the physiological analysis, meat bioactive peptides have been reported to exert antioxidant, anti-hypertensive, anti-inflammatory, anti-microbial and antitumoral activities, which endow nutritional and functional value of meat. With the objective to exert the functional effect, the bioavailability should also be considered due to the degradation by digestion enzymes and the absorption process in intestinal mucosa. In this chapter, the general source, the enzymatic hydrolysis, the physiological effects as well as the bioavailability of bioactive peptides in meat are discussed.
Collapse
Affiliation(s)
- Lujuan Xing
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Guanhao Li
- College of Agriculture, Yanbian University, Yanji, PR China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Valencia, Spain
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
31
|
Bravo FI, Mas-Capdevila A, López-Fernández-Sobrino R, Torres-Fuentes C, Mulero M, Alcaide-Hidalgo JM, Muguerza B. Identification of novel antihypertensive peptides from wine lees hydrolysate. Food Chem 2021; 366:130690. [PMID: 34343949 DOI: 10.1016/j.foodchem.2021.130690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/04/2022]
Abstract
Enzymatic-assisted extraction using Flavourzyme® has been demonstrated to be a useful methodology to obtain wine lees (WL) enriched in phenolic compounds and with enhanced antihypertensive activity. Nevertheless, taking into account that Flavourzyme® possess proteolytic activity, the release of bioactive peptides should not be ruled out. In this study, we investigate the presence of antihypertensive peptides in the WL hydrolysate. Peptides were separated into fractions by ultrafiltration and RP-HPLC. Next, peptide identification by nano-HPLC-(Orbitrap)MS/MS was performed in the fractions showing the highest angiotensin-converting enzyme inhibitory (ACEi) activities. Six peptides were identified; three of them showing ACEi (IC50) values lower than 20 µM. The peptide antihypertensive effect was evaluated in spontaneously hypertensive rats at an oral dose of 10 mg/kg bw. Peptides FKTTDQQTRTTVA, NPKLVTIV, TVTNPARIA, LDSPSEGRAPG and LDSPSEGRAPGAD exhibited antihypertensive activity, confirming that they could contribute to the blood pressure-lowering effect of the WL hydrolysate. These peptides have a great potential as functional ingredients to manage hypertension.
Collapse
Affiliation(s)
- Francisca Isabel Bravo
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Anna Mas-Capdevila
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, 43007 Tarragona, Spain; Eurecat, Technology Centre of Catalonia, Nutrition and Health Unit, 43204 Reus, Spain.
| | - Raúl López-Fernández-Sobrino
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Miquel Mulero
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Juan María Alcaide-Hidalgo
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, 43007 Tarragona, Spain; Eurecat, Technology Centre of Catalonia, Nutrition and Health Unit, 43204 Reus, Spain.
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| |
Collapse
|
32
|
Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat processing sustainability. Meat Sci 2021; 181:108608. [PMID: 34171788 DOI: 10.1016/j.meatsci.2021.108608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Large amounts of meat by- and co-products are generated during slaughtering and meat processing, and require rational management of these products for an ecological disposal. Efficient solutions are very important for sustainability and innovative developments create high added-value from meat by-products with the least environmental impact, handling and disposal costs, in its transition to bioeconomy. Some proteins have relevant technological uses for gelation, foaming and emulsification while protein hydrolyzates may contribute to a better digestibility and palatability. Protein hydrolysis generate added-value products such as bioactive peptides with relevant physiological effects of interest for applications in the food, pet food, pharmaceutical and cosmetics industry. Inedible fats are increasingly used as raw material for the generation of biodiesel. Other applications are focused on the development of new biodegradable plastics that can constitute an alternative to petroleum-based plastics. This manuscript presents the latest developments for adding value to meat by- and co-products and discusses opportunities for making meat production and processing more sustainable.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Milagro Reig
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
33
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
34
|
Arihara K, Yokoyama I, Ohata M. Bioactivities generated from meat proteins by enzymatic hydrolysis and the Maillard reaction. Meat Sci 2021; 180:108561. [PMID: 34034035 DOI: 10.1016/j.meatsci.2021.108561] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Bioactive peptides are released from meat proteins by enzymatic hydrolysis (i.e., gastrointestinal digestion, aging/storage, fermentation, and protease treatment). Such peptides attribute physiological functions to meat and meat products and are promising food ingredients for developing functional foods. Meat by-products (e.g., blood and collagen) are also good sources for generating bioactive peptides, since they are produced in large quantities and are rich in proteins. Although protein-derived bioactive peptides are attractive ingredients, their changes by the Maillard reaction during processing, cooking, and storage should be investigated. This article briefly reviews the production of bioactive peptides from meat and meat by-products. Such diverse peptides affects circulatory, nervous, alimentary, and immune systems. Then, the bioactivities of Maillard reaction products (MRPs) generated from protein hydrolysates are discussed. Special attention is paid to bioactivities of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) inhalation. As such activities, we have evaluated the impact of DMHF on blood pressure, moods, brainwaves, and dietary intake. Our efforts for understanding various aspects and implication of peptides and MRPs from meat proteins would open new avenues in the meat and food industry.
Collapse
Affiliation(s)
- K Arihara
- School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan.
| | - I Yokoyama
- School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - M Ohata
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| |
Collapse
|
35
|
Zhao M, Li S, Ahn DU, Huang X. Phosvitin phosphopeptides produced by pressurized hea-trypsin hydrolysis promote the differentiation and mineralization of MC3T3-E1 cells via the OPG/RANKL signaling pathways. Poult Sci 2021; 100:527-536. [PMID: 33518105 PMCID: PMC7858084 DOI: 10.1016/j.psj.2020.10.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 10/31/2022] Open
Abstract
Phosvitin (PV) from egg yolk is an excellent substrate for the production of phosphopeptides, which have a strong calcium chelating capacity and promoting calcium absorption and bone mineralization. This study investigated the effect of PV hydrolysates produced using a effective preparation method (high temperature (121°C) and mild pressure (0.1 MPa), HTMP) or HTMP pretreatment and trypsin hydrolysis combination (HTMP-PV18) on the physiology of an osteoblast MC3T3-E1 cells line. The proliferation, apoptosis, and differentiation of MC3T3-E1 cells were analyzed using the CCK-8, flow cytometry, and RT-PCR reactions, respectively. Both the HTMP-PV and HTMP-PV18 increased the proliferation, and inhibited the apoptosis of MC3T3-E1 cells significantly. The HTMP-PV increased the proliferation of MC3T3-E1 cells by 147.12 ± 2.11% and the HTMP-PV18 by 136.43 ± 4.51%. In addition, the HTMP-PV and HTMP-PV18 effectively promoted the expression of genes related to the OPG/RANKL signaling channel during cell differentiation. This indicated that both the HTMP-PV and HTMP-PV18 have the potential to promote bone mineralization by improving the proliferation and differentiation of osteoblastic cells.
Collapse
Affiliation(s)
- Mengdie Zhao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shanshan Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dong Uk Ahn
- Animal Science Department, Iowa State University, Ames, USA
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
36
|
Animal food products: policy, market and social issues and their influence on demand and supply of meat. Proc Nutr Soc 2021; 80:252-263. [DOI: 10.1017/s0029665120007971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present paper aims to contribute to the contentious debate regarding the role of meat as part of a sustainable diet. It uses secondary data to examine the patterns of meat consumption across the globe, and drawing on academic and grey literature, it outlines some of the policy, market and social trends and issues influencing demand and supply of meat. It also presents an overview of the scientific evidence base regarding the pros and cons of meat consumption. The results show that consumption patterns are not homogeneous globally, nor across meat types, with overall meat consumption increasing strongly in developing countries but stagnating in developed countries, and demand for poultry increasing in most regions in contrast to beef. They also illustrate the evolving impact of factors such as income on consumption and the increasing impact of non-economic factors, such as social and policy influences relating to health and the environment, on food choice behaviours, to the extent that such behaviours are increasingly entering a moral space. Given the solid scientific evidence that simultaneously substantiates arguments to increase and decrease meat consumption, it is clear that dietary recommendations need to be context-specific. An important part of the context is the strategies being pursued by researchers and supply chain actors, from farmers through to processors, retailers and food service operators, to improve the sustainability credentials of livestock production. As new evidence emerges from such initiatives, the context will change which means that dietary guidelines will require continuous review.
Collapse
|
37
|
Villalobos‐Delgado LH, Núñez‐González FA, Alarcon‐Rojo AD, Silva‐Avila NJ. Quality of cooked sausages with added beef or pork heart surimi. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Alma D. Alarcon‐Rojo
- Faculty of Animal Science and Ecology Autonomous University of Chihuahua Chihuahua Mexico
| | - Nidia Jahzeel Silva‐Avila
- Department of Agronomic and Veterinary Sciences Sonora Institute of Technology Ciudad Obregón Mexico
| |
Collapse
|
38
|
de Araújo Cordeiro ARR, de Medeiros LL, Bezerra TKA, Pacheco MTB, de Sousa Galvão M, Madruga MS. Effects of thermal processing on the flavor molecules of goat by-product hydrolysates. Food Res Int 2020; 138:109758. [DOI: 10.1016/j.foodres.2020.109758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
|
39
|
Saini A, Panesar PS. Beneficiation of food processing by-products through extraction of bioactive compounds using neoteric solvents. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Lafarga T, Acién-Fernández FG, Garcia-Vaquero M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101909] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Sharma P, Kaur H, Kehinde BA, Chhikara N, Sharma D, Panghal A. Food-Derived Anticancer Peptides: A Review. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10063-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Chicken Combs and Wattles as Sources of Bioactive Peptides: Optimization of Hydrolysis, Identification by LC-ESI-MS 2 and Bioactivity Assessment. Molecules 2020; 25:molecules25071698. [PMID: 32272799 PMCID: PMC7181024 DOI: 10.3390/molecules25071698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
The production of bioactive peptides from organic by-waste materials is in line with current trends devoted to guaranteeing environmental protection and a circular economy. The objectives of this study were i) to optimize the conditions for obtaining bioactive hydrolysates from chicken combs and wattles using Alcalase, ii) to identify the resulting peptides using LC-ESI-MS2 and iii) to evaluate their chelating and antioxidant activities. The hydrolysate obtained using a ratio of enzyme to substrate of 5% (w/w) and 240 min of hydrolysis showed excellent Fe2+ chelating and antioxidant capacities, reducing Fe3+ and inhibiting 2, 2′-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The mapping of ion distribution showed that a high degree of hydrolysis led to the production of peptides with m/z ≤ 400, suggesting low mass peptides or peptides with multiple charge precursor ions. The peptides derived from the proteins of cartilage like Collagen alpha-2(I), Collagen alpha-1(I), Collagen alpha-1(III) and elastin contributed to generation of bioactive compounds. Hydrolysates from chicken waste materials could be regarded as candidates to be used as ingredients to design processed foods with functional properties.
Collapse
|
43
|
Maluf JU, Fiorese ML, Maestre KL, Dos Passos FR, Finkler JK, Fleck JF, Borba CE. Optimization of the porcine liver enzymatic hydrolysis conditions. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José U. Maluf
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Mônica L. Fiorese
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Keiti L. Maestre
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Fernanda R. Dos Passos
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Joana K. Finkler
- Fishing Resources and Fishing Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | | | - Carlos E. Borba
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| |
Collapse
|
44
|
Taniguchi M, Aida R, Saito K, Oya R, Ochiai A, Saitoh E, Tanaka T. Identification of cationic peptides derived from low protein rice by-products and evaluation of their multifunctional activities. J Biosci Bioeng 2020; 129:307-314. [DOI: 10.1016/j.jbiosc.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
|
45
|
Ben-Othman S, Jõudu I, Bhat R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020; 25:E510. [PMID: 31991658 PMCID: PMC7037811 DOI: 10.3390/molecules25030510] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sustainable utilization of agri-food wastes and by-products for producing value-added products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity for earning additional income for the dependent industrial sector. Besides, effective valorisation of wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted pollution. The major focus of this review is to provide comprehensive information on valorisation of agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for value addition will be highlighted.
Collapse
Affiliation(s)
- Sana Ben-Othman
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| | - Ivi Jõudu
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| |
Collapse
|
46
|
Effect of natural extracts obtained from food industry by-products on nutritional quality and shelf life of chicken nuggets enriched with organic Zn and Se provided in broiler diet. Poult Sci 2020; 99:1491-1501. [PMID: 32111317 PMCID: PMC7587798 DOI: 10.1016/j.psj.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/27/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated the influence of an organic mineral-supplemented broiler diet on the quality of nuggets. The resulting chicken nuggets were enriched with inorganic and organic forms of Zn and Se. The nuggets were processed by incorporating extracts from food industry by-products (rosemary [RH and RL], hydroxytyrosol [HYT], pomegranate [P], grape [GS], and Harpagophytum [H]). The physiochemical, microbiological, and sensory characteristics of the chicken nuggets were evaluated over a 12-month period of frozen storage. The addition of natural extracts did not affect the pH, proximate composition, or color (CIELab) of the nuggets among samples. However, significative differences were found between month of analysis (range from pH 6.16 to 6.63; luminosity from 62.51 to 84.74; redness from 0.16 to 7.14; and yellowness from 10.80 to 33.77). In addition, the combination of phenolic compounds with Zn and Se retarded microbial growth and reduced protein and lipid oxidation, thus maintaining the sensory quality and extending the shelf life of this product. For instance, the combination of RL + GS reduced in 75% the microbiological growth regarding the control sample (C), while samples that incorporated RH + P or HYT + P + H presented 50% less than C. In addition, upon only incorporating organic minerals Zn and Se, microbiological deterioration is reduced in 15%. This mix was significantly effective at reducing the oxidative reactions of lipids and proteins by 40% and 50%, as measured after 9 and 12 mo of frozen storage, respectively. The addition of the natural extracts and Zn and Se did not adversely affect the acceptability of the meat product.
Collapse
|
47
|
Antioxidant and Antimicrobial Activity of Peptides Extracted from Meat By-products: a Review. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01595-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Callegaro K, Brandelli A, Daroit DJ. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:399-415. [PMID: 31351626 DOI: 10.1016/j.wasman.2019.06.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
The livestock production and subsequent processing of meat results in huge quantities of solid waste such as viscera, bones, skin and keratin-rich materials, including feathers, hair, wool, claws and hooves. In particular, the continuous growth of poultry industry generates massive amounts of feathers as major waste material. The conversion of such by-products into materials with increased value has been studied. Hydrothermal, chemical or biological approaches have been investigated to achive effective conversion of highly recalcitrant proteins that are abundant in animal waste, but increasing interest is devoted to the development of biotechnological methods. The processing of feathers and other by-products into protein hydrolysates may have industrial and commercial significance. Therefore, this review comprehensively addresses the postulated applications of hydrolysates obtained from keratinous biomasses. Examples on the utilization of feather hydrolysates as organic soil fertilizers, feed ingredients, cosmetic formulations and biofuel production are described in the literature. Microbial feather hydrolysis can generate bioactive peptides as well. The use of protein-rich waste from meat industry to produce hydrolysates with biological activities constitutes a point of utmost interest for development of functional ingredients with elevated value.
Collapse
Affiliation(s)
- Kelly Callegaro
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Campus Cerro Largo, Av. Jacob Reinaldo Haupenthal 1580, 97900-000 Cerro Largo, RS, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Campus Cerro Largo, Av. Jacob Reinaldo Haupenthal 1580, 97900-000 Cerro Largo, RS, Brazil.
| |
Collapse
|
49
|
BING L, HAJI AKBER A, ABULIMITI Y. Optimization of ultrasound-assisted extraction of sheep abomasum protein concentrates by response surface methodology and evaluation of their properties. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.37317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Liu BING
- Xinjiang Technical Institute of Physics and Chemistry, China; University of Chinese Academy of Sciences, China; Xinjiang Technical Institute of Physics and Chemistry, China
| | - Aisa HAJI AKBER
- Xinjiang Technical Institute of Physics and Chemistry, China; Xinjiang Technical Institute of Physics and Chemistry, China; Xinjiang Technical Institute of Physics and Chemistry, China
| | - Yili ABULIMITI
- Xinjiang Technical Institute of Physics and Chemistry, China; Xinjiang Technical Institute of Physics and Chemistry, China; Xinjiang Technical Institute of Physics and Chemistry, China
| |
Collapse
|
50
|
Long-term administration of protein hydrolysate from chicken feet induces antihypertensive effect and confers vasoprotective pattern in diet-induced hypertensive rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|