1
|
Yang C, Duan G, Zhang C, Huang Y, Li S, Jiang S. Preparation and applications of magnetic nanocellulose composites: A review. Carbohydr Polym 2025; 354:123317. [PMID: 39978902 DOI: 10.1016/j.carbpol.2025.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Cellulose is the most abundant biomass material in the world. Magnetic nanoparticles can be used as reinforcing materials to give cellulose more functions due to their unique magnetism. According to the dispersion stability of nanocellulose, magnetic nanocellulose is divided into homogeneous preparation and heterogeneous preparation. In addition, the directional arrangement of nanocellulose by external magnetic field is also a way of cellulose functionalization. The current preparation of magnetic nanocellulose is mainly based on heterogeneous preparation. Magnetic nanofiber cellulose has great application potential in the field of biomedicine and sewage purification due to its special magnetic properties. It can also be applied to sensors, food packaging and other fields. In this paper, the preparation methods of magnetic nanocellulose and its physical magnetism are introduced. Then, the application of magnetic nanocellulose in different fields is reviewed. Finally, the current challenges of magnetic nanocellulose are summarized and the future development trend is prospected.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Cao L, Li J, Song Y, Shao P, Wang Y, Song H, Zhang R, Liu J, Meng Y, Wu L, Kong F, Guo X. Fortification of soluble soybean polysaccharide edible films with licorice root extract for nut preservation. Int J Biol Macromol 2025; 304:140986. [PMID: 39952527 DOI: 10.1016/j.ijbiomac.2025.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
In order to improve the poor mechanical properties and strong hydrophilicity of soluble soybean polysaccharide (SSPS) based films, licorice residue extract (LE) was introduced into the film-forming matrix. In this study, the effect of the amount of LE on the microstructure, physical and functional performances of the SSPS-based films, and its antioxidant activity and practical application in delaying the oxidation of oil-fried peanuts were investigated. The results showed that the compounding of LE increased the tensile strength (TS) by 4.39 times, decreased the WVP to 62 %, and increased the contact angle by 17.77 %, respectively. FTIR and SEM analyses verified the formation of intermolecular hydrogen bonds among LE, glycerol and SSPS. Furthermore, radical scavenging activity experiments proved that the films possessed a superior capacity to scavenge DPPH and ABTS•+ radicals up to 63.51 % and 93.10 % respectively, when the LE dosage was at 10 %. It is worth noting the shelf life of oil-fried peanut was extended by about 3.25 d at 60 °C (~65 d at 20 °C) with the packaging of SSS-LE8 film. The preparation of SSPS-LEx film could promote the development of biomass-based packaging materials and their preservation applications in nuts and other products.
Collapse
Affiliation(s)
- Lele Cao
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China.
| | - Jie Li
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Yuqi Song
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Pengfei Shao
- Shandong Zhongkeejiao Times Biotechnology Co., LTD, Gaotang 252800, PR China
| | - Yanping Wang
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Haiqing Song
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Rui Zhang
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Jiayi Liu
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Yuzhe Meng
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Lin Wu
- Shandong Juyuan Biotechnology Co., LTD, Yanggu 252300, PR China
| | - Feng Kong
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Xingfeng Guo
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China.
| |
Collapse
|
3
|
Oliveira JPD, Silva IBD, Costa JDSS, Oliveira JSD, Oliveira EL, Coutinho ML, Almeida MEFD, Landim LB, Silva NMCD, Oliveira CPD. Bibliometric study and potential applications in the development of starch films with nanocellulose: A perspective from 2019 to 2023. Int J Biol Macromol 2024; 277:133828. [PMID: 39084985 DOI: 10.1016/j.ijbiomac.2024.133828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
This study aimed to perform a bibliometric analysis of starch films with nanocellulose, using the Scopus database and VOSviewer and Bibliometrix software. A total of 258 documents were identified between 2019 and 2023, reflecting a growing interest in research, particularly in journals such as the International Journal of Biological Macromolecules, Polymers, and Carbohydrate Polymers. The most common terms were "starch" (349 occurrences), "cellulose" (207), and "tensile strength" (175). China (58 articles), Brazil (38), and India (33) led scientific production, with authors like Ilyas (13 articles) and Sapuan (10) at the forefront. Approximately 41.7 % of the studies used corn starch. The analysis revealed that 66 % of the studies investigated films with cellulose nanofibrils (CNF), 32 % with cellulose nanocrystals (CNC), and 2 % with bacterial nanocellulose (CB). The majority of studies (94.1 %) used the casting method for film production. Additionally, 35.44 % focused on reinforcing films with nanocellulose, while 7 % developed blends with other biopolymers. About 59.44 % examined the performance of starch films for food packaging, 11.25 % explored practical applications in various foods. Furthermore, 7.94 % incorporated active agents to improve antioxidant and antimicrobial properties, 1.30 % investigated active packaging. Moreover, 2.36 % explored the use of films in materials engineering, and 2.36 % explored biomedical potential. Only 0.40 % evaluated the impact of films on wastewater treatment. The analysis highlights the potential of starch films with nanocellulose, demonstrating their diverse applications and the growing interest in the field.
Collapse
Affiliation(s)
- Jocilane Pereira de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil.
| | - Isaac Borges da Silva
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Jéssica Santos de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Esaul Lucas Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Mateus Lima Coutinho
- Department of Chemistry, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Lucas Brito Landim
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | | |
Collapse
|
4
|
Wang L, Li D, Ye L, Zhi C, Zhang T, Miao M. Starch-based biodegradable composites: Effects of in-situ re-extrusion on structure and performance. Int J Biol Macromol 2024; 266:130869. [PMID: 38493822 DOI: 10.1016/j.ijbiomac.2024.130869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
In this study, starch-based biodegradable composites (SDC) were prepared by extruding using thermoplastic starch (TPS, 65%wt), polylactic acid (PLA, 30%wt) and poly (butylene adipate co-terephthalate) (PBAT, 5%wt). Structure and properties of the SDC were compared by performing 1-, 2-, 3-times extrusion. The results show that in-situ re-extrusion refines the TPS in composites and reduces the size of the phase. As the number of extrusions increases, the ester bond of composites at 868 cm-1 disappears, the crystallinity increases, and the thermal stability decreases. Among the three types of composites, the mechanical properties and hydrophobic properties of the material obtained by the 2-times are the most outstanding. Compared with SDC, the elongation at break and Young's modulus of SDC-2 are significantly increased, with an increase of 8.01 % and 1.28 % in the machine direction and an increase of 11.02 % and 1.79 % in the transverse direction respectively. Additionally, water contact angle range of SDC-2 from 98.7° to 101.7°. Therefore, SDC prepared by 2-times in-situ re-extrusion has the best film properties and is an ideal packaging material. This study presents a novel method for fabricating starch-degradable composite films by in-situ re-extrusion, providing new insights into the development of starch packaging materials.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dexiang Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lei Ye
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Chaohui Zhi
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
5
|
Palanisamy S, Selvaraju GD, Selvakesavan RK, Venkatachalam S, Bharathi D, Lee J. Unlocking sustainable solutions: Nanocellulose innovations for enhancing the shelf life of fruits and vegetables - A comprehensive review. Int J Biol Macromol 2024; 261:129592. [PMID: 38272412 DOI: 10.1016/j.ijbiomac.2024.129592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Regarding food security and waste reduction, preserving fruits and vegetables is a vital problem. This comprehensive study examines the innovative potential of coatings and packaging made of nanocellulose to extend the shelf life of perishable foods. The distinctive merits of nanocellulose, which is prepared from renewable sources, include exceptional gas barrier performance, moisture retention, and antibacterial activity. As a result of these merits, it is a good option for reducing food spoilage factors such as oxidation, desiccation, and microbiological contamination. Nanocellulose not only enhances food preservation but also complies with industry-wide environmental objectives. This review explores the many facets of nanocellulose technology, from its essential characteristics to its use in the preservation of fruits and vegetables. Furthermore, it deals with vital issues including scalability, cost-effectiveness, and regulatory constraints. While the use of nanocellulose in food preservation offers fascinating potential, it also wants to be cautiously careful to assure affordability, effectiveness, and safety. To fully use the potential of nanocellulose and advance the sustainability plan in the food business, collaboration between scientists, regulatory bodies, and industry stakeholders is important as we stand on the cusp of a revolutionary era in food preservation.
Collapse
Affiliation(s)
- Senthilkumar Palanisamy
- School of Biotechnology, Dr. G R Damodaran College of Science, Coimbatore, Tamilnadu, India.
| | - Gayathri Devi Selvaraju
- Department of Biotechnology, KIT - Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
| | | | | | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Xu Y, Wu Z, Li A, Chen N, Rao J, Zeng Q. Nanocellulose Composite Films in Food Packaging Materials: A Review. Polymers (Basel) 2024; 16:423. [PMID: 38337312 DOI: 10.3390/polym16030423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Owing to the environmental pollution caused by petroleum-based packaging materials, there is an imminent need to develop novel food packaging materials. Nanocellulose, which is a one-dimensional structure, has excellent physical and chemical properties, such as renewability, degradability, sound mechanical properties, and good biocompatibility, indicating promising applications in modern industry, particularly in food packaging. This article introduces nanocellulose, followed by its extraction methods and the preparation of relevant composite films. Meanwhile, the performances of nanocellulose composite films in improving the mechanical, barrier (oxygen, water vapor, ultraviolet) and thermal properties of food packaging materials and the development of biodegradable or edible packaging materials in the food industry are elaborated. In addition, the excellent performances of nanocellulose composites for the packaging and preservation of various food categories are outlined. This study provides a theoretical framework for the development and utilization of nanocellulose composite films in the food packaging industry.
Collapse
Affiliation(s)
- Yanting Xu
- Postgraduate Department, Minjiang University, No. 200, Xiyuangong Road, Fuzhou 350108, China
| | - Zhenzeng Wu
- The College of Ecology and Resource Engineering, Wuyi University, No. 16, Wuyi Avenue, Wuyishan 354300, China
| | - Ao Li
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Nairong Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Jiuping Rao
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Qinzhi Zeng
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| |
Collapse
|
7
|
Huang X, Wang F, Hu W, Zou Z, Tang Q, Li H, Xu L. Smart packaging films based on corn starch/polyvinyl alcohol containing nano SIM-1 for monitoring food freshness. Int J Biol Macromol 2024; 256:128373. [PMID: 38000590 DOI: 10.1016/j.ijbiomac.2023.128373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
There is at present an acute need for the construction of biopolymer-based smart packaging material that can be applied for the real-time visual monitoring of food freshness. Herein, a nano-sized substituted imidazolate material (SIM-1) with ammonia-sensitive and antibacterial ability was effectively manufactured and then anchored within corn starch/polyvinyl alcohol (CS/PVA) blend to construct biopolymeric smart active packaging material. The structure, physical and functional performances of CS/PVA-based films with different content of SIM-1 (0.5, 1.0 and 2.0 wt% on CS/PVA basis) were then explored in detail. Results revealed that the incorporated SIM-1 nanocrystals were equally anchored within the CS/PVA matrix owing to the establishment of potent hydrogen-bonding interactions, which produced an obvious improvement in the compatibility of CS/PVA blend film, as well as its mechanical strength, water/oxygen barrier and UV-screening performances. The constructed CS/PVA/SIM-1 blend films further demonstrated superior long-term color stability property, ammonia-sensitive and antibacterial functions. Furthermore, the CS/PVA/SIM-1 blend films were utilized for effectively monitoring the deterioration of shrimp via observable color alteration. The above findings suggested the potential applications of CS/PVA/SIM-1 blend films in smart active packaging.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Fangfang Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Wenkai Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Lin Xu
- Biomaterials R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, PR China.
| |
Collapse
|
8
|
Baniasadi H, Madani Z, Mohan M, Vaara M, Lipponen S, Vapaavuori J, Seppälä JV. Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48584-48600. [PMID: 37787649 PMCID: PMC10591286 DOI: 10.1021/acsami.3c08774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
This study introduces the development of a thermally responsive shape-morphing fabric using low-melting-point polyamide shape memory actuators. To facilitate the blending of biomaterials, we report the synthesis and characterization of a biopolyamide with a relatively low melting point. Additionally, we present a straightforward and solvent-free method for the compatibilization of starch particles with the synthesized biopolyamide, aiming to enhance the sustainability of polyamide and customize the actuation temperature. Subsequently, homogeneous dispersion of up to 70 wt % compatibilized starch particles into the matrix is achieved. The resulting composites exhibit excellent mechanical properties comparable to those reported for soft and tough materials, making them well suited for textile integration. Furthermore, cyclic thermomechanical tests were conducted to evaluate the shape memory and shape recovery of both plain polyamide and composites. The results confirmed their remarkable shape recovery properties. To demonstrate the potential application of biocomposites in textiles, a heat-responsive fabric was created using thermoresponsive shape memory polymer actuators composed of a biocomposite containing 50 wt % compatibilized starch. This fabric demonstrates the ability to repeatedly undergo significant heat-induced deformations by opening and closing pores, thereby exposing hidden functionalities through heat stimulation. This innovative approach provides a convenient pathway for designing heat-responsive textiles, adding value to state-of-the-art smart textiles.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Zahra Madani
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Mithila Mohan
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Maija Vaara
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Sami Lipponen
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jaana Vapaavuori
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jukka V. Seppälä
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
9
|
Gumber S, Kanwar S, Mazumder K. Properties and antimicrobial activity of wheat-straw nanocellulose-arabinoxylan acetate composite films incorporated with silver nanoparticles. Int J Biol Macromol 2023; 246:125480. [PMID: 37348584 DOI: 10.1016/j.ijbiomac.2023.125480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
In the current study, the novel eco-friendly and biodegradable nanocomposite films (NC-AXAc) were prepared from wheat-straw NC and AXAc with improved functional properties. NC derived from wheat-straw cellulose has a fibre-like structure with mean-particle size in the 340-520 nm range. AX derived AXAc was prepared with Degree of Substitution (DS) in the range of 1.85-1.89. Furthermore, to enhance antimicrobial properties, AgNPs were prepared via the reduction method using NaBH4 and added into the concentration of 4 × 10-4M into the emulsion forming composite films. The silver nanoparticles (AgNPs) incorporated in the composite exhibited an average size of 40-70 nm and a surface plasmon resonance (SPR) absorption peak at 395 nm. The high-resolution XPS spectrum of the Ag element showed that the two peaks at around 374.2 eV (Ag3d3/2) and 368.2 eV (Ag3d5/2) clearly revealed the metallic Ag existence in composite films. SEM analysis revealed the coarse and heterogeneous morphology of AgNPs incorporated films. The AgNPs incorporated composites exhibited good mechanical, thermal stability, and antimicrobial activity. The results suggested that AgNPs incorporated NC-AXAc composites could be used as a potential biodegradable antimicrobial nanocomposite in active food packaging systems for shelf-life extension of perishable commodities.
Collapse
Affiliation(s)
- Sakshi Gumber
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121 001, Haryana (NCR Delhi), India
| | - Swati Kanwar
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India.
| |
Collapse
|
10
|
Kishore A, Mithul Aravind S, Singh A. Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Aigaje E, Riofrio A, Baykara H. Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review. Polymers (Basel) 2023; 15:polym15051219. [PMID: 36904460 PMCID: PMC10006885 DOI: 10.3390/polym15051219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The increasing concerns about plastic pollution and climate change have encouraged research into bioderived and biodegradable materials. Much attention has been focused on nanocellulose due to its abundance, biodegradability, and excellent mechanical properties. Nanocellulose-based biocomposites are a viable option to fabricate functional and sustainable materials for important engineering applications. This review addresses the most recent advances in composites, with a particular focus on biopolymer matrices such as starch, chitosan, polylactic acid, and polyvinyl alcohol. Additionally, the effects of the processing methods, the influence of additives, and the outturn of nanocellulose surface modification on the biocomposite's properties are outlined in detail. Moreover, the change in the composites' morphological, mechanical, and other physiochemical properties due to reinforcement loading is reviewed. Further, mechanical strength, thermal resistance, and the oxygen-water vapor barrier properties are enhanced with the incorporation of nanocellulose into biopolymer matrices. Furthermore, the life cycle assessment of nanocellulose and composites were considered to analyze their environmental profile. The sustainability of this alternative material is compared through different preparation routes and options.
Collapse
Affiliation(s)
- Elizabeth Aigaje
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
- Correspondence: (E.A.); (H.B.)
| | - Ariel Riofrio
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
| | - Haci Baykara
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090506, Ecuador
- Correspondence: (E.A.); (H.B.)
| |
Collapse
|
12
|
Li L, Wang W, Sun J, Chen Z, Ma Q, Ke H, Yang J. Improved properties of polyvinyl alcohol films blended with aligned nanocellulose particles induced by a magnetic field. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Nanocellulose: A Fundamental Material for Science and Technology Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228032. [PMID: 36432134 PMCID: PMC9694617 DOI: 10.3390/molecules27228032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Recently, considerable interest has been focused on developing greener and biodegradable materials due to growing environmental concerns. Owing to their low cost, biodegradability, and good mechanical properties, plant fibers have substituted synthetic fibers in the preparation of composites. However, the poor interfacial adhesion due to the hydrophilic nature and high-water absorption limits the use of plant fibers as a reinforcing agent in polymer matrices. The hydrophilic nature of the plant fibers can be overcome by chemical treatments. Cellulose the most abundant natural polymer obtained from sources such as plants, wood, and bacteria has gained wider attention these days. Different methods, such as mechanical, chemical, and chemical treatments in combination with mechanical treatments, have been adopted by researchers for the extraction of cellulose from plants, bacteria, algae, etc. Cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and microcrystalline cellulose (MCC) have been extracted and used for different applications such as food packaging, water purification, drug delivery, and in composites. In this review, updated information on the methods of isolation of nanocellulose, classification, characterization, and application of nanocellulose has been highlighted. The characteristics and the current status of cellulose-based fiber-reinforced polymer composites in the industry have also been discussed in detail.
Collapse
|
14
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|