1
|
Asledottir T, Mamone G, Picariello G, Vegarud GE, Røseth A, Ferranti P, Devold TG. Lower Diversity of Amylase-Trypsin Inhibitors and Ex Vivo-Released Opioid-Containing Peptides in Ancestral Compared to Modern Wheat Varieties Assessed by Proteomics and Peptidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2373-2380. [PMID: 39813239 DOI: 10.1021/acs.jafc.4c05959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the ex vivo digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs (n = 24), while they were less represented in tetraploid emmer (n = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs. Nevertheless, digestion of Mirakel and Bastian by human gastrointestinal juices released the highest number of opioid-containing peptides, representing both gluten exorphins and gliadorphin. In conclusion, emmer had the lowest levels of ATIs, while einkorn and spelt released the fewest opioid-containing peptides after ex vivo digestion. These results point to the potential lower harmful effects of ancestral wheat compared to common hexaploid wheat varieties for wheat-sensitive individuals.
Collapse
Affiliation(s)
- Tora Asledottir
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | | | - Gerd E Vegarud
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Arne Røseth
- Department of Internal Medicine, Lovisenberg Diaconal Hospital, 0456 Oslo, Norway
| | - Pasquale Ferranti
- Department of Agriculture, University of Naples Federico II, 80055 Portici, Italy
| | - Tove G Devold
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
2
|
Jiang Z, Mei L, Li Y, Guo Y, Yang B, Huang Z, Li Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024; 14:1638. [PMID: 39766345 PMCID: PMC11727233 DOI: 10.3390/biom14121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota, a complex ecosystem, is vital to host health as it aids digestion, modulates the immune system, influences metabolism, and interacts with the brain-gut axis. Various factors influence the composition of this microbiota. Enzymes, as essential catalysts, actively participate in biochemical reactions that have an impact on the gut microbial community, affecting both the microorganisms and the gut environment. Enzymes play an important role in the regulation of the intestinal microbiota, but the interactions between enzymes and microbial communities, as well as the precise mechanisms of enzymes, remain a challenge in scientific research. Enzymes serve both traditional nutritional functions, such as the breakdown of complex substrates into absorbable small molecules, and non-nutritional roles, which encompass antibacterial function, immunomodulation, intestinal health maintenance, and stress reduction, among others. This study categorizes enzymes according to their source and explores the mechanistic principles by which enzymes drive gut microbial activity, including the promotion of microbial proliferation, the direct elimination of harmful microbes, the modulation of bacterial interaction networks, and the reduction in immune stress. A systematic understanding of enzymes in regulating the gut microbiota and the study of their associated molecular mechanisms will facilitate the application of enzymes to precisely regulate the gut microbiota in the future and suggest new therapeutic strategies and dietary recommendations. In conclusion, this review provides a comprehensive overview of the role of enzymes in modulating the gut microbiota. It explores the underlying molecular and cellular mechanisms and discusses the potential applications of enzyme-mediated microbiota regulation for host gut health.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Mei
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuqi Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuguang Guo
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiyi Huang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yangyuan Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| |
Collapse
|
3
|
Di Stasio L, De Caro S, Marulo S, Ferranti P, Picariello G, Mamone G. Impact of porcine brush border membrane enzymes on INFOGEST in vitro digestion model: A step forward to mimic the small intestinal phase. Food Res Int 2024; 197:115300. [PMID: 39577947 DOI: 10.1016/j.foodres.2024.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Brush border membrane (BBM) enzymes greatly affect the bioaccessibility and bioavailability of food nutrients. Despite their physiological importance, a step simulating the final stage of intestinal digestion has not yet been included in the harmonized protocols for in vitro digestion, primarily due to the challenges of replicating the dynamics of intestinal degradation. Herein, we propose an advancement toward a more physiologically relevant method, complementing the harmonized static gastric-duodenal digestion INFOGEST model with the missing small intestinal phase. BBM hydrolase activity, incubation time, at pH 7.2 were established to reproduce the small intestinal conditions. Skim milk powder, as a model of protein food, was subjected to the in vitro static digestion. Immediately after the duodenal phase, digesta were supplemented with BBM vesicles purified from pig jejunum. To comply with the dynamic nature of intestinal digestion and balance the spontaneous inactivation of hydrolases, BBM supplements were added every two hours throughout 6 h incubation time. Peptide degradation was monitored at each stage of digestion by amino acid analysis, free α-amino group assay, HPLC, LC-MS/MS. Hydrolysis by BBM peptidases led to a significant increase of free amino acids, reflecting the known level of amino acid adsorption (>90 %) in humans after eating milk proteins. LC-MS/MS analysis demonstrated that BBM hydrolases erode progressively the peptides released by gastro-duodenal processing up to stable sequence motifs. The approach described is particularly relevant when the endpoint is identifying the peptide sequences that cannot be further hydrolysed by digestive enzymes or to determine the amino acid bio-accessibility.
Collapse
Affiliation(s)
- Luigia Di Stasio
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Salvatore De Caro
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Serena Marulo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy.
| |
Collapse
|
4
|
Mourabit S, Römer S, Bonner ER, Winter F, Tschollar J, Tzvetkov MV, Weitschies W, Engeli S, Tschollar W. Exopeptidase combination enhances the degradation of isotopically labelled gluten immunogenic peptides in humans. Front Immunol 2024; 15:1425982. [PMID: 39478856 PMCID: PMC11522800 DOI: 10.3389/fimmu.2024.1425982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Celiac disease is a common autoimmune-like enteropathy caused by an aberrant response to incompletely digested dietary gluten. Gluten immunogenic peptides including the immunodominant 33-mer are thought to be resistant to proteolytic digestion by human gastrointestinal peptidases. We developed a novel enzyme therapy approach to support gluten peptide digestion using a combination of two tandem-acting exopeptidases, AMYNOPEP, that complement the intrinsic enzymatic activity of intestinal brush border enterocytes. Methods We evaluated the effects of AMYNOPEP supplementation on 33-mer degradation in vitro and in vivo. In a cross-over clinical study, healthy volunteers with no gastrointestinal disorders were given stable isotope (SI) labelled 33-mer peptides in the presence of varying peptide substrates and caloric loads, with and without AMYNOPEP. 33-mer degradation products (SI-labelled single amino acids) were measured in the blood plasma using LC-MS/MS. Results AMYNOPEP achieved rapid, complete amino-to-carboxyl terminal degradation of the 33-mer in vitro, generating single amino acids and dipeptides. In healthy volunteers, AMYNOPEP supplementation significantly increased 33-mer degradation and absorption of SI-labelled amino acids even in the presence of competing substrates. Specifically, we observed a 2.8-fold increase in the Cmax of stable isotope-labelled amino acids in the presence of wheat gluten. The absorption kinetics of labelled amino acids derived from 33-mer digestion with AMYNOPEP closely resembled that of SI-labelled X-Proline dipeptides administered without enzyme supplementation, highlighting the rapid hydrolytic activity of AMYNOPEP on polypeptides. Conclusions AMYNOPEP achieved complete degradation of the 33-mer into single amino acids and dipeptides in vitro and significantly improved 33-mer degradation kinetics in healthy volunteers, as measured by labelled amino acid detection, warranting further investigation into the potential therapeutic benefits of exopeptidase combinations for patients with gluten-related health disorders including celiac disease.
Collapse
Affiliation(s)
| | - Sarah Römer
- Department of General Pharmacology, Institute of Pharmacology Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Fabian Winter
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Greifswald, Germany
| | | | - Mladen V. Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Werner Weitschies
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Greifswald, Germany
| | - Stefan Engeli
- Department of Clinical Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
5
|
Kondrashina A, Arranz E, Cilla A, Faria MA, Santos-Hernández M, Miralles B, Hashemi N, Rasmussen MK, Young JF, Barberá R, Mamone G, Tomás-Cobos L, Bastiaan-Net S, Corredig M, Giblin L. Coupling in vitro food digestion with in vitro epithelial absorption; recommendations for biocompatibility. Crit Rev Food Sci Nutr 2024; 64:9618-9636. [PMID: 37233192 DOI: 10.1080/10408398.2023.2214628] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As food transits the gastrointestinal tract, food structures are disrupted and nutrients are absorbed across the gut barrier. In the past decade, great efforts have focused on the creation of a consensus gastrointestinal digestion protocol (i.e., INFOGEST method) to mimic digestion in the upper gut. However, to better determine the fate of food components, it is also critical to mimic food absorption in vitro. This is usually performed by treating polarized epithelial cells (i.e., differentiated Caco-2 monolayers) with food digesta. This food digesta contains digestive enzymes and bile salts, and if following the INFOGEST protocol, at concentrations that although physiologically relevant are harmful to cells. The lack of a harmonized protocol on how to prepare the food digesta samples for downstream Caco-2 studies creates challenges in comparing inter laboratory results. This article aims to critically review the current detoxification practices, highlight potential routes and their limitations, and recommend common approaches to ensure food digesta is biocompatible with Caco-2 monolayers. Our ultimate aim is to agree a harmonized consensus protocol or framework for in vitro studies focused on the absorption of food components across the intestinal barrier.
Collapse
Affiliation(s)
- Alina Kondrashina
- Global Research and Technology Centre, H&H Group, H&H Research, Fermoy, Ireland
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Marta Santos-Hernández
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research laboratories, Addenbrooke's Hospital, Cambridge, UK
| | - Beatriz Miralles
- Institute of Food Science Research CIAL (CSIC-UAM), Madrid, Spain
| | - Negin Hashemi
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | | | - Jette F Young
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Gianfranco Mamone
- Institute of Food Sciences - National Research Council, Avellino, Italy
| | - Lidia Tomás-Cobos
- In vitro preclinical studies department, AINIA, Avenida Benjamín Franklin 5-11, Parque Tecnológico de Valencia, Paterna, Spain
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, WG Wageningen, The Netherlands
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork, Ireland
| |
Collapse
|
6
|
Dold CA, Bavaro SL, Chen Y, Callanan MJ, Kennedy D, Cassidy J, Tobin J, Sahin AW, Lawlor PG, Brodkorb A, Giblin L. Infant milk formula, produced by membrane filtration, promotes mucus production in the upper small intestine of young pigs. Food Res Int 2024; 187:114343. [PMID: 38763636 DOI: 10.1016/j.foodres.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.
Collapse
Affiliation(s)
- Cathal A Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland.
| | - Simona L Bavaro
- ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Yihong Chen
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Michael J Callanan
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland.
| | - Deirdre Kennedy
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Joe Cassidy
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John Tobin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland.
| | - Peadar G Lawlor
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
7
|
Martineau-Côté D, Achouri A, Pitre M, Karboune S, L'Hocine L. Improved in vitro gastrointestinal digestion protocol mimicking brush border digestion for the determination of the Digestible Indispensable Amino Acid Score (DIAAS) of different food matrices. Food Res Int 2024; 178:113932. [PMID: 38309864 DOI: 10.1016/j.foodres.2024.113932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The Digestible Indispensable Amino Acid Score (DIAAS) is the new gold standard method for the assessment of protein nutritional quality. The DIAAS is evaluated with in vivo models, that are complex, constraining and costly. There is still no established method to assess it in vitro. In this study, we proposed to add a jejunal-ileal digestion phase to the standardized in vitro gastrointestinal digestion protocol developed by the International Network of Excellence on the Fate of Food in the Gastrointestinal Tract (INFOGEST protocol) to mimic brush border digestion and to enable DIAAS assessment in vitro in a more physiologically relevant manner. This jejunal-ileal digestion phase was performed with a porcine intestinal aminopeptidase as an alternative to brush border membrane extract, which is more difficult to obtain in a standardized way. This modified INFOGEST protocol was applied to various food matrices (faba bean, pea and soy flours, whey protein isolate and caseins) and the results were compared to published in vivo data to assess the model's physiological relevance. The addition of the jejunal-ileal digestion phase lead to a significant (p < 0.05) increase of 31 and 29 % in free and total amino acid digestibility, respectively, and of 83 % on average for the in vitro DIAAS values for all food matrices. Although the in vitro DIAAS remained underestimated compared to the in vivo ones, a strong correlation between them was observed (r = 0.879, p = 0.009), stating the relevance of this last digestion phase. This improved digestion protocol is proposed as a suitable alternative to evaluate the DIAAS in vitro when in vivo assays are not applicable.
Collapse
Affiliation(s)
- Delphine Martineau-Côté
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada; Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Allaoua Achouri
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Mélanie Pitre
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Lamia L'Hocine
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada.
| |
Collapse
|
8
|
Hevia A, Ruas-Madiedo P, Faria MA, Petit V, Alves B, Alvito P, Arranz E, Bastiaan-Net S, Corredig M, Dijk W, Dupont D, Giblin L, Graf BA, Kondrashina A, Ramos H, Ruiz L, Santos-Hernández M, Soriano-Romaní L, Tomás-Cobos L, Vivanco-Maroto SM, Recio I, Miralles B. A Shared Perspective on in Vitro and in Vivo Models to Assay Intestinal Transepithelial Transport of Food Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19265-19276. [PMID: 38035628 PMCID: PMC10723066 DOI: 10.1021/acs.jafc.3c05479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Assessing nutrient bioavailability is complex, as the process involves multiple digestion steps, several cellular environments, and regulatory-metabolic mechanisms. Several in vitro models of different physiological relevance are used to study nutrient absorption, providing significant challenges in data evaluation. However, such in vitro models are needed for mechanistic studies as well as to screen for biological functionality of the food structures designed. This collaborative work aims to put into perspective the wide-range of models to assay the permeability of food compounds considering the particular nature of the different molecules, and, where possible, in vivo data are provided for comparison.
Collapse
Affiliation(s)
- Arancha Hevia
- Dairy
Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares, sn. Villaviciosa 33300, Asturias. Spain
| | - Patricia Ruas-Madiedo
- Dairy
Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares, sn. Villaviciosa 33300, Asturias. Spain
| | - Miguel Angelo Faria
- LAQV/REQUIMTE,
Laboratório de Bromatologia e Hidrologia, Departamento de Ciências
Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Valérie Petit
- Nestlé
Research, Société des Produits
Nestlé SA, 1000 Lausanne, Switzerland
| | - Bruna Alves
- Faculty
of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa Portugal
| | - Paula Alvito
- Food
and Nutrition Department, National Institute
of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM - Centre
for Environmental and Marine Studies, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Elena Arranz
- Department
of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), E-28040 Madrid, Spain
| | - Shanna Bastiaan-Net
- Wageningen
Food & Biobased Research, Wageningen
University & Research, 6708 WG Wageningen, The Netherlands
| | - Milena Corredig
- Department
of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | | | - Didier Dupont
- INRAE Agrocampus Ouest, STLO, F-35042 Rennes, France
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61
C996 County Cork, Ireland
| | - Brigitte Anna Graf
- Department
of Health Professions, Faculty of Health and Education, Manchester Metropolitan University, M15 6BH Manchester, U.K.
| | - Alina Kondrashina
- H&H
Group, H&H Research, Global Research
and Technology Centre, P61
K202 Cork, County Cork, Ireland
| | - Helena Ramos
- LAQV/REQUIMTE,
Laboratório de Bromatologia e Hidrologia, Departamento de Ciências
Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Lorena Ruiz
- Dairy
Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares, sn. Villaviciosa 33300, Asturias. Spain
| | - Marta Santos-Hernández
- Wellcome
Trust - MRC Institute of Metabolic Science, Metabolic Research laboratories, Addenbrooke’s Hospital, Hills Road, CB2 0QQ Cambridge, U.K.
| | - Laura Soriano-Romaní
- AINIA
in Vitro Preclinical Studies Area, Parque
Tecnológico de Valencia. c/Benjamín Franklin, 5-11, E46980 Paterna, Spain
| | - Lidia Tomás-Cobos
- AINIA
in Vitro Preclinical Studies Area, Parque
Tecnológico de Valencia. c/Benjamín Franklin, 5-11, E46980 Paterna, Spain
| | | | - Isidra Recio
- Institute of Food
Science Research CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Beatriz Miralles
- Institute of Food
Science Research CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
9
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|