1
|
Yang Y, Zhang W, Ai B, Zheng L, Zheng X, Xiao D, Sheng Z, Yang J, Wang S. Passion fruit peel-derived low-methoxyl pectin: De-esterification methods and application as a fat substitute in set yogurt. Carbohydr Polym 2025; 347:122664. [PMID: 39486923 DOI: 10.1016/j.carbpol.2024.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
Passion fruit pectin, originally high methoxyl pectin, undergoes substantial conversion into low methoxyl pectin (LMP) through de-esterification. This de-esterification is significance for reducing the application of sugar in food, as calcium ions can replace excessive sugar during gel formation. In this study, LMPs derived from passion fruit pectin were prepared using four methods: low-temperature alkali, room temperature alkali, enzymatic, and dielectric barrier discharge plasma (DBD)-assisted enzyme (DBDE). The de-esterification conditions were optimized, leading to the selection of LMPs with a degree of esterification for the analysis of molecular weight, monosaccharide composition, and gel properties. The results revealed significant differences in the structure and properties of LMPs depending on the de-esterification method applied. The galacturonic acid content of LMPs significantly increased, with LMP from DBDE (LMP-DBDE) exhibiting the highest increase at 47.81 %. Additionally, the molecular weights of LMPs significantly decreased, with LMP-DBDE showing the smallest decrease. LMP-DBDE demonstrated higher apparent viscosity, thermal stability, and gel properties, facilitating the formation of gels. After 21 days of storage, 0.40 % LMP-DBDE yogurt showed no whey separation, significantly extending its shelf life. Therefore, LMP-DBDE exhibits potential as a fat substitute, combining the advantages of LMP with enhanced water-holding capacity, and presenting promising applications in low-fat dairy products.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Wenxing Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zhanwu Sheng
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jinsong Yang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Shenwan Wang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Chen W, Ma X, Jin W, Cheng H, Xu G, Wen H, Xu P. Shellfish polysaccharides: A comprehensive review of extraction, purification, structural characterization, and beneficial health effects. Int J Biol Macromol 2024; 279:135190. [PMID: 39216565 DOI: 10.1016/j.ijbiomac.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global food systems are currently facing great challenges, such as food sources, food safety, and environmental crises. Alternative nutritional resources have been proposed as part of the solution to meeting future global food demand. In the natural resources, shellfish are the major component of global aquatic animals. Although most studies focus on the allergy, toxin, and contamination of shellfish, it is also a delicious food to the human diet rich in proteins, polysaccharides, minerals, and omega-3. Among the functional ingredients, shellfish polysaccharides possess nutritional and medicinal values that arouse the great interest of researchers. The selection of the extraction approach and the experimental condition are the key factors that influence the extraction efficiency of shellfish polysaccharides. Importantly, the purification of crude polysaccharides comprises the enrichment of shellfish polysaccharides and isolation of fractions, also resulting in various structural characteristics and physicochemical properties. Chemical modification is also an efficient method to further improve the biological activities of shellfish polysaccharides. This review summarizes the extraction, purification, structural characterization, and chemical modification methods for shellfish polysaccharides. Additionally, the beneficial health effects of shellfish polysaccharides are highlighted, with an emphasis on their potential mechanism. Finally, current challenges and perspectives on shellfish polysaccharides are also spotlighted.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Greco M, Kouzounis D, Fuertes-Rabanal M, Gentile M, Agresti S, Schols HA, Mélida H, Lionetti V. Upcycling olive pomace into pectic elicitors for plant immunity and disease protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109213. [PMID: 39442419 DOI: 10.1016/j.plaphy.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Olive oil production generates substantial quantities of pomace, which are often disposed of in soil, leading to adverse effects on agriculture and the environment. Furthermore, climate change exacerbates plant diseases and promotes the use of toxic phytochemicals in agriculture. However, olive mill wastes can have high potential as reusable and valuable bioresources. Using diluted ethanol, an environmentally friendly solvent, we extracted a fraction containing short and long oligogalacturonides, short arabino-oligosaccharides and polysaccharides. The obtained extract elicited key features of plant innate immunity in Arabidopsis seedlings, including the phosphorylation of mitogen-activated protein kinases MPK3 and MPK6 and the upregulation of defence genes such as CYP81F2, WRKY33, WRKY53, and FRK1. Notably, pretreatment of adult Arabidopsis and tomato plants with the olive pomace extract primed defence responses and enhanced their resistance to the phytopathogens Botrytis cinerea and Pseudomonas syringae. Our results highlight the opportunity to upcycle the two-phase olive pomace collected at the late stage of olive oil campaign, in low-cost and sustainable glycan elicitors, contributing to reducing the use of chemically synthesized pesticides.
Collapse
Affiliation(s)
- Marco Greco
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | | | - Savino Agresti
- Agrolio s.r.l., S.P. 231 KM 55+120, 70031, Andria, Puglia, Italy
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy; CIABC, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
4
|
Hu L, Zhu Y, Wang C, Khalifa I, Wang Z, Zhang H, Jia Y, Liang X. A critical review of persimmon-derived pectin: Innovations in extraction, structural characterization, biological potentials, and health-promoting effects. Food Chem 2024; 463:141453. [PMID: 39368198 DOI: 10.1016/j.foodchem.2024.141453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Persimmon-derived pectin (PP) is a versatile dietary polysaccharide with considerable industrial and biological significance, demonstrating a range of functionalities and health-promoting benefits. This review explores the changes in PP during postharvest and processing, detailing structural alterations and extraction techniques for optimal characteristics. Key functional attributes of PP-such as emulsification, rheology, antioxidant capacity, immunomodulation, and gut microbiota regulation-highlight its potential applications in food, healthcare, pharmaceuticals, and cosmetics. The review also explores methods to enhance the functional properties of PP through synergistic interactions with polyphenols. A strategic roadmap for advancing PP research is proposed, connecting extraction methods, structural characteristics, and functional properties to tailor PP for specific applications in food science and technology. Overall, persimmon-derived pectin is positioned as a valuable food-derived bioactive ingredient with diverse capabilities, poised to drive innovation and advance nutritional science across multiple sectors.
Collapse
Affiliation(s)
- Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China; Key Laboratory of Aquatic Products Processing and Safety Control, Xinxiang 453000, China; Engineering and Technology Research Center of Aquatic Products Processing and Quality control, Xinxiang 453000, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| |
Collapse
|
5
|
Tristanto NA, Cao W, Chen N, Suryoprabowo S, Soetaredjo FE, Ismadji S, Hua X. Pectin extracted from red dragon fruit (Hylocereus polyrhizus) peel and its usage in edible film. Int J Biol Macromol 2024; 276:133804. [PMID: 38996891 DOI: 10.1016/j.ijbiomac.2024.133804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pectin was extracted from red dragon fruit (Hylocereus polyrhizus) peel using two different extraction methods: subcritical water extraction (SCWE) and conventional acid extraction (AE), from two different types of peels, fresh peel puree and dried peel powder. SCWE method on fresh peel puree showed an ∼18.88 % increase in pectin yield compared to AE. Extracted pectin is classified as low methoxyl pectin (DE: 8.51-50.64 %), with an average molecular weight ranging from 115.23 kDa to 577.84 kDa and a Gal-A content of 44.09 % - 53.90 %. The potential of pectin from fresh peel puree to be applied as a biodegradable film was further explored. Different pectin concentrations (3-5 % w/v) were used to prepare the films. Regarding the film performance, PF-S5, which was produced from SCWE with 5 % of pectin concentration, exhibits better thermal stability (Tdmax 250 °C, residue of 28.69 %) and higher moisture barrier (WVP 5.59 × 10-11 g.cm-1.s-1.Pa-1). In comparison, PF-A showed lower water solubility (45.14-69.15 %), higher water contact angle (33.01° - 44.35°), and better mechanical properties (TS: 2.12-4.11 MPa, EB: 48.72-61.39 %). Higher molecular weight accompanied by higher DE and Gal-A content contributes to better pectin film properties.
Collapse
Affiliation(s)
| | - Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Steven Suryoprabowo
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Wang Y, Huang J, Lin X, Su W, Zhu P, Yang N, Adams E. Recent progress in the extraction of terpenoids from essential oils and separation of the enantiomers by GC-MS. J Chromatogr A 2024; 1730:465118. [PMID: 38936162 DOI: 10.1016/j.chroma.2024.465118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Terpenoids possess significant physiological activities and are rich in essential oils. Some terpenoids have chiral centers and could form enantiomers with distinct physiological activities. Therefore, the extraction and separation of terpenoids enantiomers are very important and have attracted extensive attention in recent years. Meanwhile, the specific distribution and enantiomer excess results (the excess of one enantiomer over the other in a mixture of enantiomers) could be used as quality markers for illegitimate adulteration, origin identification, and exploring component variations and functional interrelations across different plant tissues. In this study, an overview of the progress in the extraction of terpenoids from essential oils and the separation of their enantiomers over the past two decades has been made. Extraction methods were retrieved by the resultant network visualization findings. The results showed that the predominant methods are hydrodistillation, solvent-free microwave extraction, headspace solid-phase microextraction and supercritical fluid extraction methods. GC-MS combined with chiral chromatography columns is commonly used for the separation of enantiomers, while 2D GC is found to have stronger resolution ability. Finally, some prospects for future research directions in the extraction and separation identification of essential oils are proposed.
Collapse
Affiliation(s)
- Yixi Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Jinchun Huang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Xinyue Lin
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Weike Su
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Peixi Zhu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China.
| | - Ni Yang
- Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Erwin Adams
- KU Leuven, University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923 3000 Leuven, Belgium
| |
Collapse
|
7
|
Jha A, Mishra S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int J Biol Macromol 2024; 275:133613. [PMID: 38960223 DOI: 10.1016/j.ijbiomac.2024.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Environmental pollution remains a constant challenge due to the indiscriminate use of fossil fuels, mining activities, chemicals, drugs, aromatic compounds, pesticides, etc. Many emerging pollutants with no fixed standards for monitoring and control are being reported. These have adverse impacts on human life and the environment around us. This alarms the wastewater management towards developing materials that can be used for bulk water treatment and are easily available, low cost, non-toxic and biodegradable. Waste biomass like pectin is extracted from fruit peels which are a discarded material. It is used in pharmaceutical and nutraceutical applications but its application as a material for water treatment is very limited in literature. The scientific gap in literature review reports are evident with discussion only on pectin based hydrogels or specific pectin derivatives for some applications. This review focuses on the chemistry, extraction, functionalization and production of pectin derivatives and their applications in water treatment processes. Pectin functionalized derivatives can be used as a flocculant, adsorbent, nano biopolymer, biochar, hybrid material, metal-organic frameworks, and scaffold for the removal of heavy metals, ions, toxic dyes, and other contaminants. The huge quantum of pectin biomass may be explored further to strengthen environmental sustainability and circular economy practices.
Collapse
Affiliation(s)
- Adya Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
8
|
Jin Y, Qiao Q, Dong L, Cao M, Li P, Liu A, Sun R. Response Surface Optimization for Water-Assisted Extraction of Two Saponins from Paris polyphylla var. yunnanensis Leaves. Molecules 2024; 29:1652. [PMID: 38611929 PMCID: PMC11013099 DOI: 10.3390/molecules29071652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The process of extracting polyphyllin II and polyphyllin VII by water-assisted extraction was established and optimized in this study. Response surface methodology was used to establish a prediction model to optimize the extraction conditions. Based on the one-way test, the Box-Behnken design with three factors and three levels was used for the experimental program, and the composition analysis was carried out by high-performance liquid chromatography (HPLC). The optimal extraction conditions for polyphyllin II and polyphyllin VII were as follows: extraction time of 57 and 21 min, extraction temperature of 36 and 32 °C, solid-to-liquid ratio of 1:10 and 1:5 g/mL, respectively, and the yields of polyphyllin II and polyphyllin VII were 1.895 and 5.010%, which was similar to the predicted value of 1.835 and 4.979%. The results of the ANOVA showed that the model fit was good, and the Box-Behnken response surface method could optimize the water-assisted extraction of saponins from the leaves of Paris polyphylla var. yunnanensis. This study provides a theoretical basis for the application of polyphyllin II and polyphyllin VII in pharmaceutical production.
Collapse
Affiliation(s)
| | | | | | | | | | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Rui Sun
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Dranca F, Mironeasa S. Green Extraction of Pectin from Sugar Beet Flakes and Its Application in Hydrogels and Cryogels. Gels 2024; 10:228. [PMID: 38667647 PMCID: PMC11049022 DOI: 10.3390/gels10040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Sugar beet flakes, a by-product of the sugar industry, were used as a source for pectin extraction that was performed using conventional citric acid extraction (CE) and two non-conventional extraction techniques-microwave-assisted extraction (MAE) and pulsed ultrasound-assisted extraction (PUAE). The influence of extraction conditions was studied for each technique based on pectin yield and galacturonic acid content, and spectroscopic, chromatographic and colorimetric methods were used for pectin characterization. Better results for pectin yield were achieved through CE (20.80%), while higher galacturonic acid content was measured in pectin extracted using PUAE (88.53 g/100 g). Pectin extracted using PUAE also presented a higher degree of methylation and acetylation. A significant increase in the molecular weight of pectin was observed for the PUAE process (7.40 × 105 g/mol) by comparison with conventional extraction (1.18 × 105 g/mol). Hydrogels and cryogels prepared with pectin from sugar beet flakes also showed differences in physicochemical parameters determined by the method of pectin extraction. Hydrogels had higher bulk density values irrespective of the pectin extraction method, and overall lower values of the textural parameters. Cryogels prepared with pectin from CE showed higher values of the textural parameters of hardness, adhesiveness, cohesiveness, gumminess and chewiness, while gels obtained with pectin from MAE and PUAE had higher thermal stability. The results of this study prove that sugar beet flakes can be considered a potential source for pectin production, and the extracted pectin is suitable for obtaining hydrogels and cryogels with physicochemical parameters comparable to the commercial citrus and apple pectin available on the market.
Collapse
Affiliation(s)
- Florina Dranca
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|
10
|
Cheng Z, Zheng Q, Duan Y, Cai M, Zhang H. Effect of subcritical water temperature on the structure, antioxidant activity and immune activity of polysaccharides from Glycyrrhiza inflata Batalin. Int J Biol Macromol 2024; 261:129591. [PMID: 38272429 DOI: 10.1016/j.ijbiomac.2024.129591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
In this study, the polysaccharide from Glycyrrhiza inflata Batalin extracted by hot water (HW-GP) was further physically modified with subcritical water to obtain novel polysaccharides (SW-GP). Comparative analysis was conducted to examine the disparities in conformation and bioactivity between HW-GP and SW-GP, aiming to precisely regulate the structure of the polysaccharides and enhance their bioactivity by controlling subcritical water temperature. The results showed that, compared with HW-GP, subcritical water modification (100-160 °C) not only significantly reduced the molecular weight of polysaccharides (from 5.586 × 105 g/mol to 1.484 × 105 g/mol), but also modulated the intermolecular interaction forces, which maintain the conformation of the polysaccharides, including electrostatic and hydrophobic interactions, thereby dynamically transforming the polysaccharide chain conformation from triple helix to random coil, and the strength of the chain conformation shifted from rigid to flexible. In addition, the modification of the SW-GP structure by subcritical water also enhanced its biological activity. SW-GP (140 °C) with low molecular weight and semi-rigid triple helix conformation showed the best scavenging effect on the DPPH, ABTS, and hydroxyl radicals, and exhibited excellent antioxidant activity. SW-GP (130 °C) with medium molecular weight and semi-rigid triple helix conformation significantly promoted the proliferation and phagocytosis of RAW264.7 cells, as well as increased the release levels of NO, TNF-α, IL-6, and IL-1β, and the immunomodulatory activity was much higher than that of other polysaccharides. These findings confirmed the feasibility of using subcritical water temperature as a regulatory feature for the structure and bioactivity of glycyrrhiza polysaccharides, which may have reference significance for the modification of polysaccharides with heightened bioactivity.
Collapse
Affiliation(s)
- Zirun Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiao Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Zhong W, Yu Y, Zhang B, Tao D, Fang J, Ma F. Effect of H 2O 2-assisted ultrasonic bath on the degradation and physicochemical properties of pectin. Int J Biol Macromol 2024; 258:128863. [PMID: 38143060 DOI: 10.1016/j.ijbiomac.2023.128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
The effects of H2O2-assisted ultrasonic bath degradation technology on pectin were investigated. The degradation efficiency with different pectin concentrations, H2O2 concentrations, ultrasonic power, and ultrasonic time was analyzed. The results showed that pectin concentration was negatively correlated with the degradation efficiency of pectin, while, H2O2 concentration, ultrasonic power, and ultrasonic time were positive correlated with the degradation efficiency. Besides, the apparent viscosity and viscoelasticity of the degraded pectin decreased significantly. The antioxidant activity increased after the H2O2-assisted ultrasonic bath treatment. The results of FTIR, NMR, laser particle size, SEM, XRD, and AFM analysis indicated that the degradation treatment did not destroy the main structure of pectin. The average particle size and crystallinity of pectin decreased. The degree of aggregation and the height of the molecular chain decreased significantly. In conclusion, the H2O2-assisted ultrasonic bath degradation technique could effectively degrade pectin. This study provided a comprehensive analysis of the degradation of pectin under H2O2-assisted ultrasonic bath, which will be beneficial to further develop H2O2-assisted ultrasonic bath techniques for pectin degradation.
Collapse
Affiliation(s)
- Weitian Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- China Certification & Inspection Group Liaoning Co., Ltd., Shenyang 110866, China
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Fang
- Tianjin Agricultural Development Service Center, Tianjin 300202, China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Chongqing Research Institute of HIT, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
12
|
Grillo G, Capaldi G, Radošević K, Jakopović Ž, Markov K, Brncic M, Gallina L, Calcio Gaudino E, Cravotto G. Unlocking the Bioactive Potential of Pomegranate Peels: A Green Extraction Approach. Antioxidants (Basel) 2023; 12:1796. [PMID: 37891876 PMCID: PMC10604353 DOI: 10.3390/antiox12101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Pomegranate (Punica granatum L.) is well known for its high content of bioactives, including polyphenols, flavonoids, and tannins, which have been shown to exhibit a wide range of biological activities, such as antioxidant, antimicrobial, and anticancer effects. It is worth noting that the majority of these molecules are found in the peels, which are usually disposed of after processing, causing a significant amount of waste, amounting to more than 3.6 million t/y. This work investigates microwave-assisted extraction (MAE) in water for the recovery of antioxidants from pomegranate peels (PP), including the optimisation of temperature and extraction times. The total phenolic, anthocyanin, flavonoid, and tannin contents of the recovered extracts were determined, as well as their antioxidant activities, which were found to be 356.35 mgGAE/gExtr, 303.97 µgCy3G/gExtr, 37.28 mgQE/gExtr, 56.48 mgGAE/gExtr, and 5.72 mmolTE/gExtr, respectively (according to the adopted reference). All results were compared with those obtained using a conventional protocol. In addition, the potential for water recycling by means of downstream nanofiltration in optimised MAE was investigated, leading to overall water reuse of approx. 75%. Power consumption (20.92 W/mgGAE) and common green metrics, Reaction Mass Efficiency (RME), E-Factor, and the Process Mass Intensiti/efficiency (PMI, PME), were considered in evaluating the proposed PP valorisation strategy. Finally, the biological activities of the main products were assessed. The antimicrobial properties of the PP extracts against three Gram-positive and three Gram-negative bacteria and their antiproliferative activity towards human cancer cells were tested. S. aureus bacteria was the most susceptible to the PP extracts. All tested products displayed antiproliferative activity against HeLa cells when higher concentrations were tested, with D-PP/NF (obtained from dried PP and sequential nanofiltration) being the most effective. This result was also confirmed via clonogenic analysis, which generally indicated the possible anti-cancer activity of pomegranate peel extracts obtained using this green approach.
Collapse
Affiliation(s)
- Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10235 Turin, Italy; (G.G.); (G.C.); (L.G.); (E.C.G.)
| | - Giorgio Capaldi
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10235 Turin, Italy; (G.G.); (G.C.); (L.G.); (E.C.G.)
| | - Kristina Radošević
- Laboratory for Cell Cultures, Applications and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottojeva Ulica 6, 10000 Zagreb, Croatia;
| | - Željko Jakopović
- Laboratory for General Microbiology and Food Microbiology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottojeva Ulica 6, 10000 Zagreb, Croatia; (Ž.J.); (K.M.)
| | - Ksenija Markov
- Laboratory for General Microbiology and Food Microbiology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottojeva Ulica 6, 10000 Zagreb, Croatia; (Ž.J.); (K.M.)
| | - Mladen Brncic
- Department of Food Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Lorenzo Gallina
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10235 Turin, Italy; (G.G.); (G.C.); (L.G.); (E.C.G.)
| | - Emanuela Calcio Gaudino
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10235 Turin, Italy; (G.G.); (G.C.); (L.G.); (E.C.G.)
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10235 Turin, Italy; (G.G.); (G.C.); (L.G.); (E.C.G.)
| |
Collapse
|
13
|
Nanda S, Sarker TR, Kang K, Li D, Dalai AK. Perspectives on Thermochemical Recycling of End-of-Life Plastic Wastes to Alternative Fuels. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4563. [PMID: 37444877 DOI: 10.3390/ma16134563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Due to its resistance to natural degradation and decomposition, plastic debris perseveres in the environment for centuries. As a lucrative material for packing industries and consumer products, plastics have become one of the major components of municipal solid waste today. The recycling of plastics is becoming difficult due to a lack of resource recovery facilities and a lack of efficient technologies to separate plastics from mixed solid waste streams. This has made oceans the hotspot for the dispersion and accumulation of plastic residues beyond landfills. This article reviews the sources, geographical occurrence, characteristics and recyclability of different types of plastic waste. This article presents a comprehensive summary of promising thermochemical technologies, such as pyrolysis, liquefaction and gasification, for the conversion of single-use plastic wastes to clean fuels. The operating principles, drivers and barriers for plastic-to-fuel technologies via pyrolysis (non-catalytic, catalytic, microwave and plasma), as well as liquefaction and gasification, are thoroughly discussed. Thermochemical co-processing of plastics with other organic waste biomass to produce high-quality fuel and energy products is also elaborated upon. Through this state-of-the-art review, it is suggested that, by investing in the research and development of thermochemical recycling technologies, one of the most pragmatic issues today, i.e., plastics waste management, can be sustainably addressed with a greater worldwide impact.
Collapse
Affiliation(s)
- Sonil Nanda
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Tumpa R Sarker
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kang Kang
- Biorefining Research Institute, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Dongbing Li
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham, Ningbo 315104, China
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
14
|
Basak S, Singhal RS. The potential of supercritical drying as a “green” method for the production of food-grade bioaerogels: A comprehensive critical review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Yu W, Li Q. The Preparation and Potential Bioactivities of Modified Pectins: A Review. Foods 2023; 12:1016. [PMID: 36900531 PMCID: PMC10001417 DOI: 10.3390/foods12051016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| |
Collapse
|
16
|
Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules 2023; 28:molecules28031350. [PMID: 36771015 PMCID: PMC9919897 DOI: 10.3390/molecules28031350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Polygonati Rhizoma, a typical homology of medicine and food, possesses remarkable anti-fatigue, anti-aging, metabolic regulatory, immunomodulatory, anti-inflammatory, neuroprotective, anti-diabetes, and anti-cancer effects. Among bioactive phytochemicals in Polygonati Rhizoma, polysaccharides play important roles in the health-promoting activities through the mechanisms mentioned above and potential synergistic effects with other bioactives. In this review, we briefly introduce the updated biosynthesis of polysaccharides, the purification method, the structure characterization, and food applications, and discuss in detail the biological activities of Polygonati Rhizoma polysaccharides and associated mechanisms, aiming at broadening the usage of Polygonati Rhizoma as functional food and medicine.
Collapse
|
17
|
Liu D, Tang W, Han C, Nie S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front Nutr 2022; 9:1074671. [PMID: 36545471 PMCID: PMC9760828 DOI: 10.3389/fnut.2022.1074671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022] Open
Abstract
Polygonatum sibiricum has been used as food and medicine for thousands of years, and P. sibiricum polysaccharides (PSPs) have become the hot research spot due to their various health-promoting functions. Numerous studies have shown that PSPs possess huge potential in the application of functional food and medicine fields. However, the research status and features of the preparation process, molecular structure, and bioactivities of PSPs are unclear. Therefore, this review makes a comprehensive summary and proposes new insights and guidelines for the extraction, purification, structural features, biosynthesis, and multiple bioactivities of PSPs. Notably, it is concluded that PSPs mainly contain several types of polysaccharides, including fructan, pectin, galactomannan, glucomannans, arabinogalactan, and galactan, and multiple bioactivates, including osteogenic activity, anti-obesity, anti-diabetes, anti-depression, antioxidant, antiglycation, and protective effect against neurotoxicity and gut microbiota regulating activity. This review contributes to the structure-function study and resource utilization of P. sibiricum and its polysaccharides in food fields.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Wei Tang
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China,Shaoping Nie
| |
Collapse
|
18
|
Cui Y, Wang S, Wang S, Cao S, Wang X, Lü X. Extraction optimization and characterization of persimmon peel pectin extracted by subcritical water. Food Chem X 2022; 16:100486. [PMID: 36304204 PMCID: PMC9593855 DOI: 10.1016/j.fochx.2022.100486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Persimmon peel pectin (PPP) was extracted by subcritical water. PPP had low Mw of 21.79 kDa and its degree of esterification was 40.61 %. PPP attributed to a degradation temperature of 228.05 ℃. The IC50 of PPP to ABTS•+ was 9.8-times that of commercial citrus pectin in vitro. PPP altered microbial intestinal communities in mice.
Persimmon peel pectin (PPP) was extracted by subcritical water via the response surface methodology. The optimal crude PPP extraction yield of 7.62 ± 0.7 % was found at 138 °C, 2.84 min, and liquid–solid ratio of 1:10.02. After treatment of deproteinization and decolorization with papain and hydrogen peroxide, 83.19 % of protein and 78.56 % of the colour in crude PPP were removed, respectively. PPP owned the Mw of 21.79 kDa and its uronic acids content was 64.03 %. PPP was further affirmed by fourier transform infrared, X-ray diffractometer and 1H NMR analysis. Moreover, the degradation temperature (228.05 ℃) of PPP was verified via differential scanning calorimetry. Then, the IC50 of PPP to ABTS•+ was 9.8 times that of commercial citrus pectin. Moreover, PPP could change microbial communities and selectively enrich Bacteroides, Cetobacterium, Erysipelatoclostridium, Parabacteroides and Phocaeicola sartorii. This study demonstrated that subcritical water was practicable for extraction of persimmon peel pectin.
Collapse
Key Words
- CCP, Commercial citrus pectin
- CPPP, Crude persimmon peel pectin
- DE, Degree of esterification
- DSC, Differential scanning calorimetric
- GAE, Gallic acid equivalents
- GC, Gas chromatography
- Gut microbiota
- HPGPC, High performance gel permeation chromatography
- LefSe, Linear discriminant analysis coupled with effect size
- Mw, Molecular weight
- NMR, Nuclear magnetic resonance
- PLS-DA, Partial least squares discriminant analysis
- PPP, Persimmon peel pectin
- Pectin
- Persimmon peel
- SCW, Subcritical water
- Subcritical water
- TPC, Total phenolic content
- XRD, X-ray diffraction
Collapse
|
19
|
Structural, functional and physicochemical properties of pectin from grape pomace as affected by different extraction techniques. Int J Biol Macromol 2022; 224:739-753. [DOI: 10.1016/j.ijbiomac.2022.10.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|