1
|
Wang M, Tian Y, Yu P, Li N, Deng Y, Li L, Kang H, Chen D, Wang H, Liu Z, Liang J. Association between congenital heart defects and maternal manganese and iron concentrations: a case-control study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26950-26959. [PMID: 34865185 PMCID: PMC8989826 DOI: 10.1007/s11356-021-17054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/11/2021] [Indexed: 05/10/2023]
Abstract
To investigate the correlation between maternal manganese and iron concentrations and the risk of CHD among their infant. A multi-center hospital-based case control study was conducted in China. There were 322 cases and 333 controls have been selected from pregnant women who received prenatal examinations. Correlations between CHDs and maternal manganese and iron concentrations were estimated by conditional logistic regression. Moreover, the interaction between manganese and iron on CHDs was analyzed. Compared with the controls, mothers whose hair manganese concentration was 3.01 μg/g or more were more likely to have a child with CHD than those with a lower concentration. The adjusted OR was 2.68 (95%CI = 1.44-4.99). The results suggested that mothers whose iron content was 52.95 μg/g or more had a significantly higher risk of having a child with CHD (aOR = 2.87, 95%CI = 1.54-5.37). No interaction between maternal manganese and iron concentrations was observed in the multiplicative or additive model. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD (OR = 7.02). Women with excessive manganese concentrations have a significantly increased risk of having offspring with CHDs. The high maternal iron status also correlates with CHDs. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD.
Collapse
Affiliation(s)
- Meixian Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Tian
- Liupanshui Maternal and Child Health Care Hospital, Liupanshui Children's Hospital, Liupanshui, Guizhou, China
| | - Ping Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Nana Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Kang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dapeng Chen
- Chenghua District Maternal and Child Health Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hui Wang
- Mianyang Maternal and Child Health Care Hospital, Mianyang, Sichuan, China
| | - Zhen Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juan Liang
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Liu X, Guo Y, Yang Y, Qi C, Xiong T, Chen Y, Wu G, Zeng C, Wang D. DRD4 (Dopamine D4 Receptor) Mitigate Abdominal Aortic Aneurysm via Decreasing P38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH Oxidase 4) Axis-Associated Oxidative Stress. Hypertension 2021; 78:294-307. [PMID: 34176291 DOI: 10.1161/hypertensionaha.120.16738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xuesong Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fuzhou, China (Y.G.)
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| | - Chunlei Qi
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| |
Collapse
|
3
|
Yu C, Cai X, Liu X, Liu J, Zhu N. Betulin Alleviates Myocardial Ischemia-Reperfusion Injury in Rats via Regulating the Siti1/NLRP3/NF-κB Signaling Pathway. Inflammation 2021; 44:1096-1107. [PMID: 33392937 DOI: 10.1007/s10753-020-01405-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
To study the effects of betulin (BE) on myocardial ischemia-reperfusion (I/R) injury in rats, electrocardiogram (ECG) was detected by an electrocardiograph; myocardial infarction was evaluated by triphenyltetrazolium (TTC) staining, serum biochemical indicators myocardial enzymes creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), serum superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA); and inflammatory cytokines were tested by using commercial kits. The expression of the Siti1/NLRP3/NF-κB signaling pathway was detected by western blotting and immunohistochemistry experiments. BE improved ECG; reduced myocardial infarction area; decreased CK, LDH, AST, MDA, NO, and inflammatory cytokines; and increased SOD and GSH in I/R rats. In addition, BE also increased Siti1 and decreased the NLRP3/NF-κB signaling pathway in I/R rats. This study shows that the protection of BE is associated with changes in the Siti1/NLRP3/NF-κB pathway.
Collapse
Affiliation(s)
- Chenchen Yu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Xixi Cai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Xuejiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Jianlong Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Na Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| |
Collapse
|
4
|
Pharmacological Insights into the Use of Apomorphine in Parkinson’s Disease: Clinical Relevance. Clin Drug Investig 2018; 38:287-312. [DOI: 10.1007/s40261-018-0619-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP. The role of succinate and ROS in reperfusion injury - A critical appraisal. J Mol Cell Cardiol 2017; 110:1-14. [PMID: 28689004 PMCID: PMC5678286 DOI: 10.1016/j.yjmcc.2017.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022]
Abstract
We critically assess the proposal that succinate-fuelled reverse electron flow (REF) drives mitochondrial matrix superoxide production from Complex I early in reperfusion, thus acting as a key mediator of ischemia/reperfusion (IR) injury. Real-time surface fluorescence measurements of NAD(P)H and flavoprotein redox state suggest that conditions are unfavourable for REF during early reperfusion. Furthermore, rapid loss of succinate accumulated during ischemia can be explained by its efflux rather than oxidation. Moreover, succinate accumulation during ischemia is not attenuated by ischemic preconditioning (IP) despite powerful cardioprotection. In addition, measurement of intracellular reactive oxygen species (ROS) during reperfusion using surface fluorescence and mitochondrial aconitase activity detected major increases in ROS only after mitochondrial permeability transition pore (mPTP) opening was first detected. We conclude that mPTP opening is probably triggered initially by factors other than ROS, including increased mitochondrial [Ca2+]. However, IP only attenuates [Ca2+] increases later in reperfusion, again after initial mPTP opening, implying that IP regulates mPTP opening through additional mechanisms. One such is mitochondria-bound hexokinase 2 (HK2) which dissociates from mitochondria during ischemia in control hearts but not those subject to IP. Indeed, there is a strong correlation between the extent of HK2 loss from mitochondria during ischemia and infarct size on subsequent reperfusion. Mechanisms linking HK2 dissociation to mPTP sensitisation remain to be fully established but several related processes have been implicated including VDAC1 oligomerisation, the stability of contact sites between the inner and outer membranes, cristae morphology, Bcl-2 family members and mitochondrial fission proteins such as Drp1.
Collapse
Affiliation(s)
- Tatyana N Andrienko
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Philippe Pasdois
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Gonçalo C Pereira
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Matthew J Ovens
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew P Halestrap
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
6
|
Hu H, Liu Z, Li J, Li S, Tian X, Lin Y, Chen X, Yang J, Deng Y, Li N, Wang Y, Yuan P, Li X, Zhu J. Correlation between Congenital Heart Defects and maternal copper and zinc concentrations. ACTA ACUST UNITED AC 2014; 100:965-72. [PMID: 25131520 DOI: 10.1002/bdra.23284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Hu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- West China School of Public Health, Sichuan University; Chengdu Sichuan China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Jun Li
- Department of Ultrasound; Xijing Hospital, Fourth Military Medical University; Xi'an Shanxi China
| | - Shengli Li
- Department of Ultrasound; Shenzhen Maternity and Child Healthcare Hospital; Shenzhen Guangdong China
| | - Xiaoxian Tian
- Department of Ultrasound; Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region; Nanning Guangxi China
| | - Yuan Lin
- Department of Obstetrics & Gynecology; Fujian Provincial Maternal and Child Healthcare Hospital; Fuzhou Fujian China
| | - Xinlin Chen
- Department of Ultrasound; Hubei Provincial Maternal and Child Healthcare Hospital; Wuhan Hubei China
| | - Jiaxiang Yang
- Department of Ultrasound; Sichuan Provincial Maternal and Child Healthcare Hospital; Chengdu Sichuan China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Ping Yuan
- West China School of Public Health, Sichuan University; Chengdu Sichuan China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| |
Collapse
|
7
|
6-Hydroxydopamine impairs mitochondrial function in the rat model of Parkinson's disease: respirometric, histological, and behavioral analyses. J Neural Transm (Vienna) 2014; 121:1245-57. [PMID: 24627045 DOI: 10.1007/s00702-014-1185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/23/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial defects have been shown to be associated with the pathogenesis of Parkinson's disease (PD). Yet, experience in PD research linking mitochondrial dysfunction, e.g., deregulation of oxidative phosphorylation, with neuronal degeneration and behavioral changes is rather limited. Using the 6-hydroxydopamine (6-OHDA) rat model of PD, we have investigated the potential role of mitochondria in dopaminergic neuronal cell death in the substantia nigra pars compacta by high-resolution respirometry. Mitochondrial function was correlated with the time course of disease-related motor behavior asymmetry and dopaminergic neuronal cell loss, respectively. Unilateral 6-OHDA injections (>2.5 μg/2 μl) into the median forebrain bundle induced an impairment of oxidative phosphorylation due to a decrease in complex I activity. This was indicated by increased flux control coefficient. During the period of days 2-21, a progressive decrease in respiratory control ratio of up to -58 % was observed in the lesioned compared to the non-lesioned substantia nigra of the same animals. This decrease was associated with a marked uncoupling of oxidative phosphorylation. Mitochondrial dysfunction, motor behavior asymmetry, and dopaminergic neuronal cell loss correlated with dosage (1.25-5 μg/2 μl). We conclude that high-resolution respirometry may allow the detection of distinct mitochondrial dysfunction as a suitable surrogate marker for the preclinical assessment of potential neuroprotective strategies in the 6-OHDA model of PD.
Collapse
|
8
|
Byeon SE, Yu T, Yang Y, Lee YG, Kim JH, Oh J, Jeong HY, Hong S, Yoo BC, Cho WJ, Hong S, Cho JY. Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues. Free Radic Biol Med 2013; 57:105-18. [PMID: 23290930 DOI: 10.1016/j.freeradbiomed.2012.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/19/2012] [Accepted: 12/18/2012] [Indexed: 12/14/2022]
Abstract
The hydroxylated benzene metabolite hydroquinone (HQ) is mainly generated from benzene, an important industrial chemical, and is also a common dietary component. Although numerous papers have addressed the potential role of HQ in tumorigenic responses, the immunosuppressive and anti-inflammatory effects of hydroquinone have also been considered. In this study, we characterized the mechanism of the induction of hemeoxygenase (HO)-1 and other phase 2 enzymes by HQ and its derivatives. HQ upregulated the mRNA and protein levels of HO-1 by increasing the antioxidant-response element-dependent transcriptional activation of Nrf-2. Src knockdown or deficiency induced via siRNA treatment and infection with a retrovirus expressing shRNA targeting Src, as well as exposure to PP2, a Src kinase inhibitor, strongly abrogated HO-1 expression. Interestingly, HQ directly targeted and bound to the sulfhydryl group of cysteine-483 (C483) and C400 residues of Src, potentially leading to disruption of intracellular disulfide bonds. Src kinase activity was dramatically enhanced by mutation of these cysteine sites, implying that these sites may play an important role in the regulation of Src kinase activity. Therefore, our data suggest that Src and, particularly, its C483 target site can be considered as prime molecular targets of the HQ-mediated induction of phase 2 enzymes, which is potentially linked to HO-1-mediated cellular responses such as immunosuppressive and anti-inflammatory actions.
Collapse
Affiliation(s)
- Se Eun Byeon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 446-746, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ionizing Radiation Effects on Cells, Organelles and Tissues on Proteome Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:37-48. [DOI: 10.1007/978-94-007-5896-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Matsuura T, Takimura R, Yamaguchi M, Ichinose M. Estimation of restraint stress in rats using salivary amylase activity. J Physiol Sci 2012; 62:421-7. [PMID: 22753135 PMCID: PMC10716983 DOI: 10.1007/s12576-012-0219-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022]
Abstract
The rat is an ideal model animal for studying physical and psychological stresses. Recent human studies have shown that salivary amylase activity is a useful biomarker of stress in our social life. To estimate the usefulness of amylase activity as a biomarker of stress in rats, we analyzed changes in physiological parameters including amylase activity and anatomical variables, which were induced by a mild restraint of paws (10 min, 3 times/week, 9 weeks). The quantities of food and water intake and excretion amount of the stress rats were smaller than those of the control rats during the experimental period (5-13 weeks). The body weight of the stress rats decreased compared with that of the control rats. Moreover, the enlargement of the adrenal gland was confirmed in the stress rats, indicating that the mild restraint caused a chronic stress response. The amylase activities of the stress rats were significantly greater than those of the control rats at 5 weeks of age. However, the amylase activity of the stress rats decreased compared with that of the control rats after 6 weeks of age. These results indicate that amylase activity is increased by acute stress and reduced by chronic stress, which is caused by repeated restraint stress. In conclusion, amylase activity is a useful biomarker of acute and chronic stresses in rats.
Collapse
Affiliation(s)
- Tetsuya Matsuura
- Department of Welfare Engineering, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan.
| | | | | | | |
Collapse
|
11
|
Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 2011; 11:3299-311. [DOI: 10.1002/pmic.201100178] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Shimada S, Hirabayashi M, Ishige K, Kosuge Y, Kihara T, Ito Y. Activation of dopamine D4 receptors is protective against hypoxia/reoxygenation-induced cell death in HT22 cells. J Pharmacol Sci 2010; 114:217-24. [PMID: 20921819 DOI: 10.1254/jphs.10134fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Several reports have shown that some dopamine receptor ligands modulate the ischemia-reperfusion injury in animal models; however, its underling mechanisms are still unclear. In this study, we sought to establish an in vitro experimental model of hypoxia/reoxygenation (H/R) using HT22 cells that originated from mouse hippocampal neurons and to examine protective the effect of dopamine-receptor ligands against H/R-induced cell injury. The treatment with hypoxia for 18 h followed by reoxygenation for 6 h induced the elevation of intracellular reactive oxygen species (ROS) and reduction of mitochondrial membrane potential; however, lactate dehydrogenase (LDH) release was not changed at this time point. LDH release was increased after reoxygenation for 18 h and longer, and this increase in LDH release was suppressed by dopamine receptor agonists such as apomorphine and apocodeine. The suppressive effects of these agonists were reversibly inhibited by L750667, a D(4)-receptor antagonist but not by D(2)- or D(3)-receptor antagonists. In addition, PD168077, a selective dopamine D(4)-receptor agonist, also protected against H/R-induced cell death. These results suggest that H/R causes oxidative stress-induced cell death and that the activation of dopamine D(4) receptors protects against H/R-induced cell death in HT22 cells.
Collapse
Affiliation(s)
- Saori Shimada
- Research Unit of Pharmacology, Department of Clinical Pharmacy, School of Pharmacy, Nihon University, Japan
| | | | | | | | | | | |
Collapse
|
13
|
A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 2010; 38:841-60. [DOI: 10.1042/bst0380841] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In addition to their normal physiological role in ATP production and metabolism, mitochondria exhibit a dark side mediated by the opening of a non-specific pore in the inner mitochondrial membrane. This mitochondrial permeability transition pore (MPTP) causes the mitochondria to breakdown rather than synthesize ATP and, if unrestrained, leads to necrotic cell death. The MPTP is opened in response to Ca2+ overload, especially when accompanied by oxidative stress, elevated phosphate concentration and adenine nucleotide depletion. These conditions are experienced by the heart and brain subjected to reperfusion after a period of ischaemia as may occur during treatment of a myocardial infarction or stroke and during heart surgery. In the present article, I review the properties, regulation and molecular composition of the MPTP. The evidence for the roles of CyP-D (cyclophilin D), the adenine nucleotide translocase and the phosphate carrier are summarized and other potential interactions with outer mitochondrial membrane proteins are discussed. I then review the evidence that MPTP opening mediates cardiac reperfusion injury and that MPTP inhibition is cardioprotective. Inhibition may involve direct pharmacological targeting of the MPTP, such as with cyclosporin A that binds to CyP-D, or indirect inhibition of MPTP opening such as with preconditioning protocols. These invoke complex signalling pathways to reduce oxidative stress and Ca2+ load. MPTP inhibition also protects against congestive heart failure in hypertensive animal models. Thus the MPTP is a very promising pharmacological target for clinical practice, especially once more specific drugs are developed.
Collapse
|
14
|
Khaliulin I, Parker JE, Halestrap AP. Consecutive pharmacological activation of PKA and PKC mimics the potent cardioprotection of temperature preconditioning. Cardiovasc Res 2010; 88:324-33. [PMID: 20558443 PMCID: PMC2952531 DOI: 10.1093/cvr/cvq190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims Temperature preconditioning (TP) provides very powerful protection against ischaemia/reperfusion. Understanding the signalling pathways involved may enable the development of effective pharmacological cardioprotection. We investigated the interrelationship between activation of protein kinase A (PKA) and protein kinase C (PKC) in the signalling mechanisms of TP and developed a potent pharmacological intervention based on this mechanism. Methods and results Isolated rat hearts were subjected to TP, 30 min global ischaemia, and 60 min reperfusion. Other control and TP hearts were perfused with either sotalol (β-adrenergic blocker) or H-89 (PKA inhibitor). Some hearts were pre-treated with either isoproterenol (β-adrenergic agonist) or adenosine (PKC activator) that were given alone, simultaneously, or sequentially. Pre-treatment with isoproterenol, adenosine, and the consecutive isoproterenol/adenosine treatment was also combined with the PKC inhibitor chelerythrine. Cardioprotection was evaluated by haemodynamic function recovery, lactate dehydrogenase release, measurement of mitochondrial permeability transition pore opening, and protein carbonylation during reperfusion. Cyclic AMP and PKA activity were increased in TP hearts. H-89 and sotalol blocked the cardioprotective effect of TP and TP-induced PKC activation. Isoproterenol, adenosine, and the consecutive treatment increased PKC activity during pre-ischaemia. Isoproterenol significantly reduced myocardial glycogen content. Isoproterenol and adenosine, alone or simultaneously, protected hearts but the consecutive treatment gave the highest protection. Cardioprotective effects of adenosine were completely blocked by chelerythrine but those of the consecutive treatment only attenuated. Conclusion The signal transduction pathway of TP involves PKA activation that precedes PKC activation. Pharmacologically induced consecutive PKA/PKC activation mimics TP and induces extremely potent cardioprotection.
Collapse
Affiliation(s)
- Igor Khaliulin
- Department of Biochemistry and the Bristol Heart Institute, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
15
|
Abstract
Relatively low levels of reactive oxygen species (ROS) produced inside resting skeletal muscles play important functions in cell signaling. When ROS production increases to levels beyond the buffering capacity of muscle antioxidant systems, a state of oxidative stress develops, which leads to skeletal muscle contractile dysfunction. A clear association between oxidative stress and depressed skeletal muscle performance has been described in several acute and chronic conditions, such as systemic inflammation and chronic obstructive lung diseases. The observation that the levels of oxidant-derived posttranslational protein modifications, including protein carbonylation, are elevated inside skeletal muscle fibers when oxidative stress develops suggest that these modifications play important roles in regulating muscle function. This proposal is supported by recent studies that unveiled that several myofilament (myosin heavy chain and actin), mitochondrial (aconitase, creatine kinase), and cytosolic (enolase, aldolase and glyceraldehyde 3-phosphate dehydrogenase and carbonic anhydrase III) proteins are carbonylated inside skeletal muscle fibers in many animal models of muscle dysfunction, and in humans with impaired skeletal muscle contractility. However, the functional importance of carbonylation in determining the function of muscle-specific proteins and the precise contribution of carbonylation-induced dysfunction of these proteins to overall muscle contractile deficit in various pathologies remain to be determined.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department, IMIM-Hospital del Mar, Catalonia, Spain
| | | |
Collapse
|
16
|
Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1402-15. [PMID: 19168026 DOI: 10.1016/j.bbabio.2008.12.017] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 01/17/2023]
Abstract
Like Dr. Jeckyll and Mr. Hyde, mitochondria possess two distinct persona. Under normal physiological conditions they synthesise ATP to meet the energy needs of the beating heart. Here calcium acts as a signal to balance the rate of ATP production with ATP demand. However, when the heart is overloaded with calcium, especially when this is accompanied by oxidative stress, mitochondria embrace their darker side, and induce necrotic cell death of the myocytes. This happens acutely in reperfusion injury and chronically in congestive heart failure. Here calcium overload, adenine nucleotide depletion and oxidative stress combine forces to induce the opening of a non-specific pore in the mitochondrial membrane, known as the mitochondrial permeability transition pore (mPTP). The molecular nature of the mPTP remains controversial but current evidence implicates a matrix protein, cyclophilin-D (CyP-D) and two inner membrane proteins, the adenine nucleotide translocase (ANT) and the phosphate carrier (PiC). Inhibition of mPTP opening can be achieved with inhibitors of each component, but targeting CyP-D with cyclosporin A (CsA) and its non-immunosuppressive analogues is the best described. In animal models, inhibition of mPTP opening by either CsA or genetic ablation of CyP-D provides strong protection from both reperfusion injury and congestive heart failure. This confirms the mPTP as a promising drug target in human cardiovascular disease. Indeed, the first clinical trials have shown CsA treatment improves recovery after treatment of a coronary thrombosis with angioplasty.
Collapse
Affiliation(s)
- Andrew P Halestrap
- Department of Biochemistry and Bristol Heart Institute, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
17
|
Halestrap AP. Mitochondria and reperfusion injury of the heart--a holey death but not beyond salvation. J Bioenerg Biomembr 2009; 41:113-21. [PMID: 19357938 DOI: 10.1007/s10863-009-9206-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of calcium overload and oxidative stress opens a non-specific pore in the inner mitochondrial membrane known as the mitochondrial permeability transition pore (MPTP). This uncouples oxidative phosphorylation and compromises intracellular ATP levels eventually leading to necrotic cell death. In cardiac ischemia and reperfusion, as during treatment of a coronary thrombosis or cardiac surgery, the extent of MPTP opening determines the amount of irreversible damage (infarct size). Furthermore, cardioprotection can be achieved by inhibiting MPTP opening either directly with cyclosporin A analogues, or indirectly by reducing oxidative stress. The detailed molecular mechanism of the MPTP remains uncertain. Knockout studies have confirmed important regulatory roles for cyclophilin-D (CyP-D) and the adenine nucleotide translocase (ANT) but not the voltage dependent anion channel. Our own studies have implicated a calcium-triggered conformational change of the mitochondrial phosphate carrier that is facilitated by CyP-D and modulated by the conformation of the ANT.
Collapse
Affiliation(s)
- Andrew P Halestrap
- The Department of Biochemistry and The Bristol Heart Institute, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
18
|
Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP. Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 2008; 102:1082-90. [PMID: 18356542 DOI: 10.1161/circresaha.107.167072] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of mitochondrial permeability transition pore (MPTP) opening at reperfusion is critical for cardioprotection by ischemic preconditioning (IP). Some studies have implicated mitochondrial protein phosphorylation in this effect. Here we confirm that mitochondria rapidly isolated from preischemic control and IP hearts show no significant difference in calcium-mediated MPTP opening, whereas IP inhibits MPTP opening in mitochondria isolated from IP hearts following 30 minutes of global normothermic ischemia or 3 minutes of reperfusion. Analysis of protein phosphorylation in density-gradient purified mitochondria was performed using both 2D and 1D electrophoresis, with detection of phosphoproteins using Pro-Q Diamond or phospho-amino-specific antibodies. Several phosphoproteins were detected, including voltage-dependent anion channels isoforms 1 and 2, but none showed significant IP-mediated changes either before ischemia or during ischemia and reperfusion, and neither Western blotting nor 2D fluorescence difference gel electrophoresis detected translocation of protein kinase C (alpha, epsilon, or delta isoforms), glycogen synthase kinase 3beta, or Akt to the mitochondria following IP. In freeze-clamped hearts, changes in phosphorylation of GSK3beta, Akt, and AMP-activated protein kinase were detected following ischemia and reperfusion but no IP-mediated changes correlated with MPTP inhibition or cardioprotection. However, measurement of mitochondrial protein carbonylation, a surrogate marker for oxidative stress, suggested that a reduction in mitochondrial oxidative stress at the end of ischemia and during reperfusion may account for IP-mediated inhibition of MPTP. The signaling pathways mediating this effect and maintaining it during reperfusion are discussed.
Collapse
Affiliation(s)
- Samantha J Clarke
- Department of Biochemistry and the Bristol Heart Institute, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Ramu E, Korach A, Houminer E, Schneider A, Elami A, Schwalb H. Dexrazoxane prevents myocardial ischemia/reperfusion-induced oxidative stress in the rat heart. Cardiovasc Drugs Ther 2007; 20:343-8. [PMID: 17119874 DOI: 10.1007/s10557-006-0497-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Dexrazoxane (Dex), used clinically to protect against anthracycline-induced cardiotoxicity, possesses iron-chelating properties. The present study was designed to examine whether Dex could inhibit the ischemia/reperfusion (I/R) induced damage to the rat heart. MATERIALS AND METHODS Isolated perfused rat hearts were exposed to global ischemia (37 degrees C) and 60 min reperfusion. Dex was perfused for 10 min prior to the ischemia, or administered intraperitoneally (150 mg) 30 min prior to anesthesia of the rats. I/R caused a significant hemodynamic function decline in control hearts during the reperfusion (e.g., the work index LVDP X HR declined to 42.7+/-10%). Dex (200 microM) applied during the preischemia significantly increased the hemodynamic recovery following reperfusion (LVDP X HR recovered to 55.7+/-8.8%, p<0.05 vs. control). Intraperitoneal Dex, too, significantly increased the hemodynamic recovery of the reperfused hearts. I/R caused an increase in oxidation of cytosolic proteins, while Dex decreased this oxidation. DISCUSSION The decrease in proteins carbonylation and correlative hemodynamic improvement suggests that Dex decreases I/R free radical formation and reperfusion injury.
Collapse
Affiliation(s)
- Eyal Ramu
- The Joseph Lunenfeld Cardiac Surgery Research Center, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Khaliulin I, Clarke SJ, Lin H, Parker J, Suleiman MS, Halestrap AP. Temperature preconditioning of isolated rat hearts--a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. J Physiol 2007; 581:1147-61. [PMID: 17395631 PMCID: PMC1976396 DOI: 10.1113/jphysiol.2007.130369] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We investigate whether temperature preconditioning (TP), induced by short-term hypothermic perfusion and rewarming, may protect hearts against ischaemic/reperfusion injury like ischaemic preconditioning (IP). Isolated rat hearts were perfused for 40 min, followed by 25 min global ischaemia and 60 min reperfusion (37 degrees C). During pre-ischaemia, IP hearts underwent three cycles of 2 min global ischaemia and 3 min reperfusion at 37 degrees C, whereas TP hearts received three cycles of 2 min hypothermic perfusion (26 degrees C) interspersed by 3 min normothermic perfusion. Other hearts received a single 6 min hypothermic perfusion (SHP) before ischaemia. Both IP and TP protocols increased levels of high energy phosphates in the pre-ischaemic heart. During reperfusion, TP improved haemodynamic recovery, decreased arrhythmias and reduced necrotic damage (lactate dehydrogenase release) more than IP or SHP. Measurements of tissue NAD+ levels and calcium-induced swelling of mitochondria isolated at 3 min reperfusion were consistent with greater inhibition of the mitochondrial permeability transition at reperfusion by TP than IP; this correlated with decreased protein carbonylation, a surrogate marker for oxidative stress. TP increased protein kinase Cepsilon (PKCepsilon) translocation to the particulate fraction and pretreatment with chelerythrine (PKC inhibitor) blocked the protective effect of TP. TP also increased phosphorylation of AMP-activated protein kinase (AMPK) after 5 min index ischaemia, but not before ischaemia. Compound C (AMPK inhibitor) partially blocked cardioprotection by TP, suggesting that both PKC and AMPK may mediate the effects of TP. The presence of N-(2-mercaptopropionyl) glycine during TP also abolished cardioprotection, indicating an involvement of free radicals in the signalling mechanism.
Collapse
Affiliation(s)
- Igor Khaliulin
- Department of Biochemistry, Bristol Heart Institute, University of Bristol, UK
| | | | | | | | | | | |
Collapse
|
21
|
Khaliulin I, Schneider A, Houminer E, Borman JB, Schwalb H. Apomorphine-induced myocardial protection is due to antioxidant and not adrenergic/dopaminergic effects. Free Radic Biol Med 2006; 40:1713-20. [PMID: 16678010 DOI: 10.1016/j.freeradbiomed.2006.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 10/17/2005] [Accepted: 01/03/2006] [Indexed: 12/01/2022]
Abstract
Apomorphine (Apo), a dopaminergic agonist used for treatment of Parkinson disease, is a potent antioxidant. In addition to its antioxidative effects, the dopaminergic and adrenergic effects of Apo were studied. Isolated perfused rat hearts were exposed to 25 min of no-flow global ischemia (37 degrees C) and 60 min of reperfusion (I/R, control). Drugs were introduced for the first 20 min of reperfusion. The LVDP of the control group recovered to 54.6 +/- 3.3%. Apo-treated hearts had significantly improved recovery (61.6 +/- 5%, p < 0.05). The recovery of the work index LVDP x HR was even bigger: 67.8 +/- 3.7% (Apo treatment) vs 41.7 +/- 4.6% (control, p < 0.001). Haloperidol, a dopaminergic antagonist, did not affect the recovery with Apo. Propranolol, a beta-adrenergic blocker, initially inhibited the effect of Apo. However, the recovery of the combined group (Apo + propranolol) increased and reached significance (LVDP, p < 0.05 vs control group) after cessation of propranolol perfusion. At 60 min of reperfusion this group was superior to Apo-treated hearts (LVDP, p < 0.05). Propranolol (without Apo) did not improve the hemodynamic recovery. The same pattern of recovery applies also to the recovery of the +dP/dt during the reperfusion. L-DOPA was less effective than Apo. I/R caused significant increase in carbonylation of proteins. Apomorphine inhibited the increase in carbonylation. Haloperidol did not affect this beneficial effect of Apo. L-DOPA significantly decreased the carbonylation of proteins. We conclude that the antioxidative effect of Apo is its main mechanism of cardioprotection.
Collapse
Affiliation(s)
- Igor Khaliulin
- The Joseph Lunenfeld Cardiac Surgery Research Center, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|