1
|
Zhang X, Jiang X, Deng H, Yu G, Yang N, Al Mamun A, Lian F, Chen T, Zhang H, Lai Y, Huang J, Xu S, Cai F, Li X, Zhou K, Xiao J. Engineering exosomes from fibroblast growth factor 1 pre-conditioned adipose-derived stem cells promote ischemic skin flaps survival by activating autophagy. Mater Today Bio 2024; 29:101314. [PMID: 39534677 PMCID: PMC11554927 DOI: 10.1016/j.mtbio.2024.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background The recovery of ischemic skin flaps is a major concern in clinical settings. The purpose of this study is to evaluate the effects of engineered exosomes derived from FGF1 pre-conditioned adipose-derived stem cells (FEXO) on ischemic skin flaps. Method 6 patients who suffered from pressure ulcer at stage 4 and underwent skin flaps surgery were recruited in this study to screen the potential targets of ischemic skin flaps in FGF family. FGF1 was co-incubated with adipose stem cells, and ultracentrifugation was applied to extract FEXO. Transcriptome sequencing analysis was used to determine the most effective microRNA in FEXO. Animal skin flaps models were established in our study to verify the effects of FEXO. Immunofluorescence (IF), western blotting (WB) and other molecular strategy were used to evaluate the effects and mechanism of FEXO. Results FGF1 was expected to be the therapeutic and diagnostic target of ischemic skin flaps, but there is still some deficiency in rescuing skin flaps. FEXO significantly improved the viability of RPSFs and endothelial cells by inhibiting oxidative stress and alleviating apoptosis and pyroptosis through augmenting autophagy flux. In addition, FEXO inhibited the over-activated inflammation responses. Transcriptome sequencing analysis showed that miR-183-5p was significantly elevated in FEXO, and inhibiting miR-183-5p resulted in impaired protective effects of autophagy in skin flaps. The exosomal miR-183-5p markedly enhanced cell viability, inhibited oxidative stress and alleviated apoptosis and pyroptosis in endothelial cells by targeting GPR137 through Pi3k/Akt/mTOR pathway, indicating that GPR137 could also be a therapeutic target of ischemic skin flap. It was also notabale that FGF1 increased the number of exosomes by upregulating VAMP3, which may be a promising strategy for clinical translation. Conclusion FEXO markedly improved the survivial rate of ischemic skin flaps through miR-183-5p/GPR137/Pi3k/Akt/mTOR axis, which would be a promising strategy to rescue ischemic skin flaps.
Collapse
Affiliation(s)
- Xuanlong Zhang
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoqiong Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- College of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Huiming Deng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Feifei Lian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianling Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Haijuan Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiayi Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shi Xu
- College of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fuman Cai
- College of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaokun Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
2
|
Guo M, Chu Y, Zhu W, Sun M, Lv Q, Tang R, Jiang X, Zhao J, Tang Z, Ma T. Metabolomics combined with network pharmacology to investigate the pharmacodynamic components and potential mechanisms of the spermatogenic function of the Youjing granule. Biomed Chromatogr 2024; 38:e5967. [PMID: 39189519 DOI: 10.1002/bmc.5967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/28/2024]
Abstract
This study aims to identify potential efficacy-related biomarkers and investigate the mechanism of Youjing granule (YG) in improving spermatogenic function in rats based on metabolomics combined with network pharmacology. We obtained YG-containing serum from Sprague-Dawley rats, compared it with control group serum and analyzed it using gas chromatography-mass spectroscopy to identify potential biomarkers and investigate the mechanism of YG in improving spermatogenic function in rats. Six important differential biomarkers, comprising putrescine, amidine, arginine, d-fructose-6-phosphate, l-proline and galactose, were identified in the YG-containing serum and then used to explore the potential mechanisms. The ultra-high-performance liquid chromatography-high-resolution mass spectrometry technology was adopted for the rapid separation, identification and analysis of chemical components of YG in blood. A total of 69 detected chromatographic peaks were revealed. The binding energy between core compounds and key proteins is low, among which dipsacoside B is the best. The outcomes suggest that YG may improve spermatogenic function in rats by facilitating the development of spermatogonial stem cells, counteracting oxidative stress and controlling cellular apoptosis. Youjing granule may also affect the energy required for sperm production or influence sperm growth and maturation.
Collapse
Affiliation(s)
- Mingxin Guo
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Department of Pharmacy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yujiao Chu
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Wenjiao Zhu
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Miaomiao Sun
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Qiang Lv
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Ruijie Tang
- School of Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuping Jiang
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Jiahao Zhao
- Department of Pharmacy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Zhian Tang
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Tieliang Ma
- Department of Traditional Chinese Medicine, The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| |
Collapse
|
3
|
Wang Q, Wang J, Zhang X, Liu Y, Han F, Xiang X, Guo Y, Huang ZW. Increased Expression of PHGDH Under High-Selenium Stress In Vivo. Biol Trace Elem Res 2024; 202:5145-5156. [PMID: 38277119 DOI: 10.1007/s12011-024-04079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
The purpose of this study is to explore the glycolytic remodeling under high-selenium (Se) stress. Three groups of male C57BL/6J mice were fed on diets with different Se contents (0.03, 0.15, and 0.30 mg Se/kg). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were measured at the third month. Mice were killed at the fourth month. Plasma, liver, and muscle tissues were fetched for biochemistry and Se analysis. The expressions of insulin signaling pathway (PI3K-AKT-mTOR), glutathione peroxidase 1 (GPX1), selenoprotein N (SELENON), 3-phosphoglycerate dehydrogenase (PHGDH), serine hydroxymethyltransferases 1 (SHMT1), 5,10-methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MS) were analyzed by western blotting (WB) in liver and muscle tissues. The results of GTT and ITT showed that glucose tolerance and insulin tolerance were both abnormal in the 0.03 mg Se/kg and 0.3 mg Se/kg groups. Se concentrations in plasma, liver, and muscle of 0.03 mg Se/kg group were significantly lower than that of 0.15 mg Se/kg and 0.30 mg Se/kg groups (p < 0.05 or p < 0.01). The expressions of P-Akt (Thr-308) in muscle (p < 0.05) and PI3K and mTOR in liver (p < 0.001) of 0.30 mg Se/kg group were downregulated. The expressions of GPX1 in liver and muscle (p < 0.05 and p < 0.001), SELENON in muscle (p < 0.05), PHGDH in liver and muscle (p < 0.05), and SHMT1 (p < 0.05), MTHFR (p < 0.001), and MS (p < 0.001) in muscle of 0.3 mg Se/kg group were upregulated. The de novo serine synthesis pathway (SSP) was found to be activated in liver and muscle tissues of mice with a high-Se diet for the first time.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Jianrong Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Xue Zhang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Xuesong Xiang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen-Wu Huang
- The Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, China.
| |
Collapse
|
4
|
Song X, Fan C, Wei C, Yu W, Tang J, Ma F, Chen Y, Wu B. Mitochondria fission accentuates oxidative stress in hyperglycemia-induced H9c2 cardiomyoblasts in vitro by regulating fatty acid oxidation. Cell Biol Int 2024; 48:1378-1391. [PMID: 38922770 DOI: 10.1002/cbin.12204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Oxidative stress plays a pivotal role in the development of diabetic cardiomyopathy (DCM). Previous studies have revealed that inhibition of mitochondrial fission suppressed oxidative stress and alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. However, no research has confirmed whether mitochondria fission accentuates hyperglycemia-induced cardiomyoblast oxidative stress through regulating fatty acid oxidation (FAO). We used H9c2 cardiomyoblasts exposed to high glucose (HG) 33 mM to simulate DCM in vitro. Excessive mitochondrial fission, poor cell viability, and lipid accumulation were observed in hyperglycemia-induced H9c2 cardiomyoblasts. Also, the cells were led to oxidative stress injury, lower adenosine triphosphate (ATP) levels, and apoptosis. Dynamin-related protein 1 (Drp1) short interfering RNA (siRNA) decreased targeted marker expression, inhibited mitochondrial fragmentation and lipid accumulation, suppressed oxidative stress, reduced cardiomyoblast apoptosis, and improved cell viability and ATP levels in HG-exposed H9c2 cardiomyoblasts, but not in carnitine palmitoyltransferase 1 (CPT1) inhibitor etomoxir treatment cells. We also found subcellular localization of CPT1 on the mitochondrial membrane, FAO, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) were suppressed after exposure to HG treatment, whereas Drp1 siRNA normalized mitochondrial CPT1, FAO, and NADPH. However, the blockade of FAO with etomoxir abolished the above effects of Drp1 siRNA in hyperglycemia-induced H9c2 cardiomyoblasts. The preservation of mitochondrial function through the Drp1/CPT1/FAO pathway is the potential mechanism of inhibited mitochondria fission in attenuating oxidative stress injury of hyperglycemia-induced H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Xiaogang Song
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
- Department of Cardiology, Xi'an Central Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chongxi Fan
- Department of Gastroenterology, Air Force Medical Center, Beijing, China
| | - Chao Wei
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wuhan Yu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jichao Tang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Feng Ma
- Department of Cardiology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yongqing Chen
- Department of Cardiology, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Bing Wu
- Department of Geriatrics, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Kabir E, Islam J, Shila TT, Beauty SA, Sadi J, Gofur MR, Islam F, Hossain S, Nikkon F, Hossain K, Saud ZA. Ameliorating effects of Clerodendrum viscosum leaves on lead-induced hepatotoxicity. Food Sci Nutr 2024; 12:6472-6481. [PMID: 39554341 PMCID: PMC11561829 DOI: 10.1002/fsn3.4285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
Lead (Pb), a common toxicant is ubiquitously present in the environment. Chronic Pb exposure affects almost every organ system of human body including liver. Clerodendrum viscosum is a medicinal plant and its leaves are known to have hepatoprotective, anti-inflammatory, and anti-hyperglycemic activities. However, the protective effect of C. viscosum leaves against Pb-induced hepatotoxicity is yet to be studied. Therefore, this study was designed to assess the protective effect of the aqueous extract of C. viscosum leaf (Cle) against Pb-induced hepatotoxicity in experimental mice. Pb-acetate was given to Pb and Pb + Cle groups interperitoneally, and Cle was supplemented to Cle and Pb + Cle groups by oral gavage. Serum biomarkers of liver function-butyrylcholinesterase (BChE), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine transaminase (ALT), antioxidant enzyme activities in hepatic tissue-superoxide dismutase (SOD), reduced glutathione reductase (rGR) and catalase (CAT), levels of transcription factor-nuclear factor erythroid 2-related factor 2 (Nrf2), and inflammatory marker-interleukin-6 (IL-6) were analyzed. Additionally, histological analyses of hepatic tissues of all groups of experimental mice were performed. Pb-treatment significantly increased ALP, AST, and ALT activities and decreased BChE activity compared to control mice. The antioxidant enzyme (SOD, rGR, and CAT) activities and expression of Nrf2 level were significantly (p < .05) decreased, while IL-6 level was significantly (p < .05) increased in the hepatic tissue homogenates of Pb-treated mice compared to the control group. Furthermore, histological examination revealed the disruption of hepatic tissue integrity in Pb-treated mice. Notably, supplementation of Cle provided significant protection against the changes in the activities of liver function biomarkers and antioxidant enzymes, levels of Nrf2 and IL-6, and disruption of hepatic tissue by Pb. Taken together the present study suggests that Cle ameliorates the hepatic toxicity caused by Pb.
Collapse
Affiliation(s)
- Ehsanul Kabir
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Tasnim Tabassum Shila
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Sharmin Akter Beauty
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Junayed Sadi
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Md. Royhan Gofur
- Department of Veterinary and Animal SciencesRajshahi UniversityRajshahiBangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Khaled Hossain
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular BiologyRajshahi UniversityRajshahiBangladesh
| |
Collapse
|
6
|
Piao MJ, Kang KA, Fernando PDSM, Herath HMUL, Hyun JW. Silver nanoparticle-induced cell damage via impaired mtROS-JNK/MnSOD signaling pathway. Toxicol Mech Methods 2024; 34:803-812. [PMID: 38736318 DOI: 10.1080/15376516.2024.2350595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
This study investigated the mechanism of silver nanoparticle (AgNP) cytotoxicity from a mitochondrial perspective. The effect of AgNP on manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant enzyme, against oxidative stress has not been studied in detail. We demonstrated that AgNP decreased MnSOD mRNA level, protein expression, and activity in human Chang liver cells in a time-dependent manner. AgNP induced the production of mitochondrial reactive oxygen species (mtROS), particularly superoxide anion. AgNP was found to increase mitochondrial calcium level and disrupt mitochondrial function, leading to reduced ATP level, succinate dehydrogenase activity, and mitochondrial permeability. AgNP induced cytochrome c release from the mitochondria into the cytoplasm, attenuated the expression of the anti-apoptotic proteins phospho Bcl-2 and Mcl-1, and induced the expression of the pro-apoptotic proteins Bim and Bax. In addition, c-Jun N-terminal kinase (JNK) phosphorylation was significantly increased by AgNP. Treatment with elamipretide (a mitochondria-targeted antioxidant) and SP600125 (a JNK inhibitor) showed the involvement of MnSOD and JNK in these processes. These results indicated that AgNP damaged human Chang liver cells by destroying mitochondrial function through the accumulation of mtROS.
Collapse
Affiliation(s)
- Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
7
|
Ge M, Zhang L, Du J, Jin H, Lv B, Huang Y. Sulfenylation of ERK1/2: A novel mechanism for SO 2-mediated inhibition of cardiac fibroblast proliferation. Heliyon 2024; 10:e34260. [PMID: 39092251 PMCID: PMC11292236 DOI: 10.1016/j.heliyon.2024.e34260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Background Endogenous sulfur dioxide (SO2) plays a crucial role in protecting heart from myocardial fibrosis by inhibiting the excessive growth of cardiac fibroblasts. This study aimed to investigate potential mechanisms by which SO2 suppressed myocardial fibrosis. Methods and results Mouse model of angiotensin II (Ang II)-induced cardiac fibrosis and cell model of Ang II-stimulated cardiac fibroblast proliferation were employed. Our findings discovered that SO2 mitigated the aberrant phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by Ang II, leading to a reduction of fibroblast proliferation. Mechanistically, for the first time, we found that SO2 sulfenylated ERK1/2, and inhibited ERK1/2 phosphorylation and cardiac fibroblast proliferation, while a sulfhydryl reducing agent dithiothreitol (DTT) reversed the above effects of SO2. Furthermore, mutant ERK1C183S (cysteine 183 to serine) abolished the sulfenylation of ERK by SO2, thereby preventing the inhibitory effects of SO2 on ERK1 phosphorylation and cardiac fibroblast proliferation. Conclusion Our study suggested that SO2 inhibited cardiac fibroblast proliferation by sulfenylating ERK1/2 and subsequently suppressing ERK1/2 phosphorylation. These new findings might enhance the understanding of the mechanisms underlying myocardial fibrosis and emphasize the potential of SO2 as a novel therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Mei Ge
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Lulu Zhang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Junbao Du
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Boyang Lv
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Yaqian Huang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
8
|
Tan L, She H, Wang Y, Du Y, Zhang J, Du Y, Wu Y, Chen W, Huang B, Long D, Peng X, Li Q, Mao Q, Li T, Hu Y. The New Nano-Resuscitation Solution (TPP-MR) Attenuated Myocardial Injury in Hemorrhagic Shock Rats by Inhibiting Ferroptosis. Int J Nanomedicine 2024; 19:7567-7583. [PMID: 39081897 PMCID: PMC11287375 DOI: 10.2147/ijn.s463121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Background Hemorrhagic shock was a leading cause of death worldwide, with myocardial injury being a primary affected organ. As commonly used solutions in fluid resuscitation, acetated Ringer's (AR) and Lactate Ringer's solution (LR) were far from perfect for their adverse reactions such as lactic acidosis and electrolyte imbalances. In previous studies, TPP@PAMAM-MR (TPP-MR), a novel nanocrystal resuscitation fluid has been found to protect against myocardial injury in septic rats. However, its role in myocardial injury in rats with hemorrhagic shock and underlying mechanism is unclear. Methods The hemorrhagic shock rats and hypoxia-treated cardiomyocytes (H9C2) were utilized to investigate the impact of TPP-MR on cardiac function, mitochondrial function, and lipid peroxidation. The expressions of ferritin-related proteins glutathione peroxidase 4 (GPX4), Acyl CoA Synthase Long Chain Family Member 4 (ACSL4), and Cyclooxygenase-2(COX2) were analyzed through Western blotting to explore the mechanism of TPP-MR on hemorrhagic myocardial injury. Results TPP-MR, a novel nanocrystalline resuscitation fluid, was synthesized using TPP@PAMAM@MA as a substitute for L-malic acid. We found that TPP-MR resuscitation significantly reduced myocardial injury reflected by enhancing cardiac output, elevating mean arterial pressure (MAP), and improving perfusion. Moreover, TPP-MR substantially prolonged hemorrhagic shock rats' survival time and survival rate. Further investigations indicated that TPP-MR improved the mitochondrial function of myocardial cells, mitigated the production of oxidative stress agents (ROS) and increased the glutathione (GSH) content. Additionally, TPP-MR inhibited the expression of the ferroptosis-associated GPX4 protein, ACSL4 and COX2, thereby enhancing the antioxidant capacity. Conclusion The results showed that TPP-MR had a protective effect on myocardial injury in rats with hemorrhagic shock, and its mechanism might be related to improving the mitochondrial function of myocardial cells and inhibiting the process of ferroptosis.
Collapse
Affiliation(s)
- Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yi Wang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Wei Chen
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Bingqiang Huang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Duanyang Long
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
9
|
Wakle KS, Mokale SN, Sakle NS. Emerging perspectives: unraveling the anticancer potential of vitamin D 3. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2877-2933. [PMID: 37994947 DOI: 10.1007/s00210-023-02819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Vitamin D3, a fat-soluble vitamin known for its critical function in calcium homeostasis and bone health, is gaining interest for its anticancer properties. Observational studies have suggested a negative relationship between vitamin D levels and the incidence of some malignancies throughout the years, prompting substantial investigation to find its anticancer effects. The purpose of this comprehensive review is to investigate the diverse function of vitamin D3 in cancer prevention and therapy. We explored the molecular mechanism underlying its effects on cancer cells, which range from cell cycle control and death to angiogenesis and immune response modulation. Insights from in vitro and in vivo studies provide valuable evidence supporting its anticancer potential. Furthermore, we look at epidemiological and clinical studies that investigate the relationship between vitamin D3 levels and cancer risk or treatment results. Vitamin D3 supplementation's safety profile and cost-effectiveness increase its attractiveness as an adjuvant therapy in conjunction with traditional treatment regimens. Our critical review of the current literature provides an in-depth understanding of vitamin D3's anticancer effect, covering the obstacles and possibilities in realizing its promise for cancer prevention and therapy. The findings of this study might pave the way for the development of innovative treatment techniques that take use of the advantages of vitamin D3 to fight cancer and improve patient care. As research progresses, a better understanding of vitamin D3's anticancer processes will surely simplify its incorporation into personalized cancer care techniques, hence enhancing patient outcomes in the battle against cancer.
Collapse
Affiliation(s)
- Komal S Wakle
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, 431001, India
| | - Santosh N Mokale
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, 431001, India
| | - Nikhil S Sakle
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, 431001, India.
| |
Collapse
|
10
|
Gao JF, Dong YY, Jin X, Dai LJ, Wang JR, Zhang H. Identification and Verification of Ferroptosis-Related Genes in Keratoconus Using Bioinformatics Analysis. J Inflamm Res 2024; 17:2383-2397. [PMID: 38660574 PMCID: PMC11041983 DOI: 10.2147/jir.s455337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Keratoconus is a commonly progressive and blinding corneal disorder. Iron metabolism and oxidative stress play crucial roles in both keratoconus and ferroptosis. However, the association between keratoconus and ferroptosis is currently unclear. This study aimed to analyze and verify the role of ferroptosis-related genes (FRGs) in the pathogenesis of keratoconus through bioinformatics. Methods We first obtained keratoconus-related datasets and FRGs. Then, the differentially expressed FRGs (DE-FRGs) associated with keratoconus were screened through analysis, followed by analysis of their biological functions. Subsequently, the LASSO and SVM-RFE algorithms were used to screen for diagnostic biomarkers. GSEA was performed to explore the potential functions of the marker genes. Finally, the associations between these biomarkers and immune cells were analyzed. qRT‒PCR was used to detect the expression of these biomarkers in corneal tissues. Results A total of 39 DE-FRGs were screened, and functional enrichment analysis revealed that the DE-FRGs were closely related to apoptosis, oxidative stress, and the immune response. Then, using multiple algorithms, 6 diagnostic biomarkers were selected, and the ROC curve was used to verify their risk prediction ability. In addition, based on CIBERSORT analysis, alterations in the immune microenvironment of keratoconus patients might be associated with H19, GCH1, CHAC1, and CDKN1A. Finally, qRT‒PCR confirmed that the expression of H19 and CHAC1 was elevated in the keratoconus group. Conclusion This study identified 6 DE-FRGs, 4 of which were associated with immune infiltrating cells, and established a diagnostic model with predictive value for keratoconus.
Collapse
Affiliation(s)
- Jing-Fan Gao
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Yue-Yan Dong
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Jun Dai
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Jing-Rao Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| |
Collapse
|
11
|
Zhu N, Li T, Bai Y, Sun J, Guo J, Yuan H, Shan Z. Targeting myocardial inflammation: investigating the therapeutic potential of atrial natriuretic peptide in atrial fibrosis. Mol Biol Rep 2024; 51:506. [PMID: 38622341 PMCID: PMC11018689 DOI: 10.1007/s11033-024-09393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.
Collapse
Affiliation(s)
- Nana Zhu
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Tianlun Li
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Yili Bai
- Southern Medical Branch, Chinese PLA General Hospital, Beijing, China
| | - Jiao Sun
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Jianping Guo
- Department of Cardiovascular Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hongtao Yuan
- Department of Cardiovascular Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaoliang Shan
- Department of Cardiovascular Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
12
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
13
|
Ma A, Nan N, Shi Y, Wang J, Guo P, Liu W, Zhou G, Yu J, Zhou D, Yun DJ, Li Y, Xu ZY. Autophagy receptor OsNBR1 modulates salt stress tolerance in rice. PLANT CELL REPORTS 2023; 43:17. [PMID: 38145426 DOI: 10.1007/s00299-023-03111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 12/26/2023]
Abstract
KEY MESSAGE Autophagy receptor OsNBR1 modulates salt stress tolerance by affecting ROS accumulation in rice. The NBR1 (next to BRCA1 gene 1), as important selective receptors, whose functions have been reported in animals and plants. Although the function of NBR1 responses to abiotic stress has mostly been investigated in Arabidopsis thaliana, the role of NBR1 under salt stress conditions remains unclear in rice (Oryza sativa). In this study, by screening the previously generated activation-tagged line, we identified a mutant, activation tagging 10 (AC10), which exhibited salt stress-sensitive phenotypes. TAIL-PCR (thermal asymmetric interlaced PCR) showed that the AC10 line carried a loss-of-function mutation in the OsNBR1 gene. OsNBR1 was found to be a positive regulator of salt stress tolerance and was localized in aggregates. A loss-of-function mutation in OsNBR1 increased salt stress sensitivity, whereas overexpression of OsNBR1 enhanced salt stress resistance. The osnbr1 mutants showed higher ROS (reactive oxygen species) production, whereas the OsNBR1 overexpression (OsNBR1OE) lines showed lower ROS production, than Kitaake plants under normal and salt stress conditions. Furthermore, RNA-seq analysis revealed that expression of OsRBOH9 (respiratory burst oxidase homologue) was increased in osnbr1 mutants, resulting in increased ROS accumulation in osnbr1 mutants. Together our results established that OsNBR1 responds to salt stress by influencing accumulation of ROS rather than by regulating transport of Na+ and K+ in rice.
Collapse
Affiliation(s)
- Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Yuejie Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wenxin Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dongxiao Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Yu Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
14
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
15
|
Zhang J, Guo C. Current progress of ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1259219. [PMID: 37942067 PMCID: PMC10628442 DOI: 10.3389/fcvm.2023.1259219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
Ferroptosis, a newly recognized form of nonapoptotic regulated cell death, is characterized by iron-dependent lipid peroxidation. Biological processes, such as iron metabolism, lipid peroxidation, and amino acid metabolism, are involved in the process of ferroptosis. However, the related molecular mechanism of ferroptosis has not yet been completely clarified, and specific and sensitive biomarkers for ferroptosis need to be explored. Recently, studies have revealed that ferroptosis probably causes or exacerbates the progress of cardiovascular diseases, and could be the potential therapeutic target for cardiovascular diseases. In this review, we summarize the molecular mechanisms regulating ferroptosis, inducers or inhibitors of ferroptosis, and the current progresses of ferroptosis in cardiovascular diseases. Furthermore, we discuss the emerging challenges and future perspectives, which may provide novel insights into the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Zhao H, Tang C, Wang M, Zhao H, Zhu Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front Immunol 2023; 14:1260839. [PMID: 37928554 PMCID: PMC10620966 DOI: 10.3389/fimmu.2023.1260839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. Due to the rise in the incidence rate of RA and the limitations of existing therapies, the search for new treatment strategies for RA has become a global focus. Ferroptosis is a novel programmed cell death characterized by iron-dependent lipid peroxidation, with distinct differences from apoptosis, autophagy, and necrosis. Under the conditions of iron accumulation and the glutathione peroxidase 4 (GPX4) activity loss, the lethal accumulation of lipid peroxide is the direct cause of ferroptosis. Ferroptosis mediates inflammation, oxidative stress, and lipid oxidative damage processes, and also participates in the occurrence and pathological progression of inflammatory joint diseases including RA. This review provides insight into the role and mechanism of ferroptosis in RA and discusses the potential and challenges of ferroptosis as a new therapeutic strategy for RA, with an effort to provide new targets for RA prevention and treatment.
Collapse
Affiliation(s)
- Hui Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Cheng Tang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Wang
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Hongfang Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
17
|
Ma Y, Zhang Q, Dai Z, Li J, Li W, Fu C, Wang Q, Yin W. Structural optimization and prospect of constructing hemoglobin oxygen carriers based on hemoglobin. Heliyon 2023; 9:e19430. [PMID: 37809714 PMCID: PMC10558499 DOI: 10.1016/j.heliyon.2023.e19430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
The current global shortage of organ resources, the imbalance in donor-recipient demand and the increasing number of high-risk donors make organ preservation a necessity to consider appropriate storage options. The current method of use often has risks such as blood group mismatch, short shelf life, and susceptibility. HBOCs have positive effects such as anti-apoptotic, anti-inflammatory, antioxidant and anti-proliferative, which have significant advantages in organ storage. Therefore, it is the common pursuit of researchers to design and synthesize HBOCs with safety, ideal oxygen-carrying capacity, easy storage, etc. that are widely applicable and optimal for different organs. There has been a recent advancement in understanding HBOCs mechanisms, which is discussed in this review.
Collapse
Affiliation(s)
- Yuexiang Ma
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qi Zhang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zheng Dai
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jing Li
- Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Wenxiu Li
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chuanqing Fu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
18
|
Shi X, Wang Y, Liu H, Han R. Targeting Hub Genes Involved in Muscle Injury Induced by Jumping Load Based on Transcriptomics. DNA Cell Biol 2023; 42:498-506. [PMID: 37339448 DOI: 10.1089/dna.2022.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The purpose of this study was to find hub genes that may play key roles in skeletal muscle injury induced by jumping load. Twelve female Sprague Dawley rats were divided into the normal control (NC) group and the jumping-induced muscle injury (JI) group. After 6 weeks of jumping, transmission electron microscopy, hematoxylin-eosin staining, transcriptomics sequencing and genes analysis, interaction network prediction of multiple proteins, real-time PCR detection, and Western blotting were performed on gastrocnemius muscles from NC and JI groups. As compared with NC rats, excessive jumping can result in notable structural damage and inflammatory infiltration in JI rats. A total of 112 differentially expressed genes were confirmed in NC rats versus JI rats, with 59 genes upregulated and 53 genes downregulated. Using the online String database, four hub genes in the transcriptional regulatory network were targeted, including FOS, EGR1, ATF3, and NR4A3. All expression levels of FOS, EGR1, ATF3, and NR4A3 mRNAs were decreased in JI rats compared with NC rats (p < 0.05 or p < 0.01). All expression levels of c-Fos, EGR1, ATF3, and NOR1 proteins were upregulated in JI rats (p < 0.01, p < 0.05, p > 0.05, and p < 0.01, respectively). Collectively, these findings indicate that FOS, EGR1, ATF3, and NR4A3 genes may be functionally important in jumping-induced muscle injury.
Collapse
Affiliation(s)
- Xiaolan Shi
- Wushu College, Henan University, Kaifeng, China
| | - Yijie Wang
- School of Physical Education and Sport, Henan University, Kaifeng, China
| | - Haitao Liu
- School of Physical Education and Sport, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, Henan University, Kaifeng, China
| | - Rui Han
- School of Physical Education and Sport, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Chen L, Zhong Y, Sun S, Yang Z, Hong H, Zou D, Song C, Li W, Leng H. HTRA1 from OVX rat osteoclasts causes detrimental effects on endplate chondrocytes through NF-κB. Heliyon 2023; 9:e17595. [PMID: 37416639 PMCID: PMC10320255 DOI: 10.1016/j.heliyon.2023.e17595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Endplate osteochondritis is considered one of the major causes of intervertebral disc degeneration (IVDD) and low back pain. Menopausal women have a higher rate of endplate cartilage degeneration than similarly aged men, but the related mechanisms are still unclear. Subchondral bone changes, mainly mediated by osteoblasts and osteoclasts, are considered an important reason for the degeneration of cartilage. This work explored the role of osteoclasts in endplate cartilage degeneration, as well as its underlying mechanisms. A rat ovariectomy (OVX) model was used to induce estrogen deficiency. Our experiments indicated that OVX significantly promoted osteoclastogenesis and anabolism and catabolism changes in endplate chondrocytes. OVX osteoclasts cause an imbalance between anabolism and catabolism in endplate chondrocytes, as shown by a decrease in anabolic markers such as Aggrecan and Collagen II, and an increase in catabolic markers such as a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinases (MMP13). Osteoclasts were also confirmed in this study to be able to secrete HtrA serine peptidase 1 (HTRA1), which resulted in increased catabolism in endplate chondrocytes through the NF-κB pathway under estrogen deficiency. This study demonstrated the involvement and mechanism of osteoclasts in the anabolism and catabolism changes of endplate cartilage under estrogen deficiency, and proposed a new strategy for the treatment of endplate osteochondritis and IVDD by targeting HTRA1.
Collapse
Affiliation(s)
- Longting Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yiming Zhong
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Shang Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zihuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Haofeng Hong
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Da Zou
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, China
| | - Chunli Song
- Beijing Key Lab of Spine Diseases, Beijing, 100191, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
20
|
Abdel-Monsef MM, Darwish DA, Zidan HA, Hamed AA, Ibrahim MA. Characterization, antimicrobial and antitumor activity of superoxide dismutase extracted from Egyptian honeybee venom (Apis mellifera lamarckii). J Genet Eng Biotechnol 2023; 21:21. [PMID: 36807019 PMCID: PMC9941395 DOI: 10.1186/s43141-023-00470-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/15/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Superoxide dismutase is an important antioxidative stress enzyme which is found in honeybee venom and has a wide pharmaceutical and medical applications. RESULTS We reported the purification and characterization of venom SOD from Egyptian honeybee Apis mellifera lamarckii and termed BVSOD. It was purified to homogeneity from the Egyptian honeybee venom. The purification procedures included crude extraction, DEAE-cellulose anion exchange column chromatography, and Sephacryl S-300 gel filtration column chromatography. The purified BVSOD is found to be homogeneous as investigated by native PAGE. It exhibited homodimeric structure with a molecular weight of native form of 32 kDa and subunits of 16.0 kDa. It displayed the maximum activity at pH 7.4. CuCl2, ZnCl2, and MgCl2 and elevated the activity of BVSOD, while CoCl2, FeCl2, and NiCl2 inhibited BVSOD activity. Potassium cyanide and hydrogen peroxide were most potent inhibitors for BVSOD activity suggesting that it is a Cu/Zn-SOD type. CONCLUSIONS The purified BVSOD is found to have antimicrobial and antitumor activities which can be used for various medical and clinical applications.
Collapse
Affiliation(s)
- Mohamed M. Abdel-Monsef
- grid.419725.c0000 0001 2151 8157Molecular Biology Department National Research Centre, Protium Research Laboratory, Dokki, Giza, Egypt
| | - Doaa A. Darwish
- grid.419725.c0000 0001 2151 8157Molecular Biology Department National Research Centre, Protium Research Laboratory, Dokki, Giza, Egypt
| | - Hind A. Zidan
- grid.418376.f0000 0004 1800 7673Agricultural Research Center, Plant Protection Research Institute, Giza, Egypt
| | - Ahmed A. Hamed
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mahmoud A. Ibrahim
- grid.419725.c0000 0001 2151 8157Molecular Biology Department National Research Centre, Protium Research Laboratory, Dokki, Giza, Egypt
| |
Collapse
|
21
|
Tang YY, Wang DC, Wang YQ, Huang AF, Xu WD. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol 2023; 13:1073971. [PMID: 36761171 PMCID: PMC9905447 DOI: 10.3389/fimmu.2022.1073971] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a primary metabolic sensor, and is expressed in different immune cells, such as macrophage, dendritic cell, neutrophil, T cell, and non-immune cells, for instance, synovial fibroblast, and islet β cell. HIF-1α signaling regulates cellular metabolism, triggering the release of inflammatory cytokines and inflammatory cells proliferation. It is known that microenvironment hypoxia, vascular proliferation, and impaired immunological balance are present in autoimmune diseases. To date, HIF-1α is recognized to be overexpressed in several inflammatory autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis, and function of HIF-1α is dysregulated in these diseases. In this review, we narrate the signaling pathway of HIF-1α and the possible immunopathological roles of HIF-1α in autoimmune diseases. The collected information will provide a theoretical basis for the familiarization and development of new clinical trials and treatment based on HIF-1α and inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Qiang Wang
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Wang-Dong Xu,
| |
Collapse
|
22
|
Adverse effects of pristine and aged polystyrene microplastics in mice and their Nrf2-mediated defense mechanisms with tissue specificity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39894-39906. [PMID: 36602732 DOI: 10.1007/s11356-022-24918-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Health hazards associated with microplastics (MPs) remain largely unknown, and the effects of aged MPs, one of their persistent forms, are poorly characterized. Male ICR mice were intratracheally instilled with 0.01 and 1 mg/day pristine and ultraviolet (UV)-aged polystyrene microplastics (PS and APS) with an average diameter of 4 - 5 μm daily for 1 week. UV irradiation caused the PS to have a rough surface, become fragmented, and increase their carbonyl groups. Both PS and APS caused structural damage to the mouse gut, liver, spleen, and testis. Inflammatory infiltration in liver, swollen and congested gut, and loose spleen globules, as well as the loose interstitium of the seminiferous tubules in testis were found in 1 mg/day APS group. Increases in serum alanine aminotransferase and immunoglobulin A levels in 1 mg/day APS group (p < 0.05) demonstrated that APS exposure could induce greater liver and spleen functional damage than PS. Meanwhile, triglyceride and total cholesterol levels in liver were enhanced in 1 mg/day APS group (p < 0.05). Superoxide dismutase and glutathione contents in 0.01 and 1 mg/day APS groups significantly decreased (p < 0.05), which suggesting that PS and APS could interfere with the antioxidant capacity in mice. Nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels in the PS and APS groups showed significant increases in the liver and testis (p < 0.05), and a significant decrease in the spleen (p < 0.05), which were analyzed to get a first survey for Nrf2/HO-1-mediated tissue-specific defense mechanisms. In conclusion, acute exposure to PS and APS induced potential metabolic disorders, and APS could produce more serious immune damage and reproductive toxicity. These findings provide new insights in health risk assessment of aged MPs.
Collapse
|
23
|
Cheng JJ, Ma XD, Ai GX, Yu QX, Chen XY, Yan F, Li YC, Xie JH, Su ZR, Xie QF. Palmatine Protects Against MSU-Induced Gouty Arthritis via Regulating the NF-κB/NLRP3 and Nrf2 Pathways. Drug Des Devel Ther 2022; 16:2119-2132. [PMID: 35812134 PMCID: PMC9259749 DOI: 10.2147/dddt.s356307] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Gouty arthritis could be triggered by the deposition of monosodium uric acid (MSU) crystals. Palmatine (PAL), a protoberberine alkaloid, has been proven to possess compelling health-beneficial activities. In this study, we aimed to explore the effect of PAL on LPS plus MSU crystal-stimulated gouty arthritis in vitro and in vivo. Methods PMA-differentiated THP-1 macrophages were primed with LPS and then stimulated with MSU crystal in the presence or absence of PAL. The expression of pro-inflammatory cytokines and oxidative stress-related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR, respectively. In addition, the anti-inflammatory and antioxidant activities of PAL on MSU-induced arthritis mice were also evaluated. Results The results indicated that PAL (20, 40 and 80 μM) dose-dependently decreased the mRNA expression and levels of pro-inflammatory cytokines (interleukin-1beta (IL-1β), IL-6, IL-18 and tumor necrosis factor alpha (TNF-α)). The levels of superoxide dismutase (SOD) and glutathione (GSH) were remarkably enhanced, while the level of malondialdehyde (MDA) was reduced. Western blot analysis revealed that PAL appreciably inhibited NF-κB/NLRP3 signaling pathways through inhibiting the phosphorylation of p-65 and IκBα, blocking the expression of NLRP3, ASC, IL-1β and Caspase-1, as well as enhancing the antioxidant protein expression of Nrf2 and HO-1. In vivo, PAL attenuated MSU-induced inflammation in gouty arthritis, as evidenced by mitigating the joint swelling, and decreasing the productions of IL-1β, IL-6, IL-18, TNF-α and MDA, while enhancing the levels of SOD and GSH. Moreover, PAL further attenuated the infiltration of neutrophils into joint synovitis. Conclusion PAL protected against MSU-induced inflammation and oxidative stress via regulating the NF-κB/NLRP3 and Nrf2 pathways. PAL may represent a potential candidate for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Juan-Juan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xing-Dong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Gao-Xiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qiu-Xia Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Xiao-Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Fang Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yu-Cui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jian-Hui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, People's Republic of China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qing-Feng Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
24
|
Hu C, Li J, Tan Y, Liu Y, Bai C, Gao J, Zhao S, Yao M, Lu X, Qiu L, Xing L. Tanreqing Injection Attenuates Macrophage Activation and the Inflammatory Response via the lncRNA-SNHG1/HMGB1 Axis in Lipopolysaccharide-Induced Acute Lung Injury. Front Immunol 2022; 13:820718. [PMID: 35547731 PMCID: PMC9084914 DOI: 10.3389/fimmu.2022.820718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 11/15/2022] Open
Abstract
The etiology of acute lung injury (ALI) is not clear, and the treatment of ALI presents a great challenge. This study aimed to investigate the pathogenesis and potential therapeutic targets of ALI and to define the target gene of Tanreqing (TRQ), which is a traditional Chinese medicine formula composed of five medicines, scutellaria baicalensis, bear bile powder, goat horn powder, honeysuckle and forsythia. Macrophage activation plays a critical role in many pathophysiological processes, such as inflammation. Although the regulation of macrophage activation has been extensively investigated, there is little knowledge of the role of long noncoding RNAs (lncRNAs) in this process. In this study, we found that lncRNA-SNHG1 expression is distinctly regulated in differently activated macrophages in that it is upregulated in LPS. LncRNA-SNHG1 knockdown attenuates LPS-induced M1 macrophage activation. The SNHG1 promoter was bound by NF-κB subunit p65, indicative of SNHG1 being a direct transcriptional target of LPS-induced NF-κB activation. SNHG1 acts as a proinflammatory driver that leads to the production of inflammatory cytokines and the activation of macrophages and cytokine storms by physically interacting with high-mobility group box 1 (HMGB1) in ALI. TRQ inhibited NF-κB signaling activation and binding of NF-κB to the SNHG1 promoter. In conclusion, this study defined TRQ target genes, which can be further elucidated as mechanism(s) of TRQ action, and provides insight into the molecular pathogenesis of ALI. The lncRNA-SNHG1/HMGB1 axis is an ideal therapeutic for ALI treatment.
Collapse
Affiliation(s)
- Chunling Hu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junlu Li
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingshuai Tan
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Gao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shilong Zhao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengying Yao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxiao Lu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingxiao Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Xing
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Wu T, Shi Y, Zhang Y, Zhang M, Zhang L, Ma Z, Zhao D, Wang L, Yu H, Hou Y, Gong J. Lactobacillus rhamnosus LB1 Alleviates Enterotoxigenic Escherichia coli-Induced Adverse Effects in Piglets by Improving Host Immune Response and Anti-Oxidation Stress and Restoring Intestinal Integrity. Front Cell Infect Microbiol 2021; 11:724401. [PMID: 34796123 PMCID: PMC8594739 DOI: 10.3389/fcimb.2021.724401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common enteric pathogen that causes diarrhoea in humans and animals. Lactobacillus rhamnosus LB1 (formerly named Lactobacillus zeae LB1) has been shown to reduce ETEC infection to Caenorhabditis elegans and Salmonella burden in pigs. This study was to evaluate the effect of L. rhamnosus LB1 on the gut health of lactating piglets that were challenged with ETEC. Six-four piglets at 7 days of age were equally assigned into 8 groups (8 piglets per group): 1) control group (basal diet, phosphate buffer saline); 2) CT group (basal diet + 40 mg/kg colistin); 3) LL group (basal diet + 1 × 107 CFU/pig/day LB1); 4) HL group (basal diet + 1 × 108 CFU/pig/day LB1); 5) ETEC group: (basal diet + ETEC challenged); 6) CT + ETEC group (basal diet + CT + ETEC); 7) LL + ETEC group (basal diet + 1 × 107 CFU/pig/day LB1 + ETEC); 8) HL + ETEC group (basal diet + 1 × 108 CFU/pig/day LB1 + ETEC). The trial lasted ten days including 3 days of adaptation. Several significant interactions were found on blood parameters, intestinal morphology, gene, and protein expression. ETEC infection disrupted the cell structure and biochemical indicators of blood, undermined the integrity of the intestinal tract, and induced oxidative stress, diarrhoea, intestinal damage, and death of piglets. The supplementation of L. rhamnosus LB1 alleviated ETEC’s adverse effects by reducing pig diarrhoea, oxidative stress, and death, modulating cell structure and biochemical indicators of blood, improving the capacity of immunity and anti-oxidation stress of pigs, and restoring their intestinal integrity. At the molecular level, the beneficial effects of L. rhamnosus LB1 appeared to be mediated by regulating functional related proteins (including HSP70, Caspase-3, NLRP3, AQP3, and AQP4) and genes (including RPL4, IL-8, HP, HSP70, Mx1, Mx2, S100A12, Nrf2, GPX2 and ARG1). These results suggest that dietary supplementation of L. rhamnosus LB1 improved the intestinal functions and health of piglets.
Collapse
Affiliation(s)
- Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yutao Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yanyan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lijuan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhipeng Ma
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
26
|
Li J, Wang K, Ji M, Zhang T, Yang C, Liu H, Chen S, Li H, Li H. Cys-SH based quantitative redox proteomics of salt induced response in sugar beet monosomic addition line M14. BOTANICAL STUDIES 2021; 62:16. [PMID: 34661775 PMCID: PMC8523603 DOI: 10.1186/s40529-021-00320-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/04/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Salt stress is a major abiotic stress that limits plant growth, development and productivity. Studying the molecular mechanisms of salt stress tolerance may help to enhance crop productivity. Sugar beet monosomic addition line M14 exhibits tolerance to salt stress. RESULTS In this work, the changes in the BvM14 proteome and redox proteome induced by salt stress were analyzed using a multiplex iodoTMTRAQ double labeling quantitative proteomics approach. A total of 80 proteins were differentially expressed under salt stress. Interestingly, A total of 48 redoxed peptides were identified for 42 potential redox-regulated proteins showed differential redox change under salt stress. A large proportion of the redox proteins were involved in photosynthesis, ROS homeostasis and other pathways. For example, ribulose bisphosphate carboxylase/oxygenase activase changed in its redox state after salt treatments. In addition, three redox proteins involved in regulation of ROS homeostasis were also changed in redox states. Transcription levels of eighteen differential proteins and redox proteins were profiled. (The proteomics data generated in this study have been submitted to the ProteomeXchange and can be accessed via username: reviewer_pxd027550@ebi.ac.uk, password: q9YNM1Pe and proteomeXchange# PXD027550.) CONCLUSIONS: The results showed involvement of protein redox modifications in BvM14 salt stress response and revealed the short-term salt responsive mechanisms. The knowledge may inform marker-based breeding effort of sugar beet and other crops for stress resilience and high yield.
Collapse
Affiliation(s)
- Jinna Li
- Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Kun Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Meichao Ji
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Tingyue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Chao Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - He Liu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Hongli Li
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| | - Haiying Li
- Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
27
|
Sharapov MG, Gudkov SV, Lankin VZ. Hydroperoxide-Reducing Enzymes in the Regulation of Free-Radical Processes. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1256-1274. [PMID: 34903155 DOI: 10.1134/s0006297921100084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review presents current concepts of the molecular mechanisms of oxidative stress development and describes main stages of the free-radical reactions in oxidative stress. Endogenous and exogenous factors of the oxidative stress development, including dysfunction of cell oxidoreductase systems, as well as the effects of various external physicochemical factors, are discussed. The review also describes the main components of the antioxidant defense system and stages of its evolution, with a special focus on peroxiredoxins, glutathione peroxidases, and glutathione S-transferases, which share some phylogenetic, structural, and catalytic properties. The substrate specificity, as well as the similarities and differences in the catalytic mechanisms of these enzymes, are discussed in detail. The role of peroxiredoxins, glutathione peroxidases, and glutathione S-transferases in the regulation of hydroperoxide-mediated intracellular and intercellular signaling and interactions of these enzymes with receptors and non-receptor proteins are described. An important contribution of hydroperoxide-reducing enzymes to the antioxidant protection and regulation of such cell processes as growth, differentiation, and apoptosis is demonstrated.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
28
|
Li JY, Yao YM, Tian YP. Ferroptosis: A Trigger of Proinflammatory State Progression to Immunogenicity in Necroinflammatory Disease. Front Immunol 2021; 12:701163. [PMID: 34489948 PMCID: PMC8418153 DOI: 10.3389/fimmu.2021.701163] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Until recently, necrosis is generally regarded as traumatic cell death due to mechanical shear stress or other physicochemical factors, while apoptosis is commonly thought to be programmed cell death, which is silent to immunological response. Actually, multiple modalities of cell death are programmed to maintain systematic immunity. Programmed necrosis, such as necrosis, pyroptosis, and ferroptosis, are inherently more immunogenic than apoptosis. Programmed necrosis leads to the release of inflammatory cytokines, defined as danger-associated molecular patterns (DAMPs), resulting in a necroinflammatory response, which can drive the proinflammatory state under certain biological circumstances. Ferroptosis as a newly discovered non-apoptotic form of cell death, is characterized by excessive lipid peroxidation and overload iron, which occurs in cancer, neurodegeneration, immune and inflammatory diseases, as well as ischemia/reperfusion (I/R) injury. It is triggered by a surplus of reactive oxygen species (ROS) induced in an imbalanced redox reaction due to the decrease in glutathione synthesis and inaction of enzyme glutathione peroxidase 4 (GPX4). Ferroptosis is considered as a potential therapeutic and molecular target for the treatment of necroinflammatory disease, and further investigation into the underlying pathophysiological characteristics and molecular mechanisms implicated may lay the foundations for an interventional therapeutic strategy. This review aims to demonstrate the key roles of ferroptosis in the development of necroinflammatory diseases, the major regulatory mechanisms involved, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
29
|
Orel VE, Krotevych M, Dasyukevich O, Rykhalskyi O, Syvak L, Tsvir H, Tsvir D, Garmanchuk L, Orel VВ, Sheina I, Rybka V, Shults NV, Suzuki YJ, Gychka SG. Effects induced by a 50 Hz electromagnetic field and doxorubicin on Walker-256 carcinosarcoma growth and hepatic redox state in rats. Electromagn Biol Med 2021; 40:475-487. [PMID: 34392747 DOI: 10.1080/15368378.2021.1958342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control (no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone resulted in some level of antitumor effect (p < .05). Superoxide dismutase, catalase activity and glutathione content were significantly decreased in the liver of tumor-bearing animals as compared with the control group (p < .05). The decreases in antioxidant defenses accompanied histological findings of suspected liver damage. However, hepatic levels of thiobarbituric acid reactive substances, an indicator of lipid peroxidation, were three times lower in EMF and DOX + EMF groups than in no treatment and DOX (p < .05). EMF and DOX + EMF showed significantly lower activity of serum ALT than DOX alone (p < .05). These results indicate that EMF treatment can inhibit tumor growth, causing less pronounced oxidative stress damage to the liver. Therefore, EMF can be used as a therapeutic strategy to influence the hepatic redox state and combat cancer with reduced side-effects.
Collapse
Affiliation(s)
- Valerii E Orel
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine.,Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine
| | - Mykhailo Krotevych
- Research Department of the Pathological Anatomy, National Cancer Institute, Kyiv, Ukraine
| | - Olga Dasyukevich
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine
| | - Oleksandr Rykhalskyi
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine
| | - Liubov Syvak
- Research Department of Chemotherapy Solid Tumors, National Cancer Institute, Kyiv, Ukraine
| | | | - Dmytro Tsvir
- Medical Faculty, Bogomolets National Medical University, Kyiv, Ukraine
| | - Lyudmyla Garmanchuk
- Department of Biomedicine, NSC "Institute of Biology and Medicine" of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Valerii В Orel
- Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine.,Research Department of Radiodiagnostics, National Cancer Institute, Kyiv, Ukraine
| | - Iryna Sheina
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Vladyslava Rybka
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Nataliia V Shults
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Yuichiro J Suzuki
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Sergiy G Gychka
- Department of Pathological Anatomy 2, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
30
|
Zhu W, Zhao Y, Zhang S, Li X, Xing L, Zhao H, Yu J. Evaluation of Epigallocatechin-3-Gallate as a Radioprotective Agent During Radiotherapy of Lung Cancer Patients: A 5-Year Survival Analysis of a Phase 2 Study. Front Oncol 2021; 11:686950. [PMID: 34178681 PMCID: PMC8223749 DOI: 10.3389/fonc.2021.686950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous analysis of the study (NCT02577393) had demonstrated the application of epigallocatechin-3-gallate (EGCG) could be safe and effective in the prevention and treatment of acute radiation esophagitis in patients with advanced lung cancer. EGCG seemed to improve the response rate of small cell lung cancer (SCLC) to radiotherapy in a subgroup analysis. This research continued to analyze the impact of EGCG application on cancer-radiation efficacy and patient survival. Methods All patients with SCLC in the NCT02577393 study were included. Patients were randomized into EGCG group or conventional therapy group as protocol. The primary endpoints of the study were radiation response rate and progression-free survival (PFS). Overall survival (OS) and the efficacy of EGCG in the treatment of esophagitis were assessed as secondary endpoints. Results A total of 83 patients with lung cancer in the NCT02577393 study were screened, and all 38 patients with SCLC were eligible for analysis. No significant differences with regard to baseline demographic and clinical characteristics were observed between the two groups. The objective response rate (ORR) was higher than that of conventionally treated patients (84.6 vs 50%, P = 0.045), while the median PFS and OS were not significantly prolonged. At data cut-off (1 January 2021), 5-year PFS was 33% with EGCG versus 9.3% with conventional treatment, and 5-year OS was 30.3% versus 33.3%, respectively. The mean adjusted esophagitis index and pain index of patients with EGCG application were lower than conventional treatment (5.15 ± 2.75 vs 7.17 ± 1.99, P = 0.030; 8.62 ± 5.04 vs 15.42 ± 5.04, P < 0.001). Conclusion The study indicates EGCG may alleviate some esophagitis-related indexes in SCLC patients exposed to ionizing radiation without reducing survival. However, this conclusion should be confirmed by further studies with large sample size.
Collapse
Affiliation(s)
- Wanqi Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiation Oncology, Tianjin Medical University, Tianjin, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Yalan Zhao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Xiaolin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Ligang Xing
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanxi Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jinming Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiation Oncology, Tianjin Medical University, Tianjin, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
31
|
Cui Y, Cai J, Wang W, Wang S. Regulatory Effects of Histone Deacetylase Inhibitors on Myeloid-Derived Suppressor Cells. Front Immunol 2021; 12:690207. [PMID: 34149732 PMCID: PMC8208029 DOI: 10.3389/fimmu.2021.690207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are antitumor drugs that are being developed for use in clinical settings. HDACIs enhance histone or nonhistone acetylation and promote gene transcription via epigenetic regulation. Importantly, these drugs have cytotoxic or cytostatic properties and can directly inhibit tumor cells. However, how HDACIs regulate immunocytes in the tumor microenvironment, such as myeloid-derived suppressor cells (MDSCs), has yet to be elucidated. In this review, we summarize the effects of different HDACIs on the immunosuppressive function and expansion of MDSCs based on the findings of relevant studies.
Collapse
Affiliation(s)
- Yudan Cui
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingshan Cai
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenxin Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Feng L, Liang L, Zhang S, Yang J, Yue Y, Zhang X. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy 2021; 18:320-339. [PMID: 34024230 PMCID: PMC8942416 DOI: 10.1080/15548627.2021.1926655] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes mellitus and currently one of the major causes of blindness. Several previous studies have demonstrated that autophagy, which is regulated by HMGB1 (high mobility group box 1), is involved in DR development. However, the role of autophagy in DR is quite complicated in that it promotes pericyte survival in early DR, whereas excessive autophagy causes excess stress and leads to necrosis. Therefore, this study aimed to investigate the relationship between HMGB1, the macroautophagy/autophagy-lysosome pathway, and DR, as well as their underlying molecular mechanisms. In brief, the relationship between high glucose (HG) and the autophagy-lysosome pathway was examined in retinal pigment epithelial (RPE) cells. The relationship was studied by detecting classical autophagic features, and siRNAs targeting HMGB1 and pharmacological regulators were used to explore the role of the autophagy-lysosome pathway in DR development. The results demonstrated that HG inhibited autophagy and diminished the degradative capacity of autophagy due to lysosome membrane permeabilization (LMP). In addition, HMGB1 was found to be involved in LMP via the CTSB (cathepsin B)-dependent pathway, but not the CTSL (cathepsin L)-dependent pathway. Knockdown of HMGB1 expression rescued LMP, restored the degradative capacity of autophagy, decreased the expression of inflammatory factors and VEGF (vascular endothelial growth factor), and protected against apoptosis in RPE cells in the early stages of DR.
Collapse
Affiliation(s)
- Lujia Feng
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Liang Liang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Shaochong Zhang
- Shenzhen Key Laboratory of Ophthalmology, Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Jinglu Yang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Yanan Yue
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Xuedong Zhang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
33
|
Wu H, Wang Y, Tong L, Yan H, Sun Z. Global Research Trends of Ferroptosis: A Rapidly Evolving Field With Enormous Potential. Front Cell Dev Biol 2021; 9:646311. [PMID: 33996807 PMCID: PMC8116802 DOI: 10.3389/fcell.2021.646311] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Ferroptosis is a newly proposed form of programmed cell death, and accumulating evidence suggests that it plays an essential role in the development of multiple diseases, especially cancers and neurodegenerative diseases. Since officially named in 2012, research on ferroptosis has grown rapidly. There are previous reviews focused on the research progress of ferroptosis from a certain aspect, but no bibliometric studies summarizing this field as a whole. This study aimed to assess the scientific output and activity regarding ferroptosis research from a global perspective. Methods: Publications related to ferroptosis from 2012 to 2020 were identified and selected from the Web of Science Core Collection. Excel 2019 and GraphPad Prism 8.0 was used to analyze quantitative variables including number of publications and citations, H-index, and journal citation reports. VOS viewer and CiteSpace were used to perform co-authorship, co-citation, and co-occurrence analysis of countries/institutes/authors/keywords. Results: A total of 1,285 publications on ferroptosis research were identified. The literature on ferroptosis had been continuously growing since 2012, and the expansion might continue at a rapid pace in the following years. China contributed the greatest proportion (43.74%) of ferroptosis publications, and the United States ranked first in the number of citation frequency (20,980 times) and H-index (70). B. R. Stockwell, D. L. Tang, and R. Kang were key researchers. The journal Cell Death Disease published the highest number of articles, with 42 articles. All the keywords could be divided into two clusters: cluster 1 (pathway and mechanism) and cluster 2 (treatment and effect). In terms of potential hotspots, keywords with the strong bursts and still ongoing recently were "neurodegeneration" (2017-2020), "chemotherapy" (2017-2020), "NF-kappa B" (2017-2020), and "photodynamic therapy" (2018-2020). Conclusion: There will be a dramatically increasing number of publications on ferroptosis research based on the current global trends. China has made significant progress in ferroptosis research, but the United States is actually dominated in this field. More focus will be placed on neurodegeneration, chemotherapy, nuclear factor κB, and photodynamic therapy, which may be the next popular topics in ferroptosis research.
Collapse
Affiliation(s)
- Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
34
|
Shchelkonogov VA, Darnotuk ES, Chekanov AV, Baranova OA, Kazarinov KD, Shastina NS, Stvolinsky SL, Fedorova TN, Solov’eva EY, Fedin AI, Sorokoumova GM. Liposomal Drug with Carnosine and Lipoic Acid: Preparation, Antioxidant and Antiplatelet Properties. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Delfino LA, Mattje LGB, Silva M, Araujo MC, Tormen L, Bainy EM. Evaluation of Moringa and Lavandula extracts as natural antioxidants in tilapia fish burger. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1883494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- L. A. Delfino
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - L. G. B. Mattje
- Food Science and Technology Graduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - M. Silva
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - M. C. Araujo
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - L. Tormen
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
- Food Science and Technology Graduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - E. M. Bainy
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
- Food Science and Technology Graduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| |
Collapse
|
36
|
Ren Y, Ma X, Wang T, Cheng B, Ren L, Dong Z, Liu H. The Cerebroprotein Hydrolysate-I Plays a Neuroprotective Effect on Cerebral Ischemic Stroke by Inhibiting MEK/ERK1/2 Signaling Pathway in Rats. Neuropsychiatr Dis Treat 2021; 17:2199-2208. [PMID: 34262280 PMCID: PMC8273906 DOI: 10.2147/ndt.s313807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the neuroprotective effect and mechanism of cerebroprotein hydrolysate-I (CH-I) on cerebral ischemia/reperfusion injury in rats. METHODS A total of 100 adult healthy male SD rats were randomly divided into a sham group, model group, CH-I treated group, and cerebrolysin (CBL) positive group, consisting of 20 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model of rats was built by inserting a suture into the left external carotid artery (ECA) through the internal carotid artery (ICA). Treatment was performed by intraperitoneal injection of CH-I (20 mg/kg). The neurobehavioral function of rats was evaluated by modified neurological severity scores (mNSS). TTC staining was used to detect the cerebral infarction volume (CIV) of rats. The morphological and structural changes of nerve cells were observed by HE staining and the neuronal apoptosis was counted by TUNEL assay. Immunohistochemical (IHC) analysis was used to detect BDNF and pMEK1/2 expressions. The expressions of BDNF, pMEK1/2, pERK1/2, and pCREB were determined with Western blotting. RESULTS After treatment with CH-I, the mNSS and CIV of rats were improved (P<0.05). And the CH-I can reduce the degeneration and apoptosis of nerve cells in rats (P<0.01). Western blotting showed that the expressions of pMEK1/2, pERK1/2, and pCREB in rats were increased, while the expression of BDNF was decreased after modeling (P<0.05). After treatment, the expressions of pMEK1/2, pERK1/2, and pCREB in the CH-I group were decreased (P<0.05), while the expression of BDNF was significantly increased (P<0.05) compared with the model group. IHC showed that the expression of BDNF and pMEK1/2 was consistent with Western blotting. CONCLUSION It is suggested that the CH-I might play a neuroprotective role by inhibiting the expression of MEK-ERK-CREB and enhancing the expression of BDNF after cerebral ischemia/reperfusion injury, thus improving the neurobehavioral function of MCAO/R rats.
Collapse
Affiliation(s)
- Yuqian Ren
- Institute of Cerebrovascular Disease, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Xiaoqing Ma
- Institute of Cerebrovascular Disease, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Tingting Wang
- Institute of Cerebrovascular Disease, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Baohe Cheng
- Shandong Haoyun International Hospital of Stem Cells, Jinan, Shandong, 250001, People's Republic of China
| | - Leiming Ren
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Zehua Dong
- Department of Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Hongling Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| |
Collapse
|
37
|
Qi P, Li J, Gao S, Yuan Y, Sun Y, Liu N, Li Y, Wang G, Chen L, Shi J. Network Pharmacology-Based and Experimental Identification of the Effects of Quercetin on Alzheimer's Disease. Front Aging Neurosci 2020; 12:589588. [PMID: 33192484 PMCID: PMC7645061 DOI: 10.3389/fnagi.2020.589588] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the neurodegenerative brain disorders inducing nearly half of dementia cases, and the diagnosis and treatment of AD are the primary issues clinically. However, there is a lack of effective biomarkers and drugs for AD diagnosis and therapeutics so far. In this study, bioinformatics analysis combined with an experimental verification strategy was used to identify the biomarkers and the quercetin targets for AD diagnosis and treatment. First, differentially expressed genes in the AD brain were identified by microarray data analysis. Second, quercetin, a predominant flavonoid, was used to screen the target genes. Third, the drug–disease network was determined, and the target genes of quercetin treatment were obtained in AD-related HT-22 cell-based assay. Six genes, including MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS, were validated by the system pharmacology analysis in the hippocampus samples of AD patients. The results suggested that MAPT, PIK3R1, CASP8, and DAPK1 were significantly increased, but MAPK1 and CYCS were significantly decreased in HT-22 cells after Aβ1-42 treatment. Moreover, MAPK1 and CYCS were markedly increased, but MAPT, PIK3R1, CASP8, and DAPK1 were markedly decreased after quercetin treatment in these HT-22 cells. Altogether, MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS are all the biomarkers for AD diagnosis and the targets of quercetin treatment, and our findings may provide valuable biomarkers for AD diagnosis and treatment.
Collapse
Affiliation(s)
- Pingfang Qi
- Department of Pharmacy, The People's Hospital of Yichun City, Yichun, China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shichao Gao
- Department of Clinical Laboratory, The People's Hospital of Yichun City, Yichun, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Yirong Yuan
- Department of Neurosurgery, The People's Hospital of Yichun City, Yichun, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
38
|
Evgen'ev MB, Frenkel A. Possible application of H 2S-producing compounds in therapy of coronavirus (COVID-19) infection and pneumonia. Cell Stress Chaperones 2020; 25:713-715. [PMID: 32409956 PMCID: PMC7221330 DOI: 10.1007/s12192-020-01120-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mikhail B Evgen'ev
- Laboratory of Molecular Mechanisms of Biological Adaptations, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia, 119991.
| | | |
Collapse
|
39
|
Cai M, Shao W, Yu H, Hong Y, Shi L. Paeonol Inhibits Cell Proliferation, Migration and Invasion and Induces Apoptosis in Hepatocellular Carcinoma by Regulating miR-21-5p/KLF6 Axis. Cancer Manag Res 2020; 12:5931-5943. [PMID: 32765094 PMCID: PMC7381818 DOI: 10.2147/cmar.s254485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common tumors with high mortality. MicroRNAs (miRNAs) were reported as crucial markers for the diagnosis of HCC. Paeonol exerted many pharmacological effects on tumor progression. This study aimed to elucidate the underlying molecular mechanism of paeonol in HCC progression. Methods Cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was examined by flow cytometry. The levels of Cyclin D1, cyclin-dependent kinase 4 (CDK4), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) were detected by Western blot assay. Cell migration and invasion were assessed by transwell assay. The levels of matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) were measured by Western blot. The expression of miR-21-5p and kruppel-like factor 6 (KLF6) was detected by quantitative real-time PCR (qRT-PCR) or Western blot assay, respectively. Dual-luciferase reporter assay was performed to analyze the interaction between miR-21-5p and KLF6. The enrichment of miR-21-5p was determined by RNA pull-down assay. Xenograft assay was conducted to analyze tumor growth in vivo. Results The results demonstrated that cell viability of Hep3B and Huh-7 cells was inhibited, while cell apoptosis was promoted after treatment with paeonol. Transwell assay indicated that cell migration and invasion were blocked in paeonol-treated cells. Moreover, miR-21-5p expression was markedly decreased in paeonol-treated cells and its knockdown suppressed cell viability, migration and invasion, but contributed to cell apoptosis. MiR-21-5p targeted KLF6 and its silencing prominently elevated KLF6 level. Furthermore, the restoration experiment determined that miR-21-5p and KLF6 were antagonisms on cell viability, apoptosis, migration and invasion. Also, paeonol abated the decrease in KLF6 level caused by miR-21-5p up-regulation. Besides, paeonol suppressed tumor growth in vivo. Conclusion Paeonol impeded cell viability, migration and invasion and triggered apoptosis by regulating miR-21-5p/KLF6 axis in HCC cells. Xenograft assay confirmed that paeonol inhibited tumor growth through miR-21-5p/KLF6 axis in HCC in vivo.
Collapse
Affiliation(s)
- Miaoguo Cai
- Department of Medical Oncology, Luqiao Branch of Taizhou Hospital, Taizhou City, Zhejiang Province, People's Republic of China
| | - Wei Shao
- Department of Medical Oncology, Luqiao Branch of Taizhou Hospital, Taizhou City, Zhejiang Province, People's Republic of China
| | - Huijun Yu
- Department of Pediatric, Luqiao Branch of Taizhou Hospital, Taizhou City, Zhejiang Province, People's Republic of China
| | - Ye Hong
- Department of Medical Oncology, Luqiao Branch of Taizhou Hospital, Taizhou City, Zhejiang Province, People's Republic of China
| | - Lili Shi
- Department of Infection, Luqiao Branch of Taizhou Hospital, Taizhou City, Zhejiang Province, People's Republic of China
| |
Collapse
|
40
|
Siciliano G, Chico L, Lo Gerfo A, Simoncini C, Schirinzi E, Ricci G. Exercise-Related Oxidative Stress as Mechanism to Fight Physical Dysfunction in Neuromuscular Disorders. Front Physiol 2020; 11:451. [PMID: 32508674 PMCID: PMC7251329 DOI: 10.3389/fphys.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular diseases (NMDs) are a group of often severely disabling disorders characterized by dysfunction in one of the main constituents of the motor unit, the cardinal anatomic-functional structure behind force and movement production. Irrespective of the different pathogenic mechanisms specifically underlying these disease conditions genetically determined or acquired, and the related molecular pathways involved in doing that, oxidative stress has often been shown to play a relevant role within the chain of events that induce or at least modulate the clinical manifestations of these disorders. Due to such a putative relevance of the imbalance of redox status occurring in contractile machinery and/or its neural drive in NMDs, physical exercise appears as one of the most important conditions able to positively interfere along an ideal axis, going from a deranged metabolic cell homeostasis in motor unit components to the reduced motor performance profile exhibited by the patient in everyday life. If so, it comes out that it would be important to identify a proper training program, suitable for load and type of exercise that is able to improve motor performance in adaptation and response to such a homeostatic imbalance. This review therefore analyzes the role of different exercise trainings on oxidative stress mechanisms, both in healthy and in NMDs, also including preclinical studies, to elucidate at which extent these can be useful to counteract muscle impairment associated to the disease, with the final aim of improving physical functions and quality of life of NMD patients.
Collapse
Affiliation(s)
- Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Gupta P, Serajuddin M. Fish Lipid against Prostate Cancer (PC-3) through Apoptosis and Cell Cycle Arrest. Nutr Cancer 2020; 73:300-306. [PMID: 32242459 DOI: 10.1080/01635581.2020.1743872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Anti-proliferative and apoptotic activities of different concentrations (10-50 μg/ml) of total lipid of the freshwater fish, Labeo rohita against human prostate cancer cells (PC3) were assessed using cells viability analysis by MTT assay, intracellular ROS generation and nuclear condensation. The cell cycle analysis for DNA content was performed by flow cytometry. The fish lipid was found to be effective which changed the characteristic morphology of PC3cells and also decreased their cells number. The fish lipid significantly induced the cell cycle arrest and level of ROS which caused apoptosis in PC3cells. The anti-proliferative and apoptotic roles of the fish lipid against the cells of prostate cancer may be helpful for the prevention and development of anticancer drug.
Collapse
Affiliation(s)
- Pragya Gupta
- Fish Biology Research Lab, Department of Zoology, University of Lucknow, Lucknow, India
| | - M Serajuddin
- Fish Biology Research Lab, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
42
|
Li B, He X, Lei SS, Zhou FC, Zhang NY, Chen YH, Wang YZ, Su J, Yu JJ, Li LZ, Zheng X, Luo R, Kołodyńska D, Xiong S, Lv GY, Chen SH. Hypertensive Rats Treated Chronically With N ω-Nitro-L-Arginine Methyl Ester (L-NAME) Induced Disorder of Hepatic Fatty Acid Metabolism and Intestinal Pathophysiology. Front Pharmacol 2020; 10:1677. [PMID: 32076406 PMCID: PMC7006817 DOI: 10.3389/fphar.2019.01677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023] Open
Abstract
Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension and liver injury. This study aimed at investigating the changes of liver lipometabonomics and exploring the underlying mechanisms of liver injury in the L-NAME-treated rats. The male Sprague-Dawley (SD) rats were treated with L-NAME (40 mg/kg, p.o.) for 8 weeks. After that, the liver, aorta, fecal, and serum were collected for analysis. The results showed that L-NAME induced hypertension and disordered the endothelial nitric oxide synthase (eNOS)-NO pathway in the treated rats. L-NAME could also increase the levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate transaminase (AST). The multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis showed that L-NAME could induce significant changes of the total hepatic lipids and most hepatic triglycerides, as well as fatty acid (FA). A positive correlation was found between the blood pressure and TAG. Immunofluorescence and Western-Blot experiments indicated that the L-NAME treatment significantly influenced some FA β-oxidation, desaturation, and synthesis-related proteins. The increase of intestinal inflammation, decrease of microcirculation and tight junction proteins, as well as alterations of microbial communities were observed in the L-NAME induced hypertensive rats, as well as alterations of microbial communities were notable correlation to TAG and FA species. This study demonstrated that the L-NAME-induced hypertensive rats exhibiting liver injury were the joint action of hepatic abnormal fatty acid metabolism and microcirculation disorder. Furthermore, the gut microflora, as well as the changes of FA β-oxidation (ACOX, CPT1α), desaturation (SCD-1), and synthesis (FAS) may be the potential mechanisms for abnormal fatty acid metabolism.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Shan-Shan Lei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Fu-Chen Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ning-Yu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ye-Hui Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Zhi Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Jing Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiang Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Shan Xiong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
43
|
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10:1568. [PMID: 32038245 PMCID: PMC6985156 DOI: 10.3389/fphar.2019.01568] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells are important constituents of blood vessels that play critical roles in cardiovascular homeostasis by regulating blood fluidity and fibrinolysis, vascular tone, angiogenesis, monocyte/leukocyte adhesion, and platelet aggregation. The normal vascular endothelium is taken as a gatekeeper of cardiovascular health, whereas abnormality of vascular endothelium is a major contributor to a plethora of cardiovascular ailments, such as atherosclerosis, aging, hypertension, obesity, and diabetes. Endothelial dysfunction is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and proinflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. The occurrence of endothelial dysfunction disrupts the endothelial barrier permeability that is a part of inflammatory response in the development of cardiovascular diseases. As such, abrogation of endothelial cell activation/inflammation is of clinical relevance. Recently, hydrogen sulfide (H2S), an entry as a gasotransmitter, exerts diverse biological effects through acting on various targeted signaling pathways. Within the cardiovascular system, the formation of H2S is detected in smooth muscle cells, vascular endothelial cells, and cardiomyocytes. Disrupted H2S bioavailability is postulated to be a new indicator for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we will summarize recent advances about the roles of H2S in endothelial cell homeostasis, especially under pathological conditions, and discuss its putative therapeutic applications in endothelial inflammation-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
44
|
Melatonin modulates airway smooth muscle cell phenotype by targeting the STAT3/Akt/GSK-3β pathway in experimental asthma. Cell Tissue Res 2019; 380:129-142. [PMID: 31867684 DOI: 10.1007/s00441-019-03148-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Among the troika of clinicopathologic features of asthma, airway remodelling has gained sufficient attention for its contribution to progressive airway narrowing. Much effort has been directed at the management of airway smooth muscle cells (ASMCs), but few attempts have proven to prevent the progression of remodelling. Recently, accumulating data have shown the anti-inflammatory/anti-proliferative potency of melatonin (a crucial neurohormone involved in many physiological and pathological processes) in diverse cells. However, no evidence has confirmed its effect on ASMCs. The present study investigates the benefits of melatonin in asthma, with an emphasis on airway remodelling. The results indicated that melatonin significantly attenuated airway hyperresponsiveness (AHR), inflammation and remodelling in a house dust mite (HDM) model. Melatonin markedly alleviated goblet cell hyperplasia/metaplasia, collagen deposition and airway smooth muscle hyperplasia/hypertrophy, implying the achievement of remodelling remission. The data obtained in vitro further revealed that melatonin notably inhibited ASMCs proliferation, VEGF synthesis and cell migration induced by PDGF, which might depend on STAT3 signalling. Moreover, melatonin remarkably relieved ASMCs contraction and reversed ASMCs phenotype switching induced by TGF-β, probably via the Akt/GSK-3β pathway. Altogether, our findings illustrated for the first time that melatonin improves asthmatic airway remodelling by balancing the phenotypic proportions of ASMCs, thus highlighting a novel purpose for melatonin as a potent option for the management of asthma.
Collapse
|
45
|
Hu R, Jia WY, Xu SF, Zhu ZW, Xiao Z, Yu SY, Li J. Xiaochaihutang Inhibits the Activation of Hepatic Stellate Cell Line T6 Through the Nrf2 Pathway. Front Pharmacol 2019; 9:1516. [PMID: 30666206 PMCID: PMC6330344 DOI: 10.3389/fphar.2018.01516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Xiaochaihutang (XCHT) is one of classic prescriptions in Treatise on Febrile Diseases in China which was reported to have the effect of anti-hepatic fibrosis in vivo. Activation of hepatic stellate cells (HSCs) is now well established as a central driver of fibrosis in liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important element for anti-oxidative damage which is one of the key factors responsible for occurrence. This study was to investigate the effect of XCHT compound serum on HSCs activation and focus on the Nrf2 pathway. Rats in treatment groups were given the appropriate doses of XCHT granules (5 g/kg) and Silybin (50 mg/kg) for 6 days, and the serum were obtained. The compound serum was used to intervene HSCs. The results found that XCHT compound serum significantly inhibited the proliferation of HSCT6 cells. The number of α-SMA positive stained cells in HSCT6 cells and the content of Collagen type I (collagen-I) in supernatant were significantly decreased indicating suppression of activated HSCs. Compared with the control group, the nuclear transcription of Nrf2 and the expressions of Nqo1, GCLC, and GCLM were significantly increased in XCHT group. However, the effects of XCHT were inhibited in Nrf2-siRNA transfected HSCT6 cells. These studies demonstrated that XCHT could inhibit HSCT6 cell proliferation and activation. The mechanism might be related to up-regulation of the Nrf2 pathway against oxidative stress.
Collapse
Affiliation(s)
- Rui Hu
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China.,Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Wei-Yi Jia
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Shang-Fu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhi-Wei Zhu
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Shou-Yang Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Jin Li
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
46
|
Drevet JR, Aitken RJ. Oxidative Damage to Sperm DNA: Attack and Defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:107-117. [DOI: 10.1007/978-3-030-21664-1_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Luan J, Ju D. Inflammasome: A Double-Edged Sword in Liver Diseases. Front Immunol 2018; 9:2201. [PMID: 30319645 PMCID: PMC6167446 DOI: 10.3389/fimmu.2018.02201] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes have emerged as critical innate sensors of host immune that defense against pathogen infection, metabolism syndrome, cellular stress and cancer metastasis in the liver. The assembly of inflammasome activates caspase-1, which promotes the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), and initiates pyroptotic cell death (pyroptosis). IL-18 exerts pleiotropic effects on hepatic NK cells, priming FasL-mediated cytotoxicity, and interferon-γ (IFN-γ)-dependent responses to prevent the development of liver diseases. However, considerable attention has been attracted to the pathogenic role of inflammasomes in various acute and chronic liver diseases, including viral hepatitis, nanoparticle-induced liver injury, alcoholic and non-alcoholic steatohepatitis. In this review, we summarize the latest advances on the physiological and pathological roles of inflammasomes for further development of inflammasome-based therapeutic strategies for human liver diseases.
Collapse
Affiliation(s)
- Jingyun Luan
- Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Zhu H, Wang Y, Song C, Feng Q, Wu J, Zhao S, Gui L, Zhang X, Zhao M, Peng S. Docking of THPDTPI: to explore P-selectin as a common target of anti-tumor, anti-thrombotic and anti-inflammatory agent. Oncotarget 2018; 9:268-281. [PMID: 29416612 PMCID: PMC5787463 DOI: 10.18632/oncotarget.19374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
The impact of soluble P-selectin on tumor growth, thrombosis and inflammation has been individually documented. Whether the down-regulation of P-selectin expression can simultaneously slow the tumor growth, inhibit the thrombosis and attenuate the inflammatory response remains unknown. In this context, (2'S,5'S)- tetrahydropyrazino[1',2':1,6]-di{2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole}-1',4'-dione (THPDTPI) was designed as an inhibitor of P-selectin. The suitable docking of THPDTPI towards the active site of P-selectin, the significant down-regulation of THPDTPI to P-selectin expression, and the direct action of THPDTPI on P-selectin suggest that P-selectin could be a target of THPDTPI. In vivo THPDTPI possesses the anti-tumor activity, the anti-thrombotic activity and the anti-inflammatory activity. This implies that targeting P-selectin is of essential importance for this triple activity. The minimal effective doses of THPDTPI inhibiting the tumor growth, the rat arterial thrombosis and the mouse ear edema are 0.01 μmol/kg, 0.1 μmol/kg and 0.001 μmol/kg, respectively. Atomic force microscopy images and FT-MS spectra showed that the adhesion of THPDTPI onto the surfaces of the platelets may be the first step of P-selectin targeting. Besides, the dependence of the triple action of THPDTPI inhibiting the tumor growth, the thrombosis and the inflammation on the decrease of the soluble P-selectin led to the correlation of the soluble P-selectin with the serum TNF-α and serum IL-8.
Collapse
Affiliation(s)
- Haimei Zhu
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Yuji Wang
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Ce Song
- Guangxi Pusen Biotechnology Co. Ltd., Guilin, China
| | - Qiqi Feng
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Jianhui Wu
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Shurui Zhao
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Lin Gui
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaoyi Zhang
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Ming Zhao
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiqi Peng
- College of Pharmaceutical Sciences of Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
49
|
Li Z, Liu B, Zhao D, Wang B, Liu Y, Zhang Y, Tian F, Li B. Protective effects of Nebivolol against interleukin-1β (IL-1β)-induced type II collagen destruction mediated by matrix metalloproteinase-13 (MMP-13). Cell Stress Chaperones 2017; 22:767-774. [PMID: 28512729 PMCID: PMC5655365 DOI: 10.1007/s12192-017-0805-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 01/18/2023] Open
Abstract
The pathological progression of osteoarthritis (OA) involves degradation of articular cartilage matrix. Type II collagen is the main component of cartilage matrix, which is degraded by pro-inflammatory cytokines such as IL-1β mediated by MMP-13. Nebivolol, a licensed drug used for the treatment of hypertension in clinics, displays its anti-inflammatory capacity in various conditions. However, whether Nebivolol has a protective effect on cartilage matrix degradation has not been reported before. In this study, we investigated the effects of Nebivolol on regulating the expression of MMP-13 and degradation of type II collagen. Our results indicate that Nebivolol alleviated the increase in gene expression, protein expression, and activity of MMP-13 induced by IL-1β. Importantly, IL-1β strikingly reduced the levels of type II collagen in cell culture supernatants, which was reversed by treatment with Nebivolol in a dose-dependent manner. Mechanistically, Nebivolol was found to alleviate the increased levels of phosphorylated IκBα and reduced levels of total IκBα induced by IL-1β, which subsequently mitigated p65 nuclear translocation and the transcriptional activity of NF-κB. Furthermore, our results indicated that IL-1β treatment resulted in a significant increase in expression of the transcriptional factor interferon regulatory factor-1 (IRF-1) at both the mRNA and protein levels, which was significantly ameliorated by treatment with Nebivolol. The combination of these findings suggests that Nebivolol can potentially be applied in human OA treatment.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Baoyi Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China.
| | - BenJie Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Yupeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Yao Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Fengde Tian
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Borui Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| |
Collapse
|
50
|
Ide T. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats. Eur J Nutr 2017; 57:1545-1561. [DOI: 10.1007/s00394-017-1440-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
|