1
|
Yang J, Shen P, de Groot A, Mocking-Bode HCM, Nikiforidis CV, Sagis LMC. Oil-water interface and emulsion stabilising properties of rapeseed proteins napin and cruciferin studied by nonlinear surface rheology. J Colloid Interface Sci 2024; 662:192-207. [PMID: 38341942 DOI: 10.1016/j.jcis.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
HYPOTHESIS Two major protein families are present in rapeseed, namely cruciferins and napins. The structural differences between the two protein families indicate that they might behave differently when their mixture stabilises oil-water interfaces. Therefore, this work focuses on elucidating the role of both proteins in interface and emulsion stabilisation. EXPERIMENTS Protein molecular properties were evaluated, using SEC, DSC, CD, and hydrophobicity analysis. The oil-water interface mechanical properties were studied using LAOS and LAOD. General stress decomposition (GSD) was used as a novel method to characterise the nonlinear response. Additionally, to evaluate the emulsifying properties of the rapeseed proteins, emulsions were prepared using pure napins or cruciferin and also their mixtures at 1:3, 1:1 and 3:1 (w:w) ratios. FINDINGS Cruciferins formed stiff viscoelastic solid-like interfacial layers (Gs' = 0.046 mN/m; Ed' = 30.1 mN/m), while napin formed weaker and more stretchable layers at the oil-water interface (Gs' = 0.010 mN/m; Ed' = 26.4 mN/m). As a result, cruciferin-formed oil droplets with much higher stability against coalescence (coalescence index, CI up to 10%) than napin-stabilised ones (CI up to 146%) during two months of storage. Both proteins have a different role in emulsions produced with napin-cruciferin mixtures, where cruciferin provides high coalescence stability, while napin induces flocculation. Our work showed the role of each rapeseed protein in liquid-liquid multiphase systems.
Collapse
Affiliation(s)
- Jack Yang
- TiFN, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands; Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Penghui Shen
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Anteun de Groot
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Helene C M Mocking-Bode
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Bornse Weilanden 9, 6700AA Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands.
| |
Collapse
|
2
|
Olsmats E, Rennie AR. Pea protein [Pisum sativum] as stabilizer for oil/water emulsions. Adv Colloid Interface Sci 2024; 326:103123. [PMID: 38502971 DOI: 10.1016/j.cis.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
A map of stability for various water/oil/pea protein compositions has been plotted from the numerous reported results. Two clear regions of stability were identified. High internal oil phase emulsions with 70-80%, v/v oil content stabilized by total pea protein concentration <2.5%, w/v showed stability. Low oil content of 10-30%, v/v for a range of total pea protein concentrations >0.5%, w/v have also been identified as stable. Intermediate oil content and pea protein concentrations >4% w/v are unexplored regions and are likely to be areas of fruitful future research. The wide range of stability suggests that different stabilization mechanisms could be important for different compositions and careful consideration has to be taken to avoid oversimplification. Both stabilization with particles, i.e. Pickering emulsions, and protein unfolding have been suggested as mechanisms. The diverse way of describing stability makes it difficult to intercompare results in different studies. A summary of different oil types used have been presented and several properties such as dynamic viscosity, density, the dielectric constant and interfacial tension have been summarized for common vegetable oils. The type of vegetable oil and emulsion preparation techniques were seen to have rather little effect on emulsion stability. However, the different extraction methods and processing of the pea material had more effect, which could be attributed to changing composition of different proteins and to the states of aggregation and denaturing. Careful consideration has to be taken in the choice of extraction method and an increased understanding of what contributes to the stability is desirable for further progress in research and eventual product formulation.
Collapse
Affiliation(s)
- Eleonora Olsmats
- Macromolecular Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| | - Adrian R Rennie
- Macromolecular Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| |
Collapse
|
3
|
Grasberger KF, Lund FW, Simonsen AC, Hammershøj M, Fischer P, Corredig M. Role of the pea protein aggregation state on their interfacial properties. J Colloid Interface Sci 2024; 658:156-166. [PMID: 38100972 DOI: 10.1016/j.jcis.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
HYPOTHESIS Plant protein ingredients from similar sources can vary in functionality not only because of compositional differences, but also because of differences in their structure depending on their processing history. It is essential to understand these distinctions to develop novel food emulsion using plant proteins. It is hypothesized that differing interfacial properties can be attributed to their structures, aggregation, and colloidal states. EXPERIMENTS The adsorption behavior of a commercial protein isolate, homogenized or non-homogenized, was compared to a mildly extracted isolate to evaluate the effect of aggregation state and structural differences. After characterization of the particle size and protein composition, the interfacial properties were compared. FINDINGS Atomic force microscopy provided evidence of interfaces packed with protein oligomers regardless of the treatment. Differences in adsorption kinetics and interfacial shear rheology depending on oil polarity suggested different interfacial structures. A polydisperse mixture of protein oligomers resulted in increased rearrangements and protein-protein interactions at the interface. Homogenization of commercial proteins resulted in a lower interfacial tension and less elastic interfaces compared to those of native proteins due to the presence of larger aggregates. This study highlights how the interfacial properties can be related to the protein aggregation state resulting from differences in processing history.
Collapse
Affiliation(s)
| | - Frederik Wendelboe Lund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Marianne Hammershøj
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| |
Collapse
|
4
|
Masijn Q, Libberecht S, Meyfroot A, Goemaere O, Hanskens J, Fraeye I. Structure and physical stability of plant-based food gel systems: Impact of protein (mung bean, pea, potato, soybean) and fat (coconut, sunflower). Heliyon 2023; 9:e18894. [PMID: 37662792 PMCID: PMC10474361 DOI: 10.1016/j.heliyon.2023.e18894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Despite their popularity, plant-based food gel systems (GS) sometimes have suboptimal texture compared to animal-based products. Therefore, 4 commercial plant proteins (from mung bean, pea, potato and soybean) and 2 commercial plant fats (sunflower oil and coconut fat) in 2 contents (7.5 wt% and 17.5 wt%) were evaluated towards their contribution to structure and physical stability a lean (LGS, no fat) and an emulsified GS (EGS). Generally, protein source had a larger effect on structure and physical stability than fat source and content. Unheated, GS with soybean protein showed most structure and highest physical stability. Heated till 94 °C, the structure of GS increased drastically, but EGS showed less structure than LGS, attributed to low solid fat contents (SFC), hence low rigidity, of the incorporated oil droplets at 94 °C. Cooled till 5 °C all GS showed an additional increase in structure, for GS with mung bean and pea protein accompanied with an increase in physical stability. Overall, EGS with sunflower oil showed less structure and lower stability than EGS with coconut fat, likely due to their different SFC. At 5 °C, Peak force of GS with potato protein was highest. Across protein sources, EGS displayed a higher Peak force with coconut fat than with sunflower oil, again likely due to different SFC, hence, rigidity of the oil droplets. Physical stability of GS did not vary significantly between protein sources, fat sources nor fat contents, after a freeze-thaw cycle, nor during prolonged cold storage.
Collapse
Affiliation(s)
- Quinten Masijn
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Sophie Libberecht
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Annabel Meyfroot
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Olivier Goemaere
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Jana Hanskens
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Ilse Fraeye
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| |
Collapse
|
5
|
Ntone E, Yang J, Meinders MBJ, Bitter JH, Sagis LMC, Nikiforidis CV. The emulsifying ability of oleosomes and their interfacial molecules. Colloids Surf B Biointerfaces 2023; 229:113476. [PMID: 37499547 DOI: 10.1016/j.colsurfb.2023.113476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Oleosomes are natural oil droplets, present in all organisms and abundant in oilseeds. After their aqueous extraction from oilseeds, they can be directly utilized as oil droplets in food, cosmetics and all types of oil-in-water emulsion systems. However, to expand the potential uses of oleosomes as green ingredients and to valorize oilseeds as efficient as possible, we explored their emulsifying ability. Oleosomes were extracted from rapeseeds, and 10.0 wt% oil-in-water emulsions were created after homogenization with 0.5-6.0 wt% oleosomes, and the droplet size of the emulsions and their structure was measured by laser diffraction and confocal laser scanning microscopy (CLSM), respectively. The emulsion with an oleosome concentration lower than 1.0 wt% gave unstable emulsions with visible free oil. At oleosome concentrations at 1.5 wt% or higher, we obtained stable emulsions with droplet sizes between 2.0 and 12.0 µm. To investigate the role of the oleosome interfacial molecules in stabilizing emulsions we also studied their emulsifying and interfacial properties (using drop tensiometry) after isolating them from the oleosome structure. Both oleosomes and their isolated interfacial molecules exhibited a similar behavior on the oil-water interfaces, forming predominantly elastic interfacial films, and also showed a similar emulsifying ability. Our results show that oleosomes are not stabilizing the oil-in-water emulsions as intact particles, but they provide their interfacial molecules, which are enough to stabilize an oil-water surface up to about 2 times bigger than the initial oleosome surface. The understanding of the behavior of oleosomes as emulsifiers, opens many possibilities to use oleosomes as alternative to synthetic emulsifiers in food and pharma applications.
Collapse
Affiliation(s)
- Eleni Ntone
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands; TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands
| | - Jack Yang
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands; TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands
| | - Marcel B J Meinders
- TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands; Agrotechnology and Food Sciences Group, Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Lie-Piang A, Yang J, Schutyser MAI, Nikiforidis CV, Boom RM. Mild Fractionation for More Sustainable Food Ingredients. Annu Rev Food Sci Technol 2023; 14:473-493. [PMID: 36972157 DOI: 10.1146/annurev-food-060721-024052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
With the rising problems of food shortages, energy costs, and raw materials, the food industry must reduce its environmental impact. We present an overview of more resource-efficient processes to produce food ingredients, describing their environmental impact and the functional properties obtained. Extensive wet processing yields high purities but also has the highest environmental impact, mainly due to heating for protein precipitation and dehydration. Milder wet alternatives exclude, for example, low pH-driven separation and are based on salt precipitation or water only. Drying steps are omitted during dry fractionation using air classification or electrostatic separation. Benefits of milder methods are enhanced functional properties. Therefore, fractionation and formulation should be focused on the desired functionality instead of purity. Environmental impact is also strongly reduced by milder refining. Antinutritional factors and off-flavors remain challenges in more mildly produced ingredients. The benefits of less refining motivate the increasing trend toward mildly refined ingredients.
Collapse
Affiliation(s)
- A Lie-Piang
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - J Yang
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - M A I Schutyser
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - C V Nikiforidis
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - R M Boom
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| |
Collapse
|
7
|
Sun P, Sun W, Wei Z, Wu S, Xiang N. Soy protein nanoparticles prepared by enzymatic cross-linking with enhanced emulsion stability. SOFT MATTER 2023; 19:2099-2109. [PMID: 36857685 DOI: 10.1039/d2sm01461k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle-stabilized emulsions have shown increasing potential application in food emulsion systems. Here, soy protein, an abundant and inexpensive plant-based protein, was used to develop nanoparticles for emulsion stabilizer applications. An enzymatic cross-linking method based on microbial transglutaminase (mTG) was developed for the fabrication of soy protein nanoparticles (SPNPs). The emulsion stability was compared between soy protein isolate (SPI) and three different nanoparticles. The size of SPNPs ranged from 10 nm to 40 nm, depending on the production conditions. The emulsions stabilized by SPNPs were stable for at least 20 days at room temperature, whereas the emulsion that was stabilized by SPI showed a significant creaming and phase separation phenomenon. The SPNPs also showed a higher antioxidant and reducing effect compared to SPI. The use of mTG induced cross-linking resulted in the formation of covalent bonding between protein molecules, and led to the formation of nanoparticles with higher stability. The approaches support the utilization of inexpensive and abundant plant-based resources as emulsion stabilizers in food applications.
Collapse
Affiliation(s)
- Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| | - Weijun Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Zhengxun Wei
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| | - Sihong Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Ning Xiang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Ghelichi S, Hajfathalian M, Yesiltas B, Sørensen ADM, García-Moreno PJ, Jacobsen C. Oxidation and oxidative stability in emulsions. Compr Rev Food Sci Food Saf 2023; 22:1864-1901. [PMID: 36880585 DOI: 10.1111/1541-4337.13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Emulsions are implemented in the fabrication of a wide array of foods and therefore are of great importance in food science. However, the application of emulsions in food production is restricted by two main obstacles, that is, physical and oxidative stability. The former has been comprehensively reviewed somewhere else, but our literature review indicated that there is a prominent ground for reviewing the latter across all kinds of emulsions. Therefore, the present study was formulated in order to review oxidation and oxidative stability in emulsions. In doing so, different measures to render oxidative stability to emulsions are reviewed after introducing lipid oxidation reactions and methods to measure lipid oxidation. These strategies are scrutinized in four main categories, namely storage conditions, emulsifiers, optimization of production methods, and antioxidants. Afterward, oxidation in all types of emulsions, including conventional ones (oil-in-water and water-in-oil) and uncommon emulsions in food production (oil-in-oil), is reviewed. Furthermore, the oxidation and oxidative stability of multiple emulsions, nanoemulsions, and Pickering emulsions are taken into account. Finally, oxidative processes across different parent and food emulsions were explained taking a comparative approach.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Chemistry and Biochemistry Research, Daneshafzayan-e-Fardaye Giti Research and Education Co., Gorgan, Iran
| | - Mona Hajfathalian
- Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Keuleyan E, Gélébart P, Beaumal V, Kermarrec A, Ribourg-Birault L, Le Gall S, Meynier A, Riaublanc A, Berton-Carabin C. Pea and lupin protein ingredients: New insights into endogenous lipids and the key effect of high-pressure homogenization on their aqueous suspensions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
10
|
D'Alessio G, Flamminii F, Faieta M, Prete R, Di Michele A, Pittia P, Di Mattia CD. High pressure homogenization to boost the technological functionality of native pea proteins. Curr Res Food Sci 2023; 6:100499. [PMID: 37081859 PMCID: PMC10111953 DOI: 10.1016/j.crfs.2023.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Pea proteins are being increasingly used for the formulation of plant-based products, but their globular structure and the presence of aggregates can affect their technological properties. In this study, the effect of high pressure homogenization (HPH) at different intensities (60 and 100 MPa) was investigated as a pre-treatment to modulate the techno-functional properties of a pea protein isolate (IP) extracted through an alkaline extraction/isoelectric precipitation process. SDS-PAGE, circular dichroism, thermal properties, total free sulfhydryl groups, antioxidant capacity and reducing properties were evaluated along with technological indices as solubility, WHC and OHC, interfacial tension and emulsifying capacity. HPH treatments were able to unfold and modify proteins structure, leading also to a change of the relative abundance of pea protein globulins (SDS-PAGE) and of the vicilin to legumin ratio. Solubility, WHC and OHC were improved, while interfacial tension and emulsifying capacity were weakly affected. However, an enhanced physical stability over time of the emulsions prepared with the 60 MPa-treated protein was found, likely as an effect of the decreased ratio between vicilin and legumin after treatment. Results of this study will contribute to deepen the effect of the HPH technology used as pre-treatment, adding useful results and expanding knowledge about the structure and techno-functional properties of native and modified pea proteins.
Collapse
Affiliation(s)
- Giulia D'Alessio
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Federica Flamminii
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D'Annunzio” of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Marco Faieta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Roberta Prete
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy
| | - Paola Pittia
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Carla Daniela Di Mattia
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
- Corresponding author.
| |
Collapse
|
11
|
Yang J, Mocking-Bode HC, van den Hoek IA, Theunissen M, Voudouris P, Meinders MB, Sagis LM. The impact of heating and freeze or spray drying on the interface and foam stabilising properties of pea protein extracts: Explained by aggregation and protein composition. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Immonen M, Chandrakusuma A, Hokkanen S, Partanen R, Mäkelä-Salmi N, Myllärinen P. The effect of deamidation and lipids on the interfacial and foaming properties of ultrafiltered oat protein concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Influence of the fractionation method on the protein composition and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Behavior of mixed pea-whey protein at interfaces and in bulk oil-in-water emulsions. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Optimization of Pea Protein Isolate-Stabilized Oil-in-Water Ultra-Nanoemulsions by Response Surface Methodology and the Effect of Electrolytes on Optimized Nanoemulsions. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanoemulsions are optically transparent and offer good stability, bioavailability, and control over the targeted delivery and release of lipophilic active components. In this study, pea protein isolate (PPI)-stabilized O/W nanoemulsions were evaluated using response surface methodology to obtain optimized ultra-nanoemulsions of Sauter mean diameter (D3,2) < 100 nm using a high-pressure homogenizer (HPH). Furthermore, the effect of food matrix electrolytes, i.e., the pH and ionic strength, on the emulsion (prepared at optimized conditions) was investigated. The results revealed that the droplet size distribution of emulsions was mainly influenced by the PPI concentration and the interaction of oil concentration and HPH pressure. Moreover, a non-significant increase in droplet size was observed when the nanoemulsions (having an initial D3,2 < 100 nm) were stored at 4 °C for 7 days. Based on the current experimental design, nanoemulsions with a droplet size < 100 nm can effectively be prepared with a high PPI concentration (6.35%), with less oil (1.95%), and at high HPH pressure (46.82 MPa). Such emulsions were capable of maintaining a droplet size below 100 nm even at ionic conditions of up to 400 mM NaCl and at acidic pH.
Collapse
|
16
|
Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquida and liquid-gas interfaces. Adv Colloid Interface Sci 2022; 308:102743. [DOI: 10.1016/j.cis.2022.102743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
|
17
|
|
18
|
Sagis LMC, Yang J. Protein-stabilized interfaces in multiphase food: comparing structure-function relations of plant-based and animal-based proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Functionality-driven food product formulation – An illustration on selecting sustainable ingredients building viscosity. Food Res Int 2022; 152:110889. [DOI: 10.1016/j.foodres.2021.110889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 11/18/2022]
|
20
|
Yang J, de Wit A, Diedericks CF, Venema P, van der Linden E, Sagis LM. Foaming and emulsifying properties of extensively and mildly extracted Bambara groundnut proteins: A comparison of legumin, vicilin and albumin protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Funke M, Boom R, Weiss J. Dry fractionation of lentils by air classification - Composition, interfacial properties and behavior in concentrated O/W emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Möller AC, Li J, van der Goot AJ, van der Padt A. A water-only process to fractionate yellow peas into its constituents. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Schmitt C, Bovetto L, Buczkowski J, De Oliveira Reis G, Pibarot P, Amagliani L, Dombrowski J. Plant proteins and their colloidal state. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Interfacial behavior of plant proteins — novel sources and extraction methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Emulsifying properties of lentil protein preparations obtained by dry fractionation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractDry fractionated legume protein ingredients are gaining attention as alternatives to conventional solvent extracted legume proteins, being more resource efficient and often exhibiting novel functional properties. However, lack of knowledge about the relationship between composition and functionality limit a more wide-spread use of dry-fractionated legume protein in applications. In this study, lentil fractions of different degrees of refinement were prepared using air classification having protein and starch contents of 16–59% and 4–64%, respectively. The dry fractionated lentil fractions could emulsify and stabilize 10 wt% oil-in-water emulsions, while a conventional lentil protein isolate used for comparison was not able to form stable emulsions. The latter had significantly larger mean droplet diameters (around 20 µm) due to droplet flocculation than emulsions made with the different lentil fractions ranging between 0.3 and 5.5 µm. Similar surface charges (between −22 and −31 mV) indicated that the discrepancy could be ascribed to differences in steric repulsion and mechanical strength of the interfacial layers between conventionally and dry fractionated lentil. Storage stability tests of emulsions stabilized with dry fractionated samples resulted in separation into a low and higher density phase with the individual droplets being stable against coalescence in both phases. The phase separation was attributed to gravimetrical sedimentation of larger insoluble components accumulating in the denser phase, which was impacted by the degree of refinement by air classification. The results highlight the potential of dry fractionation for the production of sustainable ingredients with unique composition and functionality.
Collapse
|
26
|
Hinderink EB, Berton-Carabin CC, Schroën K, Riaublanc A, Houinsou-Houssou B, Boire A, Genot C. Conformational Changes of Whey and Pea Proteins upon Emulsification Approached by Front-Surface Fluorescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6601-6612. [PMID: 34087067 PMCID: PMC8213056 DOI: 10.1021/acs.jafc.1c01005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/11/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Proteins are widely used to stabilize emulsions, and plant proteins have raised increasing interest for this purpose. The interfacial and emulsifying properties of proteins depend largely on their molecular properties. We used fluorescence spectroscopy to characterize the conformation of food proteins from different biological origins (dairy or pea) and transformation processes (commercial or lab-made isolates) in solution and at the oil-water interface. The fourth derivative of fluorescence spectra provided insights in the local environment of tryptophan (Trp) residues and thus in the protein structure. In emulsions, whey proteins adsorbed with their Trp-rich region at the oil-water interface. Proteins in the commercial pea isolate were present as soluble aggregates, and no changes in the local environment of the Trp residues were detected upon emulsification, suggesting that these structures adsorb without conformational changes. The lab-purified pea proteins were less aggregated and a Trp-free region of the vicilin adsorbed at the oil-water interface.
Collapse
Affiliation(s)
- Emma B.
A. Hinderink
- TiFN, P.O. Box 557, 6700 AN Wageningen, The Netherlands
- Laboratory
of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Claire C. Berton-Carabin
- Laboratory
of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- INRAE,
UR BIA, F-44316 Nantes, France
| | - Karin Schroën
- Laboratory
of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Pea protein ingredients: A mainstream ingredient to (re)formulate innovative foods and beverages. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Foams and air-water interfaces stabilised by mildly purified rapeseed proteins after defatting. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Möller AC, van der Padt A, van der Goot AJ. From raw material to mildly refined ingredient – Linking structure to composition to understand fractionation processes. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Keppler JK, Heyse A, Scheidler E, Uttinger MJ, Fitzner L, Jandt U, Heyn TR, Lautenbach V, Loch JI, Lohr J, Kieserling H, Günther G, Kempf E, Grosch JH, Lewiński K, Jahn D, Lübbert C, Peukert W, Kulozik U, Drusch S, Krull R, Schwarz K, Biedendieck R. Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Physical Stability and Interfacial Properties of Oil in Water Emulsion Stabilized with Pea Protein and Fish Skin Gelatin. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09655-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
de Oliveira APH, Omura MH, Barbosa ÉDAA, Bressan GC, Vieira ÉNR, Coimbra JSDR, de Oliveira EB. Combined adjustment of pH and ultrasound treatments modify techno-functionalities of pea protein concentrates. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Drozłowska E, Bartkowiak A, Łopusiewicz Ł. Characterization of Flaxseed Oil Bimodal Emulsions Prepared with Flaxseed Oil Cake Extract Applied as a Natural Emulsifying Agent. Polymers (Basel) 2020; 12:E2207. [PMID: 32993070 PMCID: PMC7600428 DOI: 10.3390/polym12102207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, a majority of oilseeds plants are converted into byproducts and waste materials during processing. Press cakes are rich in valuable biopolymers, such as proteins and polysaccharides (fiber, lignans, etc.). In this study flaxseed oil cake extract (FOCE) was used to stabilize flaxseed oil-in-water emulsions. The effect of FOCE with various flaxseed oil concentrations (10-50% v/v) on several physicochemical properties of emulsions, such as stability, rheology, color and particle size was investigated. The rheological parameters suggested that all samples were non-Newtonian fluids, whereas particle size measurements and calculation SPAN index provided information about the broadness of emulsions particle size distribution. FOCE was able to efficiently stabilize oil/water interfaces with a high oil content. Results obtained for FOCE were compared with effects for synthetic emulsifier (Tween 80) and separated FOCE compounds (flaxseed gum and flaxseed protein). FOCE emulsifying activity is a result of different water-holding and oil-binding capacities of flaxseed gum and protein. This result is an intriguing conclusion regarding the necessity for using pure emulsifiers, showing the possibility of using a bio-based extract containing biopolymers, which is part of the principles of circular economy and the idea of zero-waste. The results give the opportunity to use FOCE as an ingredient in efficient flaxseed oil emulsions stabilizer for food applications.
Collapse
Affiliation(s)
- Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (A.B.); (Ł.Ł.)
| | | | | |
Collapse
|
34
|
Ntone E, van Wesel T, Sagis LMC, Meinders M, Bitter JH, Nikiforidis CV. Adsorption of rapeseed proteins at oil/water interfaces. Janus-like napins dominate the interface. J Colloid Interface Sci 2020; 583:459-469. [PMID: 33011413 DOI: 10.1016/j.jcis.2020.09.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 01/23/2023]
Abstract
Plants offer a vast variety of protein extracts, typically containing multiple species of proteins that can serve as building blocks of soft materials, like emulsions. However, the role of each protein species concerning the formation of emulsions and interfaces with diverse rheological properties is still unknown. Therefore, deciphering the role of the individual proteins in an extract is highly relevant, since it determines the optimal level of purification, and hence the sustainability aspects of the extract. Here, we will show that when oil/water emulsions were prepared with a rapeseed protein extract containing napins and cruciferins (in a mass ratio of 1:1), only napins adsorbed at the interface exhibiting a soft solid-like rheological behavior. The dominance of napins at the interface was ascribed to their small size (radius r = 1.7 nm) and its unique Janus-like structure, as 45% of the amino acids are hydrophobic and primarily located at one side of the protein. Cruciferins with a bigger size (r = 4.4 nm) and a more homogeneous distribution of the hydrophobic domains couldn't reach the interface, but they appear to just weakly interact with the adsorbed layer of napins.
Collapse
Affiliation(s)
- Eleni Ntone
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands; TiFN, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | - Tessa van Wesel
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Marcel Meinders
- TiFN, P.O. Box 557, 6700 AN Wageningen, The Netherlands; Food and Biobased Research, Wageningen University and Research Centre, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
35
|
Sridharan S, Meinders MB, Bitter JH, Nikiforidis CV. Pea flour as stabilizer of oil-in-water emulsions: Protein purification unnecessary. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105533] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Taarji N, Vodo S, Bouhoute M, Khalid N, Hafidi A, Kobayashi I, Neves MA, Isoda H, Nakajima M. Preparation of monodisperse O/W emulsions using a crude surface-active extract from argan by-products in microchannel emulsification. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Interfacial rheology and relaxation behavior of adsorption layers of the triterpenoid saponin Escin. J Colloid Interface Sci 2019; 563:281-290. [PMID: 31881493 DOI: 10.1016/j.jcis.2019.12.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/20/2023]
Abstract
HYPOTHESIS Escin, a monodesmosidic triterpenoid saponin, was shown previously to form viscoelastic interfaces with a very high dilatational and surface shear storage modulus. This is expected to be due to the arrangement of Escin into 2D disordered soft viscoelastic solid interfacial structures, which results in turn in a distribution of relaxation times. EXPERIMENTS The responses to dilatational and surface shear deformations of Escin-stabilized air-water interfaces were studied, both in the linear viscoelastic (LVE) and non-linear (NLVE) regime. Step relaxation and amplitude sweeps were performed in dilatation experiments. For surface shear, amplitude sweeps and creep recovery experiments were performed. FINDINGS Escin stabilized-interfaces displayed a highly non-linear behavior in dilatation as seen in the Lissajous plots. In large oscillatory shear the Lissajous curves had a rhomboidal shape, indicating intracycle yielding and recovery, typical of glassy systems. The relaxation of the interface showed stretched exponential behavior, with stretched exponents typical of disordered solids with dynamic heterogeneity. The use of surface rheological measurements beyond the commonly measured LVE regime clearly has provided new insights into the behavior of these interfaces and their microstructure. These results highlight the need to reconsider other complex interfaces as disordered solids and not as 2D homogenous viscoelastic fluids.
Collapse
|
38
|
|
39
|
Loveday SM. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu Rev Food Sci Technol 2019; 10:311-339. [PMID: 30649962 DOI: 10.1146/annurev-food-032818-121128] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein is an essential macronutrient and a key structural component of many foods. The nutritional and technological properties of food protein ingredients depend on their source, extraction and purification, modification during food manufacture, and interactions with other food components. In addition to covering these elements, this review seeks to highlight underappreciated aspects of protein environmental sustainability and explores the potential of cultured meat and insect-derived proteins.
Collapse
Affiliation(s)
- Simon M Loveday
- Food and Bio-Based Products Group, AgResearch Limited, Palmerston North 4442, New Zealand;
| |
Collapse
|
40
|
Keppler JK, Steffen-Heins A, Berton-Carabin CC, Ropers MH, Schwarz K. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 2: Influence of the protein modification on the surface activity in an O/W system. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|