1
|
Ghosh S, Kar P, Chakraborty PS, Pradhan S, Chakrabarti S, Ghosh K. Characterization and anti-biofilm potentiality of an isolated novel Aeromonas hydrophila-infecting bacteriophage AHPMCC11, belonging to the genus Ahphunavirus. Microb Pathog 2025; 200:107344. [PMID: 39884474 DOI: 10.1016/j.micpath.2025.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Aeromonas hydrophila is a major aquatic habitat pathogen responsible for huge economic losses in the aquaculture and food industries. In this study, a lytic bacteriophage AHPMCC11 was isolated by using A. hydrophila MTCC 1739. AHPMCC11 showed a short latent period of 10 min and the burst size was 215 PFU/cell. AHPMCC11 had potent bacteriolytic activity within 2 h in liquid culture inhibition assay and exhibited biofilm scavenging activity against A. hydrophila MTCC 1739. AHPMCC11 was found stable at a wide range of pH levels (3-12), temperature ranges (4-37 °C), and salinity conditions (0-40 ppt). The AHPMCC11 genome was determined to be 42,439 bp in length with 58.9 % G + C content, 51 CDS, and no tRNA. Comparative genome study suggested that AHPMCC11 may represent a novel species within the Autographiviridae family, belonging to the Ahphunavirus genus. In conclusion, AHPMCC11 might be used as a biocontrol agent in aquaculture and the food industry.
Collapse
Affiliation(s)
- Smita Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India; Biodiversity and Environmental Studies Research Center, Midnapore City College affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Priyanka Kar
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India; Biodiversity and Environmental Studies Research Center, Midnapore City College affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | | | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Sudipta Chakrabarti
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India.
| |
Collapse
|
2
|
Zhang Y, Qiu X, Xu L, Olsen RH, Meng H, Li L. Environmental concentrations of antibiotics induced polymyxin B tolerance in Aeromonas hydrophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178247. [PMID: 39721523 DOI: 10.1016/j.scitotenv.2024.178247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Polymyxin B is one of the last lines of defense in infections caused by multidrug-resistant Gram-negative bacteria. Aeromonas hydrophila are important fish pathogens and the occurrence of polymyxin B-resistant A. hydrophila isolates is increasing. While investigating 14 environmental chemical pollutants that may affect bacterial polymyxin B sensitivity in aquatic bacteria, we discovered that tolerance of A. hydrophila to polymyxin B is increased by short-term (90 min) concurrent exposure to tetracyclines, tigecycline or gentamicin at environmentally relevant concentrations (0.0625 μg/mL) and persists as long as the inducer is present. The exposure increased the growth of A. hydrophila at an inhibitory concentration of polymyxin B. The increased polymyxin B tolerance was attributed to changes in gene expression, without alterations in genotype and independent of cell surface charge variations. Such changes are relate to six KEGG pathways, including ribosome, nucleotide metabolism, pyrimidine metabolism, glyoxylate and dicarboxylate metabolism, purine metabolism, starch and sucrose metabolism. The dysregulated genes were involved in broad physiological changes, such as cell motility, flagella biosynthesis, quorum sensing, biofilm formation, and chemotaxis. Furthermore, the up-regulation of genes encoding Mg2+ transport, biotin synthesis, lipoprotein, glycerol phospholipid metabolism, phospholipid transport, and the down-regulation of genes, such as ompK, yidD and ompA related to enhanced cell membrane barrier, may contribute to the increased polymyxin B tolerance in A. hydrophila. In summary, the study results revealed the impact of environmental antibiotics in promoting microbial polymyxin B tolerance. Our findings underscore the role of environmental antibiotics in promoting polymyxin B tolerance and provide insights into the mechanisms of polymyxin B tolerance evolution in A. hydrophila.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xinyuan Qiu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2820 Frederiksberg C, Denmark
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
SobhZahedi M, YektaKooshali MH. A novel in-silico approach to design a multiepitope peptide as a vaccine candidate for Aeromonas hydrophila. Heliyon 2024; 10:e40733. [PMID: 39687168 PMCID: PMC11647838 DOI: 10.1016/j.heliyon.2024.e40733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Aeromonas hydrophila is a Gram-negative bacterium with a rod-shaped structure and a member of the Aeromonas genus. It is commonly found in aquatic environments such as freshwater, estuaries, and sewage. Known as an opportunistic pathogen, A. hydrophila can infect both aquatic animals and humans. Understanding this bacteria's virulence factors, pathogenic mechanisms, and epidemiology is crucial due to its clinical significance and potential impact on public health, to develop effective disease management and prevention strategies. A. hydrophila has developed resistance to numerous antibiotics, making it challenging to combat, so vaccination can be a hopeful strategy for targeting this bacterium. Despite the development of multiple vaccine candidates for this bacterium, no commercially available vaccine has demonstrated high effectiveness. This study aimed to design a vaccine candidate that has the potential to effectively combat A. hydrophila infections, by using an informatics server. Methods Servers and bioinformatics tools were used to find and evaluate vaccine candidates. The bacterial genome was extracted and open reading frames were identified. The toxicity, allergenicity, immunogenicity, and homology of ORFs were investigated and non-toxic, non-allergenic with highly immunogenic were selected as a candidate for vaccine design. Next, epitopes were predicted and combined with adjuvants, linkers, and his-tag to create the vaccine candidate. Afterward, a thorough assessment of the vaccine was carried out. Results After the investigations, an extracellular protein with access number WP_045528985.1 was selected as a vaccine candidate. Combining a total of 15 epitopes for B cells and T cells, the vaccine candidate was completed. The analysis showed that the structure of the vaccine is non-toxic, non-allergenic, and has a favorable immunogenicity score of 0.8573. Additionally, the designed vaccine passed all virtual tests, including analysis of physical and chemical characteristics, and valuations of secondary and tertiary structure. Conclusion According to the results, this multiepitope peptide can be used as a promising vaccine candidate which warrants further development. Furthermore, further investigation is required to examine the functional characteristics, in vitro and in vivo experiments, potential applications, and animal model studies to confirm the safety, effectiveness, and long-term impacts of the vaccine formulation.
Collapse
Affiliation(s)
- Mahdieh SobhZahedi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
4
|
Wójcik-Fatla A, Farian E, Kowalczyk K, Sroka J, Skowron P, Siebielec G, Zdybel JM, Jadczyszyn T, Cencek T. Enterobacteriaceae in Sewage Sludge and Digestate Intended for Soil Fertilization. Pathogens 2024; 13:1056. [PMID: 39770316 PMCID: PMC11728692 DOI: 10.3390/pathogens13121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Substances of organic origin are seeing increasing use in agriculture as rich sources of nutrients for plants. The aim of this study was to determine the microbiological contamination of sewage sludge and digestate to assess their safe use as fertilizers in Poland. The assessment of microbial soil, sewage sludge and digestate contamination was based on the total number of mesophilic bacteria and Gram-negative bacteria from the Enterobacteriaceae family. The presence of Escherichia coli and Salmonella spp. was identified via culture and the presence of Enterobacteriaceae species was determined via biochemical and molecular methods. In laboratory conditions, the survival of E. coli in soil fertilized with sewage sludge or digestate inoculated with a reference strain was determined. The average concentration of Enterobacteriaceae in soil, sewage sludge and digestate samples was 1.1 × 104 CFU/g, 9.4 × 105 CFU/g and 5.6 × 106 CFU/g, respectively. Escherichia coli was detected in all sample types. From the soil samples, Serratia, Enterobacter, Pantoea, Citrobacter and Pseudomonas genera were identified the most frequently, while in sewage sludge and digestate, E. coli was predominant. Based on the results of our laboratory experiment, it can be concluded that after three weeks, fertilization with organic waste in acceptable doses does not significantly increase soil contamination with Enterobacteriaceae.
Collapse
Affiliation(s)
- Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Ewelina Farian
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Katarzyna Kowalczyk
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Jacek Sroka
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| | - Piotr Skowron
- Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (P.S.); (T.J.)
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Jolanta Małgorzata Zdybel
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| | - Tamara Jadczyszyn
- Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (P.S.); (T.J.)
| | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| |
Collapse
|
5
|
Kim YM, Choi E, Cho TJ, Rhee MS, Kim SA. Microbial profiling of oysters from a processing plant and retail products: Analysis based on culture-dependent methods and 16S rRNA gene sequencing. Food Res Int 2024; 196:115096. [PMID: 39614509 DOI: 10.1016/j.foodres.2024.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Oysters (Crassostrea gigas) are one of the most consumed shellfish globally. However, there is a lack of comprehensive microbiome studies that include the processing and distribution stages of oysters. The present study used both culture-based methods and 16S rRNA sequencing to produce comprehensive microbial profiles of oysters in two parts: (1) an oyster processing plant that processes raw and frozen oysters (n = 57) and (2) retail oyster products across two seasons (winter and spring) (n = 112). In the processing plant, shucking increased the aerobic plate count (APC) from 1.86 log CFU/g in freshly harvested oysters to 3.95 log CFU/g in shucked oysters. Controlling the washing process is important, as the APCs decreased after washing and remained level until the final products, raw and frozen oysters (2.54 and 2.34 log CFU/g, respectively). After desalting in the frozen oyster plant, the bacterial community shifted to be dominated by the family Spirochaetaceae, Mycoplasma, and Shigella taxa, indicating a need to control problematic bacteria in the desalting process. SourceTracker analysis revealed that raw materials contributed more to the microbiota of final products than environmental samples. In retail oyster products, APCs were marginally higher in spring (3.58 log CFU/g) than in winter (3.05 log CFU/g) samples. While bacterial count differences were not dramatic, the proportions of taxa in the microbial community differed by season. In winter retail products, Photobacterium (27.91 %) and Aliivibrio (20.42 %) dominated, while spring samples showed a diverse distribution of the family Vibrionaceae (19.90 %), Photobacterium (14.20 %), Psychromonas (11.84 %), and Aliivibrio (7.20 %). These findings contributed to our understanding of oyster microorganisms and identified food safety control points and cross-contamination sources. This in-depth understanding is expected to inform the development of fishery and seafood safety management measures.
Collapse
Affiliation(s)
- Yeo Min Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Eunjin Choi
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, Sejong, South Korea; Department of Food Regulatory Science, College of Science and Technology, Korea University, Sejong, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
6
|
Guo S, Wan Q, Xu M, Chen M, Chen Z. Transcriptome analysis of host anti-Aeromonas hydrophila infection revealed the pathogenicity of A. hydrophila to American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109504. [PMID: 38508539 DOI: 10.1016/j.fsi.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| | - Qijuan Wan
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| |
Collapse
|
7
|
Liu Q, Ding J, Zhang X, Bian X, Li M, Chen J, Liu C, Chen X, Liu X, Chen Y, Zhang W, Lei M, Yuan H, Wen Y, Kong Q. Construction and characterization of Aeromonas hydrophila crp and fur deletion mutants and evaluation of its potential as live-attenuated vaccines in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109380. [PMID: 38244821 DOI: 10.1016/j.fsi.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Aeromonas hydrophila (A. hydrophila) is a typical zoonotic pathogenic bacterium that infects humans, animals, and fish. It has been reported that the Fur, a Fe2+ regulatory protein, and the Crp, a cAMP receptor protein, play important roles in bacterial virulence in many bacteria, but no research has been investigated on A. hydrophila. In this study, the Δfur and Δcrp mutant strains were constructed by the suicide plasmid method. These two mutant strains exhibited a slightly diminished bacterial growth and also were observed some alterations in the number of outer membrane proteins, and the disappearance of hemolysis in the Δcrp strain. Animal experiments of crucian carp showed that the Δfur and Δcrp mutant strains significantly decreased virulence compared to the wild-type strain, and both mutant strains were able to induce good immune responses by two kinds of administration routes of intraperitoneal immunization (i.p) and immersion immunization, and the protection rates through intraperitoneal injection of Δfur and Δcrp to crucian carp were as high as 83.3 % and 73.3 %, respectively, and immersion immunization route of Δfur and Δcrp to crucian carp provided protection as high as 40 % and 20 %, respectively. These two mutant strains showed abilities to induce changes in enzymatic activities of the non-specific enzymes SOD, LZM, AKP, and ACP in crucian carp. Together, these results indicated the Δfur and Δcrp mutants were safe and effective candidate vaccine strains, showing good protection against the wild-type A. hydrophila challenge.
Collapse
Affiliation(s)
- Qing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China; Yibin Academy of Southwest University, Yibin, China.
| | - Jianjun Ding
- College of Veterinary Medicine, Southwest University, Chongqing, China; Yibin Academy of Southwest University, Yibin, China
| | - Xiaofen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoping Bian
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengru Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jin Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chengying Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xin Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xinyu Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yaolin Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Wenjin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Meihong Lei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Haoxiang Yuan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yusong Wen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Ashikur Rahman M, Akter S, Ashrafudoulla M, Anamul Hasan Chowdhury M, Uddin Mahamud AGMS, Hong Park S, Ha SD. Insights into the mechanisms and key factors influencing biofilm formation by Aeromonas hydrophila in the food industry: A comprehensive review and bibliometric analysis. Food Res Int 2024; 175:113671. [PMID: 38129021 DOI: 10.1016/j.foodres.2023.113671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Biofilm formation by Aeromonas hydrophila in the food industry poses significant challenges to food safety and quality. Therefore, this comprehensive review aimed to provide insights into the mechanisms and key factors influencing A. hydrophila biofilm formation. It explores the molecular processes involved in initial attachment, microcolony formation, and biofilm maturation; moreover, it concurrently examines the impact of intrinsic factors, including quorum sensing, cyclic-di-GMP, the efflux pump, and antibiotic resistance, as well as environmental conditions, such as temperature, nutrient availability, and osmotic pressure, on biofilm architecture and resilience. Furthermore, the article highlights the potential of bibliometric analysis as a promising method for conceptualizing the research landscape of and identifying knowledge gaps in A. hydrophila biofilm research. The findings underscore the requirement for focused interventions that prevent biofilm development and raise food sector safety. The consolidation of current information and incorporation of bibliometric analysis enhances existing understanding of A. hydrophila biofilm formation and offers insights for future research and control strategies within a food industry context.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Bangladesh Fisheries Research Institute, Bangladesh
| | - Shirin Akter
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | | | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea.
| |
Collapse
|
9
|
Carusi J, Kabuki DY, de Seixas Pereira PM, Cabral L. Aeromonas spp. in drinking water and food: Occurrence, virulence potential and antimicrobial resistance. Food Res Int 2024; 175:113710. [PMID: 38128981 DOI: 10.1016/j.foodres.2023.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Aeromonas sp. is a Gram-negative, non-spore-forming, rod-shaped, oxidase-positive, facultative anaerobic bacterium and a natural contaminant found in aquatic environments. Some species can invade, colonize, and damage host cells due to the presence of virulence factors, such as flagella, elastase, hemolysins, aerolysins, adhesins, enterotoxins, phospholipases and lipases, that lead to pathogenic activities. Consequently, can cause many health disorders that range from gastrointestinal problems, enteric infections, and ulcers to hemorrhagic septicemia. Aeromonas has been isolated and identified from a variety of sources, including drinking water and ready-to-eat foods (fish, meat, fresh vegetables, dairy products, and others). Some species of this opportunistic pathogen are resistant to several commercial antibiotics, including some used as a last resort for treatment, which represents a major challenge in the clinical segment. Antimicrobial resistance can be attributed to the indiscriminate use of antibiotics by society in aquaculture and horticulture. In addition, antibiotic resistance is attributed to plasmid transfer between microorganisms and horizontal gene transfer. This review aimed to (i) verify the occurrence of Aeromonas species in water and food intended for human consumption; (ii) identify the methods used to detect Aeromonas species; (iii) report on the virulence genes carried by different species; and (iv) report on the antimicrobial resistance of this genus in the last 5 years of research. Additionally, we present the existence of Aeromonas spp. resistant to antimicrobials in food and drinking water represents a potential threat to public health.
Collapse
Affiliation(s)
- Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Pedro Marques de Seixas Pereira
- Department of Mechanical Engineering, School of Engineering, São Paulo State University Júlio de Mesquita Filho (UNESP), Ilha Solteira, SP, Brazil
| | - Lucélia Cabral
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
10
|
Park SM, Choi C, Rhee MS. One Health approach for prioritization of potential foodborne pathogens: Risk-ranking, Delphi survey, and criteria evaluation pre- and post-COVID-19 pandemic. Compr Rev Food Sci Food Saf 2024; 23:e13258. [PMID: 38284613 DOI: 10.1111/1541-4337.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 01/30/2024]
Abstract
Frequent foodborne illnesses with unknown causative agents highlight the need to explore zoonotic potential foodborne pathogens (PFPs). An effective PFP prioritization tool is indispensable, especially after experiencing the recent pandemic caused by zoonotic SARS-CoV-2. Risk information on pathogens (excluding 30 known foodborne pathogens) provided by governmental and international organizations was reviewed to generate a list of PFPs. Risk-ranking of PFPs was conducted based on a literature review of food poisoning or detection cases, and the ranks were determined with a decision tree. PFPs were prioritized by infectious disease (ID), veterinary medicine (VET), and food safety (FS) experts through a pre- and postpandemic Delphi survey, and key criteria in their decisions were illuminated. Among 339 PFPs, 32 rank-1 PFPs were involved in the foodborne outbreak(s). Discrepancies in opinions on prioritization between experts in different fields deepened after the pandemic. Only VET and FS experts valued the plausibility of foodborne transmission in evaluating bacteria and viruses, and a significant correlation between their selection of PFPs was found (p < .05). The impact of the pandemic induced all fields to focus more on human transmission and severity/fatality in prioritizing viruses, and only FS experts emphasized the plausibility of foodborne transmission after the pandemic. In contrast to prioritizing bacteria or viruses, ID and VET experts are unusually focused on foodborne transmission when prioritizing parasites. Criteria of consensus deduced by interdisciplinary experts with different interests and the criteria directly related to foodborne transmission should be acknowledged for adequate PFP prioritization.
Collapse
Affiliation(s)
- Sun Min Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Sakurai A, Suzuki M, Ohkushi D, Harada S, Hosokawa N, Ishikawa K, Sakurai T, Ishihara T, Sasazawa H, Yamamoto T, Takehana K, Koyano S, Doi Y. Clinical Features, Genome Epidemiology, and Antimicrobial Resistance Profiles of Aeromonas spp. Causing Human Infections: A Multicenter Prospective Cohort Study. Open Forum Infect Dis 2023; 10:ofad587. [PMID: 38156048 PMCID: PMC10753922 DOI: 10.1093/ofid/ofad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background The genus Aeromonas is increasingly implicated in human infections, but knowledge of its clinical characteristics and antimicrobial resistance profiles has been limited owing to its complex taxonomy. Methods We conducted a multicenter prospective cohort study of patients with Aeromonas infections at hospitals across Japan. Patients were eligible for inclusion if they had an Aeromonas spp. strain in a clinical culture and were considered infected at the culture site. Clinical data were collected, and isolates underwent susceptibility testing and whole-genome sequencing. Results A total of 144 patients were included. Hepatobiliary infection accounted for a majority of infections (73% [105 of 144]), which mostly occurred in elderly patients with comorbid conditions, including hepatobiliary complications. The all-cause 30-day mortality rate was 10.0% (95% confidence interval, 4.9%-14.8%). By whole-genome sequencing, 141 strains (98%) belonged to 4 Aeromonas species-A caviae, A hydrophila, A veronii, and A dhakensis-with significant intraspecies diversity. A caviae was predominant in all infection sites except skin and soft tissue, for which A hydrophila was the prevailing species. The genes encoding chromosomally mediated class B, C, and D β-lactamases were harbored by 92%-100% of the isolates in a species-specific manner, but they often lacked association with resistance phenotypes. The activity of cefepime was reliable. All isolates of A hydrophila and A dhakensis carried an mcr-3-like colistin resistance gene and showed reduced susceptibility to colistin. Conclusions Hepatobiliary tract was the most common infection site of Aeromonas spp., with A caviae being the dominant causative species. The resistance genotype and phenotype were often incongruent for β-lactam agents.
Collapse
Affiliation(s)
- Aki Sakurai
- Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| | - Daisuke Ohkushi
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohei Harada
- Department of Infection Control and Prevention, University of Tokyo Hospital, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Chiba, Japan
| | - Kazuhiro Ishikawa
- Department of Infectious Diseases, St Luke's International Hospital, Tokyo, Japan
| | - Takayuki Sakurai
- Department of Infectious Diseases, NTT Medical Center, Tokyo, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Hiroki Sasazawa
- Department of Infectious Diseases, Kameda Medical Center, Chiba, Japan
- Department of Internal Medicine/Infectious Diseases, Omachi Municipal General Hospital, Nagano, Japan
| | - Takeru Yamamoto
- Department of Infectious Diseases, Kameda Medical Center, Chiba, Japan
| | - Kazumi Takehana
- Clinical Laboratory, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Saho Koyano
- Department of Infection Control and Prevention, University of Tokyo Hospital, Tokyo, Japan
| | - Yohei Doi
- Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Hou Y, Wu Z, Ren L, Chen Y, Zhang YA, Zhou Y. Characterization and application of a lytic jumbo phage ZPAH34 against multidrug-resistant Aeromonas hydrophila. Front Microbiol 2023; 14:1178876. [PMID: 37415809 PMCID: PMC10321303 DOI: 10.3389/fmicb.2023.1178876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Aeromonas hydrophila is an emerging foodborne pathogen causing human gastroenteritis. Aeromonas species isolated from food such as seafood presented multidrug-resistance (MDR), raising serious concerns regarding food safety and public health. The use of phages to infect bacteria is a defense against drug-resistant pathogens. In this study, phage ZPAH34 isolated from the lake sample exerted lytic activity against MDR A. hydrophila strain ZYAH75 and inhibited the biofilm on different food-contacting surfaces. ZPAH34 has a large dsDNA genome of 234 kb which belongs to a novel jumbo phage. However, its particle size is the smallest of known jumbo phages so far. Based on phylogenetic analysis, ZPAH34 was used to establish a new genus Chaoshanvirus. Biological characterization revealed that ZPAH34 exhibited wide environmental tolerance, and a high rapid adsorb and reproductive capacity. Food biocontrol experiments demonstrated that ZPAH34 reduces the viable count of A. hydrophila on fish fillets (2.31 log) and lettuce (3.28 log) with potential bactericidal effects. This study isolated and characterized jumbo phage ZPAH34 not only enriched the understanding of phage biological entity diversity and evolution because of its minimal virion size with large genome but also was the first usage of jumbo phage in food safety to eliminate A. hydrophila.
Collapse
Affiliation(s)
- Yuting Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Ren
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
13
|
Cytotoxicity and Antimicrobial Resistance of Aeromonas Strains Isolated from Fresh Produce and Irrigation Water. Antibiotics (Basel) 2023; 12:antibiotics12030511. [PMID: 36978377 PMCID: PMC10044025 DOI: 10.3390/antibiotics12030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The genus Aeromonas has received constant attention in different areas, from aquaculture and veterinary medicine to food safety, where more and more frequent isolates are occurring with increased resistance to antibiotics. The present paper studied the interaction of Aeromonas strains isolated from fresh produce and water with different eukaryotic cell types with the aim of better understanding the cytotoxic capacity of these strains. To study host-cell pathogen interactions in Aeromonas, we used HT-29, Vero, J774A.1, and primary mouse embryonic fibroblasts. These interactions were analyzed by confocal microscopy to determine the cytotoxicity of the strains. We also used Galleria mellonella larvae to test their pathogenicity in this experimental model. Our results demonstrated that two strains showed high cytotoxicity in epithelial cells, fibroblasts, and macrophages. Furthermore, these strains showed high virulence using the G. mellonella model. All strains used in this paper generally showed low levels of resistance to the different families of the antibiotics being tested. These results indicated that some strains of Aeromonas present in vegetables and water pose a potential health hazard, displaying very high in vitro and in vivo virulence. This pathogenic potential, and some recent concerning findings on antimicrobial resistance in Aeromonas, encourage further efforts in examining the precise significance of Aeromonas strains isolated from foods for human consumption.
Collapse
|
14
|
Unraveling the antibacterial mechanism of Lactiplantibacillus plantarum MY2 cell-free supernatants against Aeromonas hydrophila ST3 and potential application in raw tuna. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Said MM, El-barbary YA, Ahmed OM. Assessment of Performance, Microbial Community, Bacterial Food Quality, and Gene Expression of Whiteleg Shrimp ( Litopenaeus vannamei) Reared under Different Density Biofloc Systems. AQUACULTURE NUTRITION 2022; 2022:3499061. [PMID: 36860427 PMCID: PMC9973138 DOI: 10.1155/2022/3499061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 06/18/2023]
Abstract
Biofloc shrimp culture, as a way of improving shrimp production, gains worldwide consideration. However, the effects of the biofloc system on shrimp culture at high densities could be a challenge. Here, this study is aimed at identifying a better stocking density of whiteleg shrimp (Litopenaeus vannamei) between two intensive biofloc systems of 100 and 300 org./m2. Achieving that was done by comparing growth performance, water quality, feed utilization, microbial loads from water and shrimps, and gene expression of growth, stress, and immune-related genes. Shrimp postlarvae with a mean weight of 35.4 ± 3.7 mg were reared in six indoor cement tanks (36 m3 total capacity each) at two stocking densities (3 replicates each) for a rearing period of 135 days. Better final weight, weight gain, average daily weight gain, specific growth rate, biomass increase percentage, and survival rate were associated with lower density (100/m2), whereas high-density showed significantly higher total biomass. Better feed utilization was found in the lower density treatment. Lower density treatment enhanced water quality parameters, including higher dissolved oxygen and lower nitrogenous wastes. Heterotrophic bacterial count in water samples was recorded as 5.28 ± 0.15 and 5.11 ± 0.28 log CFU/ml from the high- and low-density systems, respectively, with no significant difference. Beneficial bacteria such as Bacillus spp. were identified in water samples from both systems, still, the Vibrio-like count was developed in the higher density system. Regarding shrimp food bacterial quality, the total bacterial count in the shrimp was recorded as 5.09 ± 0.1 log CFU/g in the 300 org./m2 treatment compared to 4.75 ± 0.24 log CFU/g in the lower density. Escherichia coli was isolated from the shrimps in a lower density group while Aeromonas hydrophila and Citrobacter freundii were associated with shrimps from a higher density system. Immune-related genes including prophenoloxidase, superoxide dismutase (SOD), and lysozyme (LYZ) expressions were all significantly higher expressed in the shrimp from the lower density treatment. Toll receptor (LvToll), penaiedin4 (PEN4), and stress-related gene (HSP 70) showed a decreased gene expression in the shrimp raised in the lower density. Significant upregulation of growth-related gene (Ras-related protein-RAP) expression was associated with the lower stocking density system. In conclusion, the current study found that applying high stocking density (300 org./m2) contributes negatively to performance, water quality, microbial community, bacterial food quality, and gene expression of immune, stress, and growth-related genes when compared with the lower stocking density system (100 org./m2) under biofloc system.
Collapse
Affiliation(s)
- Mohamed M. Said
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Y. A. El-barbary
- Department of Fish Health and Diseases, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - O. M. Ahmed
- Department of Fish Processing and Technology, Faculty of Fish Resources, Suez University, Suez, Egypt
| |
Collapse
|
16
|
Tersoo‐Abiem EM, Ariahu CC, Ikya JK. Thermal Inactivation kinetics of
Aeromonas hydrophila
in Soymilk of varying
pH
and sugar concentrations. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evelyn M. Tersoo‐Abiem
- Department of Food Science and Technology Federal University of Agriculture Makurdi Benue State Nigeria
| | - Charles C. Ariahu
- Department of Food Science and Technology Federal University of Agriculture Makurdi Benue State Nigeria
| | - Julius K. Ikya
- Department of Food Science and Technology Federal University of Agriculture Makurdi Benue State Nigeria
| |
Collapse
|
17
|
Liu X, Rong N, Sun W, Jian S, Chao J, Chen C, Chen R, Ding R, Chen C, Liu Y, Zhang X. The identification of polyvalent protective immunogens and immune abilities from the outer membrane proteins of Aeromonas hydrophila in fish. FISH & SHELLFISH IMMUNOLOGY 2022; 128:101-112. [PMID: 35926820 DOI: 10.1016/j.fsi.2022.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Among aquaculture vaccines, polyvalent vaccines (for immunoprotection against multiple bacterial species) are more efficient and can better avoid bacterial resistance and antibiotic residues in fish. Here, 15 outer membrane proteins (OMPs) of Aeromonas hydrophila were cloned and purified, and mouse antisera were prepared. Passive immunization to Carassius auratus showed that four OMPs sera (OmpW, OmpAII, P5, and AHA2685) and the entire OMPs serum held effective immunoprotection against A. hydrophila infection. Furthermore, the active immunization of four OMPs to C. auratus showed that OmpW, OmpAII, P5, and AHA2685 held effective immunoprotection against A. hydrophila, and OmpW held active cross-protection against Vibrio alginolyticus. The mechanisms of these four candidate vaccines in triggering immune responses were subsequently explored. They all could activate innate immune responses in active immunization, down-regulate (p < 0.05) the inflammation-related genes expression to reduce the inflammatory reaction induced by A. hydrophila, and down-regulate (p < 0.05) antioxidant-related factors to reduce the antioxidant reaction for bacterial infection. Noteablely, the four OMPs had protective abilities on kidney and spleen tissues of C. auratus after challenged with A. hydrophila and V. alginolyticus by histopathological observation. Collectively, our results identify OmpW as a polyvalent vaccine candidate, and OmpAII, P5, and AHA2685 as vaccine candidates against A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Xiang Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China.
| | - Na Rong
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Wei Sun
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Sijie Jian
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Jia Chao
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Chunlin Chen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China
| | - Rui Chen
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Rui Ding
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Chen Chen
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China.
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
18
|
Fikri F, Wardhana DK, Purnomo A, Khairani S, Chhetri S, Purnama MTE. Aerolysin gene characterization and antimicrobial resistance profile of Aeromonas hydrophila isolated from milkfish (Chanos chanos) in Gresik, Indonesia. Vet World 2022; 15:1759-1764. [PMID: 36185507 PMCID: PMC9394137 DOI: 10.14202/vetworld.2022.1759-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Motile Aeromonas septicemia is a crucial disease in freshwater fish. Aeromonas hydrophila is a disease agent associated with sporadic fish mortality, food safety, and public health. This study aimed to estimate the prevalence and the presence of the aerolysin gene and antimicrobial resistance profile of A. hydrophila isolated from milkfish in Gresik, Indonesia.
Materials and Methods: A total of 153 milkfish gill samples were collected from 16 locations in Gresik and then cultured and identified using biochemical tests. The aerolysin gene was investigated using a polymerase chain reaction, and antimicrobial resistance profiles of the recovered isolates were investigated.
Results: Of the 153 examined samples, 35 (22.9%) were confirmed positive for A. hydrophila and 22 (62.9%) presented the aerolysin gene. The recovered isolates were resistant to the following antibiotics: Amoxicillin (62.9%), tetracycline (60%), streptomycin (54.3%), cefotaxime (51.4%), gentamycin (31.4%), kanamycin (28.6%), erythromycin (25.7%), chloramphenicol (20%), and trimethoprim (14.3%). Meanwhile, only ciprofloxacin, nalidixic acid, and imipenem were indicated as susceptible.
Conclusion: The presence of the aerolysin gene is vital in determining the virulence of A. hydrophila. The study results indicated a high aerolysin gene prevalence. In addition, this study emphasized antibiotic use monitoring, food safety improvement, and negative impact reduction on human health and the environment.
Collapse
Affiliation(s)
- Faisal Fikri
- Department of Veterinary Science, Division of Veterinary Clinical Pathology and Physiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Veterinary Science, School of Health and Life Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Dhandy Koesoemo Wardhana
- Department of Veterinary Science, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Agus Purnomo
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Shafia Khairani
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, Bhutan
| | - Muhammad Thohawi Elziyad Purnama
- Department of Veterinary Science, School of Health and Life Sciences, Universitas Airlangga, Surabaya, Indonesia; Department of Veterinary Science, Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
19
|
Teodoro JR, Carvalho GG, Queiroz MM, Levy CE, Kabuki DY. Incidence, evaluation of detection and identification methods, and antimicrobial resistance of Aeromonas spp. in ready-to-eat foods. Int J Food Microbiol 2022; 379:109862. [DOI: 10.1016/j.ijfoodmicro.2022.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
|
20
|
Lu M, Su M, Liu N, Zhang J. Effects of environmental salinity on the immune response of the coastal fish Scatophagus argus during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:401-410. [PMID: 35472400 DOI: 10.1016/j.fsi.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The coastal aquaculture is characterized with environmental salinity fluctuation, and the effects of salinity stress on the immunity of cultured fish are needed to be further explored. Scatophagus argus is an important species in the wild fisheries and aquaculture industry, it would be of great value to reveal the impact of salinity change on the immune response in this species. Understanding the effects of salinity stress on immune response can provide valuable insights into salinity management in the aquacultural process. The head kidney, which is an organ unique for teleost fish, functions not only as a central immune organ but also as a crucial role in the stress response during which the secretion of immunoregulatory molecules i.e. cytokines is facilitated. In the present study, Individuals of S. argus acclimated to 3 different salinities [0‰ (FW), 10‰ (BW), and 25‰ (SW)] were injected intraperitoneally with A. hydrophila, and then monitored throughout one week. The effects of environmental salinity on the immune response in S. argus stimulated by A. hydrophila infection were investigated. mRNA expression profiles of cytokine genes IL-1β, IL-6, IL-10 and TNF-α in different salinity groups was quite different. mRNA expression of cytokine genes in BW group and SW group rose more quickly and significantly higher than FW group (p < 0.05) at early stages (6-24 hpi) after bacterial injection, and before 96 hpi, the highest value of cytokine expression at each time point was recorded in SW group. Immune parameters such as lysozyme level, complement C3 activity and IgM content in BW and FW groups were lower than SW group at each time point from 24 to 144 hpi after bacterial injection. In addition, leukocyte profiles in the head kidney and blood were also investigated. Although hypoosmotic acclimation could temporarily stimulate monocyte and neutrophil proliferation, it was observed that the number of monocytes, neutrophils and lymphocytes of the head kidney and blood in SW group increased more quickly than BW and FW groups after bacterial infection. Our results indicate that hypoosmotic stress due to the decrease of environmental salinity has suppressive immunoregulatory effects on the immune response of S. argus.
Collapse
Affiliation(s)
- Mengying Lu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
21
|
Cao Y, Kou T, Peng L, Munang'andu HM, Peng B. Fructose Promotes Crucian Carp Survival Against Aeromonas hydrophila Infection. Front Immunol 2022; 13:865560. [PMID: 35386717 PMCID: PMC8979172 DOI: 10.3389/fimmu.2022.865560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Aquatic food is becoming an important food source that provides micronutrients to human beings. The decline of wild aquatic animals makes aquaculture become increasingly important to play this role. However, infectious diseases, especially bacterial infection, represent severe threat to aquaculture, which causes huge economic loss. Meanwhile, strategies in managing bacterial infection in an antibiotic-independent way are still lacking. In this study, we monitor the metabolomic shift of crucian carp upon Aeromonas hydrophila infection. We find that the metabolism of the fish that died of infection is distinct from the ones that survived. By multivariate analysis, we identify fructose as a crucial biomarker whose abundance is significantly different from the dying and surviving groups where the surviving group has a higher content of fructose than the dying group. Exogenous supplementation of fructose increases fish survival rate by 27.2%. Quantitative gene expression analysis demonstrated that fructose enhances the expression of lysozyme and complement 3 expression, which is also confirmed in the serum level. Furthermore, the augmented lysozyme and C3 levels enhance serum cell lytic activity which contribute to the reduced bacterial load in vivo. Thus, our study demonstrates a metabolism-based approach to manage bacterial infection through modulating immune response to clear bacterial infection.
Collapse
Affiliation(s)
- Yunchao Cao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianshun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liaotian Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Sørbø S, Lerfall J. Effect of edible coating and modified atmosphere packaging on the microbiological and physicochemical stability of retail maki sushi. J Food Sci 2022; 87:1211-1229. [PMID: 35137419 DOI: 10.1111/1750-3841.16065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
The effect of pH, packaging atmosphere (100% air, 40%, or 70% CO2 balanced with N2 ), and an edible chitosan coating was tested on the retail maki Sushi's microbiological and physiochemical stability. In two experiments, maki sushi was studied using sushi rice with an initial pH of 4.2 ± 0.05 and 4.8 ± 0.05. In the first experiment (lower pH), no apparent effect of neither modified atmosphere packaging (MAP) nor coating on bacterial growth was observed. However, raising the pH showed an apparent effect of low-CO2 MAP and chitosan coating (p < 0.05). Both MAP and coating partly affected the maki sushi cross-section's visual perception, but no significant adverse effects were observed. An important observation was the improved stability of the pink salmon color in chitosan-coated maki sushi stored in low-CO2 MAP compared to other groups. It is concluded that storage of Maki sushi at 4°C gives acceptable microbial stability and appropriate quality. However, an edible chitosan coating, especially in combination with low-CO2 MAP, increases the microbiological stability and preserves the colorimetric properties of maki sushi stored at 8°C. Notably, this combination could work as a safety measure against temperature abuse in the food cold chain. PRACTICAL APPLICATION: Using an edible coating with active packaging can improve retail maki sushi's temperature tolerance and preserve its colorimetric properties. It is a fast and cost-effective technology with a substantial industrial potential easy to implement.
Collapse
Affiliation(s)
- Simen Sørbø
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
23
|
Kumar CB, Kumar A, Paria A, Kumar S, Prasad KP, Rathore G. Effect of spatio-temporal variables, host fish species and on-farm biosecurity measures on the prevalence of potentially pathogenic Aeromonas species in freshwater fish farms. J Appl Microbiol 2021; 132:1700-1712. [PMID: 34664343 DOI: 10.1111/jam.15330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
AIMS To determine the prevalence of Aeromonas species in freshwater fish farms, factors affecting their prevalence and virulence factors associated with each species. METHODS AND RESULTS In a cross-sectional study from 128 farms in four districts of Uttar Pradesh, India, 11 species of Aeromonas were identified by gyrB sequencing including the first report of Aeromonas crassostreae from fish. Four species of Aeromonas were more prevalent (MP) in fish farms, A. veronii bv. sobria (50.0%) was the highest, followed by A. caviae (18.8%), A. veronii bv. veronii (11.7%) and A. dhakensis (7.0%). The less prevalent (LP) species were A. hydrophila, A. media, A. jandaei, A. allosaccharophila, A. salmonicida, A. crassostreae and A. taiwanensis. Spatial variation in the prevalence of Aeromonas species was observed. Dominance of biovar sobria ranged from 33.3 to 68.6%, notably lesser in farms with on-farm biosecurity measures. The prevalence of biovar veronii was significantly associated with pangas fish, rainy season and farms with on-farm biosecurity measures. The prevalence of LP species was significantly higher in mrigal fish and winter season. Multiple virulence factors (>6) were detected in 70.2% of the Aeromonas species. Significant association of β-hemolysin, DNase, slime production, act, ahh1, aexT and lip was observed with different species of Aeromonas. Moreover, 75.8% of Aeromonas species possessed one or more enterotoxins genes (act/alt/ast). CONCLUSION Significant association of spatio-temporal variables, host fish species and on-farm biosecurity measures were observed on the prevalence of some of the Aeromonas species in freshwater fish farms. Most of the Aeromonas species harboured virulence factors indicating their potential for pathogenicity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that determined the prevalence and identified the factors that affect the prevalence of Aeromonas species in freshwater fish farms. This information will be useful in managing Aeromonas infection in fish and their risks to public health.
Collapse
Affiliation(s)
| | - Anil Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| | - Saurav Kumar
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| | - K Pani Prasad
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| | - Gaurav Rathore
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| |
Collapse
|