1
|
Quiroga J, Lambrese YS, García MG, Ochoa NA, Calvente VE. Enhancing apple postharvest protection: Efficacy of pectin coatings containing Cryptococcus laurentii against Penicillium expansum. Int J Food Microbiol 2025; 426:110934. [PMID: 39405798 DOI: 10.1016/j.ijfoodmicro.2024.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
The aim of this work is the application of pectin coatings containing Cryptococcus laurentii as a method of biocontrol of Penicillium expansum for postharvest protection of apples. For this purpose, the yeast was incorporated into a pectin matrix, and its viability and biocontrol activity in vitro and in vivo against P. expansum was evaluated over time. In addition, the influence of the sterilization process on coating thickness was studied. Results showed that pectin coating with C. laurentii enhanced mycelial growth inhibition in vitro studies, while no significant differences were observed in disease incidence and severity reduction in vivo studies. The sterilization process reduced the viscosity of the pectin solution, resulting in coating thicknesses ranging from 0.5 to 1 μm. As a general evaluation, in vitro and in vivo, biocontrol assays were useful in demonstrating better postharvest protection of the yeast at 7 °C concerning 25 °C.
Collapse
Affiliation(s)
- Julieta Quiroga
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Yésica Sabrina Lambrese
- Instituto Nacional de Tecnología Industrial, INTI San Luis, INTI, Argentina; Área de Básicas Agronómicas, Departamento de Ciencias Agropecuarias, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta Prov. N° 55 (Ex. 148) Extremo Norte, Villa Mercedes CP 5730, Argentina.
| | - María Guadalupe García
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Nelio Ariel Ochoa
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Viviana Edith Calvente
- Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| |
Collapse
|
2
|
Mohammadi L, Wardana AA, Tanaka F, Tanaka F. The physicochemical, mechanical, and antifungal properties of sodium alginate film containing Japanese rice vinegar and peppermint (Mentha piperita) oil as bio-composite packaging. Int J Biol Macromol 2024; 281:136511. [PMID: 39401641 DOI: 10.1016/j.ijbiomac.2024.136511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024]
Abstract
Sodium Alginate has a high demand and is favored for food packaging; however, this film typically exhibits poor antimicrobial activity. In this study, sodium alginate film containing peppermint essential oil, Japanese rice vinegar, or a combination of both, is used to analyze antimicrobial, mechanical, structural, and optical properties. The scanning electron microscopy (SEM) technique is utilized to observe the film's surface and cross-section homogeneity. The addition of peppermint essential oil and Japanese rice vinegar to the alginate film solution improves fungal growth and spore germination prevention. Unlike the film containing vinegar, the film with peppermint essential oil shows the lowest transparency. It also has the lowest tensile strength and exhibits the highest elongation at break and water vapor permeability. Conclusively, the film containing a combination of vinegar and essential oil indicates moderate values. According to AFM topography, the film with a mix of essential oil and vinegar has a smoother, more homogeneous surface than other films. Our results prove that combining vinegar and oil with sodium alginate film is an ideal choice. This combination significantly improves the performance of food packaging.
Collapse
Affiliation(s)
- Leila Mohammadi
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ata Aditya Wardana
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Fumina Tanaka
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiko Tanaka
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Pillai ARS, Eapen AS, Zhang W, Roy S. Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods 2024; 13:1529. [PMID: 38790829 PMCID: PMC11121366 DOI: 10.3390/foods13101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Over the last decades, a significant rise in fruit consumption has been noticed as they contain numerous nutritional components, which has led to the rise in fruit production globally. However, fruits are highly liable to spoilage in nature and remain vulnerable to losses during the storage and preservation stages. Therefore, it is crucial to enhance the storage life and safeness of fruits for the consumers. To keep up the grade and prolong storage duration, various techniques are employed in the food sector. Among these, biopolymer coatings have gained widespread acceptance due to their improved characteristics and ideal substitution for synthetic polymer coatings. As there is concern regarding the safety of the consumers and sustainability, edible coatings have become a selective substitution for nurturing fruit quality and preventing decay. The application of polysaccharide-based edible coatings offers a versatile solution to prevent the passage of moisture, gases, and pathogens, which are considered major threats to fruit deterioration. Different polysaccharide substances such as chitin, pectin, carrageenan, cellulose, starch, etc., are extensively used for preparing edible coatings for a wide array of fruits. The implementation of coatings provides better preservation of the fruits such as mango, strawberry, pineapple, apple, etc. Furthermore, the inclusion of functional ingredients, including polyphenols, natural antioxidants, antimicrobials, and bio-nanomaterials, into the edible coating solution matrix adds to the nutritional, functional, and sensory attributes of the fruits. The blending of essential oil and active agents in polysaccharide-based coatings prevents the growth of food-borne pathogens and enhances the storage life of the pineapple, also improving the preservation of strawberries and mangoes. This paper aims to provide collective data regarding the utilization of polysaccharide-based edible coatings concerning their characteristics and advancements for fruit preservation.
Collapse
Affiliation(s)
- Athira R. S. Pillai
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| | - Ansu Sara Eapen
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| |
Collapse
|
4
|
Sharafi H, Alirezalu A, Liu SQ, Karami A, Moradi M. Postbiotics-enriched flaxseed mucilage coating: A solution to improving postharvest quality and shelf life of strawberry. Int J Biol Macromol 2024; 265:131398. [PMID: 38599903 DOI: 10.1016/j.ijbiomac.2024.131398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
This research aimed to assess the effects of flaxseed mucilage (Mu) coatings supplemented with postbiotics (P) obtained from Lactobacillus acidophilus LA-5 on various physical, biochemical, and microbial characteristics of strawberry fruits. Strawberry fruits were immersed for 2 min in Mu2.5 (2.5 % mucilage in distilled water), Mu5 (5 % mucilage in distilled water), P-Mu2.5 (2.5 % mucilage in undiluted postbiotics) and P-Mu5 (5 % mucilage in undiluted postbiotics) solutions and were stored at 4 °C and 85 RH for 12 days. All coatings were effective in reducing fungal count compared to the uncoated control fruits. Mu5 coating exhibited the highest efficacy, reducing fungal count by 2.85 log10 CFU/g, followed by Mu2.5 (1.47 log10 CFU/g reduction) and P-Mu2.5 groups (0.90 log10 CFU/g reduction). The fruits coated with edible coatings showed significant delays in the change of weight loss, pH, and total soluble solids as compared to the uncoated fruits. The coating containing postbiotics i.e., P-Mu5 also showed a significant increase in the total phenolic contents, total flavonoid content, antioxidant capacity, and total anthocyanin content at the end of storage relative to the uncoated fruits. Thus, Mu and P-Mu coatings may be a useful approach to maintaining the postharvest quality of strawberry fruits during cold storage.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, 1177 Urmia, Iran.
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Azad Karami
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, 1177 Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| |
Collapse
|
5
|
Purnawita W, Rahayu WP, Lioe HN, Nurjanah S, Wahyudi ST. Potential molecular mechanism of reuterin on the inhibition of Aspergillus flavus conidial germination: An in silico study. J Food Sci 2024; 89:1167-1186. [PMID: 38193164 DOI: 10.1111/1750-3841.16904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-β-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-β-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-β-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-β-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.
Collapse
Affiliation(s)
- Widiati Purnawita
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Winiati Pudji Rahayu
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Siti Nurjanah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Setyanto Tri Wahyudi
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| |
Collapse
|
6
|
Martins VFR, Pintado ME, Morais RMSC, Morais AMMB. Recent Highlights in Sustainable Bio-Based Edible Films and Coatings for Fruit and Vegetable Applications. Foods 2024; 13:318. [PMID: 38275685 PMCID: PMC10814993 DOI: 10.3390/foods13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.
Collapse
Affiliation(s)
| | | | | | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
7
|
Cheng X, Yang S, Fang Q, Dai S, Peng X, Sun M, Lian Z, Liu Y, Yang J, Xu J, Wang H, Jiang L. Biomacromolecule assembly of soy glycinin-potato starch complexes: Focus on structure, function, and applications. Carbohydr Polym 2023; 317:121101. [PMID: 37364963 DOI: 10.1016/j.carbpol.2023.121101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The effect of the cross-linking mechanism and functional properties of soy glycinin (11S)-potato starch (PS) complexes was investigated in this study. The results showed that the binding effecting and spatial network structure of 11S-PS complexes via heated-induced cross-linking were adjusted by biopolymer ratios. In particular, 11S-PS complexes with the biopolymer ratios of 2:15, had a strongest intermolecular interaction through hydrogen bonds and hydrophobic force. Moreover, 11S-PS complexes at the biopolymer ratios of 2:15 exhibited a finer three-dimensional network structure, which was used as film-forming solution to enhance the barrier performance and mitigate the exposure to the environment. In addition, the 11S-PS complexes coating was effective in moderating the loss of nutrients, thereby extending their storage life in truss tomato preservation experiments. This study provides helpful to insights into the cross-linking mechanism of the 11S-PS complexes and the potential application of food-grade biopolymer composite coatings in food preservation.
Collapse
Affiliation(s)
- Xiaoyi Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Fang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shicheng Dai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinhui Peng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingyue Sun
- College of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150066, China
| | - ZiTeng Lian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanwei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - JinJie Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
8
|
Iñiguez-Moreno M, González-González RB, Flores-Contreras EA, Araújo RG, Chen WN, Alfaro-Ponce M, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. Nano and Technological Frontiers as a Sustainable Platform for Postharvest Preservation of Berry Fruits. Foods 2023; 12:3159. [PMID: 37685092 PMCID: PMC10486450 DOI: 10.3390/foods12173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda A. Flores-Contreras
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Rafael G. Araújo
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Wei Ning Chen
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Mariel Alfaro-Ponce
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Tlalpan, Mexico City 14380, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
9
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
10
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
11
|
Rodrigues F, Cedran M, Bicas J, Sato H. Inhibitory effect of reuterin-producing Limosilactobacillus reuteri and edible alginate-konjac gum film against foodborne pathogens and spoilage microorganisms. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Sun MC, Hu ZY, Li DD, Chen YX, Xi JH, Zhao CH. Application of the Reuterin System as Food Preservative or Health-Promoting Agent: A Critical Review. Foods 2022; 11:foods11244000. [PMID: 36553742 PMCID: PMC9778575 DOI: 10.3390/foods11244000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The reuterin system is a complex multi-component antimicrobial system produced by Limosilactobacillus reuteri by metabolizing glycerol. The system mainly includes 3-hydroxypropionaldehyde (3-HPA, reuterin), 3-HPA dimer, 3-HPA hydrate, acrolein and 3-hydroxypropionic acid, and has great potential to be applied in the food and medical industries due to its functional versatility. It has been reported that the reuterin system possesses regulation of intestinal flora and anti-infection, anti-inflammatory and anti-cancer activities. Typically, the reuterin system exerts strong broad-spectrum antimicrobial properties. However, the antimicrobial mechanism of the reuterin system remains unclear, and its toxicity is still controversial. This paper presents an updated review on the biosynthesis, composition, biological production, antimicrobial mechanisms, stability, toxicity and potential applications of the reuterin system. Challenges and opportunities of the use of the reuterin system as a food preservative or health-promoting agent are also discussed. The present work will allow researchers to accelerate their studies toward solving critical challenges obstructing industrial applications of the reuterin system.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Plant Science, Jilin University, Changchun 130062, China
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zi-Yi Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| | - Chang-Hui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| |
Collapse
|
13
|
Muncan J, Anantawittayanon S, Furuta T, Kaneko T, Tsenkova R. Aquaphotomics monitoring of strawberry fruit during cold storage - A comparison of two cooling systems. Front Nutr 2022; 9:1058173. [PMID: 36570127 PMCID: PMC9780392 DOI: 10.3389/fnut.2022.1058173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to use aquaphotomics and near-infrared (NIR) spectroscopy to follow the changes in strawberries during cold storage in the refrigerator with an electric field generator (supercooling fridge, SCF) and without it (control fridge, CF). The NIR spectra of strawberries stored in these refrigerators were collected over the course of 15 days using a portable mini spectrometer and their weight was measured daily. The spectral data in the region of the first overtone of water (1,300-1,600 nm) were analyzed using aquaphotomics multivariate analysis. The results showed a decrease in weight loss of strawberries, but the loss of weight was significantly lower in SCF, compared to the CF. The reduction of weight loss due to exposure to an electric field was comparable to the use of coatings. The aquaphotomics analysis showed that the NIR spectra adequately captured changes in the fruit over the storage period, and that it is possible to predict how long the fruit spent in storage, regardless of the storage type. During aquaphotomics analysis, 19 water absorbance bands were found to be consistently repeating and to have importance for the description of changes in strawberries during cold storage. These bands defined the water spectral pattern (WASP), multidimensional biomarker that was used for the description of the state and dynamics of water in strawberries during time spent in storage. Comparison of WASPs of strawberries in CF and SCF showed that exposure to an electric field leads to a delay in ripening by around 3 days. This was evidenced by the increased amount of structural, strongly bound water and vapor-like trapped water in the strawberries stored in SCF. This particular state of water in strawberries stored in SCF was related to the hardening of the strawberry skin and prevention of moisture loss, in agreement with the results of significantly decreased weight loss.
Collapse
Affiliation(s)
- Jelena Muncan
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Sukritta Anantawittayanon
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | - Roumiana Tsenkova
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe, Japan,*Correspondence: Roumiana Tsenkova,
| |
Collapse
|
14
|
Oliveira Filho JGD, Albiero BR, Calisto ÍH, Bertolo MRV, Oldoni FCA, Egea MB, Bogusz Junior S, de Azeredo HMC, Ferreira MD. Bio-nanocomposite edible coatings based on arrowroot starch/cellulose nanocrystals/carnauba wax nanoemulsion containing essential oils to preserve quality and improve shelf life of strawberry. Int J Biol Macromol 2022; 219:812-823. [PMID: 35963346 DOI: 10.1016/j.ijbiomac.2022.08.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of bio-nanocomposite coatings developed using arrowroot starch (AA), cellulose nanocrystals (CNC), carnauba wax nanoemulsion (CWN), and Cymbopogon martinii and Mentha spicata essential oils (CEO and MEO, respectively) on the physicochemical, microbiological, bioactive, antioxidant, and aromatic characteristics of strawberries cv. 'Oso Grande' in refrigerated storage for 12 days. The coatings improved the shelf life and stability of strawberries, minimizing their weight loss (2.6-3.9 %), as well as changes in color and texture (except for those coated with CEO), titratable acidity, pH, soluble solids, anthocyanins, phenolic compounds, ascorbic acid content, and antioxidant activity compared with uncoated control strawberries. The bio-nanocomposite coatings containing MEO and CEO also exhibited antimicrobial activity, reduced visible fungal deterioration (40-60 %), and reduced microbial load (3.59-4.03 log CFU g-1 for mesophilic aerobic bacteria and 4.45-5.22 log CFU g-1 for fungi and yeast) during storage. They also significantly reduced the severity of decay caused by inoculation with Botrytis cinerea or Rhizopus stolonifer. The coatings altered the volatile profile of the fruits during storage, decreasing aldehyde and alcohol concentrations and increasing ester concentrations. Thus, these bio-nanocomposite coatings, especially those containing MEO, can be used as antimicrobial coating materials to preserve the post-harvest quality of fresh strawberries.
Collapse
Affiliation(s)
| | - Beatriz Regina Albiero
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil
| | | | | | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, GO, Brazil
| | - Stanislau Bogusz Junior
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil
| | | | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil
| |
Collapse
|
15
|
Isolation and characterization of a new strain of Bacillus amyloliquefaciens and its effect on strawberry preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022; 11:foods11152276. [PMID: 35954043 PMCID: PMC9368153 DOI: 10.3390/foods11152276] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional cheeses produced from raw milk exhibit a complex microbiota, characterized by a sequence of different microorganisms from milk coagulation and throughout maturation. Lactic acid bacteria (LAB) play an essential role in traditional cheese making, either as starter cultures that cause the rapid acidification of milk or as secondary microbiota that play an important role during cheese ripening. The enzymes produced by such dynamic LAB communities in raw milk are crucial, since they support proteolysis and lipolysis as chief drivers of flavor and texture of cheese. Recently, several LAB species have been characterized and used as probiotics that successfully promote human health. This review highlights the latest trends encompassing LAB acting in traditional raw milk cheeses (from cow, sheep, and goat milk), and their potential as probiotics and producers of bioactive compounds with health-promoting effects.
Collapse
|