1
|
Zhang D, Yuan R, Pan J, Fan Q, Sun K, Xu Z, Gao X, Wang Q, He J, Ye Y, Mu Z, Leng J, Gao H. Dihydrotanshinone Triggers Porimin-Dependent Oncosis by ROS-Mediated Mitochondrial Dysfunction in Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11953. [PMID: 37569328 PMCID: PMC10419281 DOI: 10.3390/ijms241511953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer death. Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer diagnoses. Dihydrotanshinone (DHT) is a compound extract from Salvia miltiorrhiza, which has favorable anti-inflammatory and anti-cancer activities. However, the role of DHT in NSCLC has not been fully studied. The anti-cancer drugs used for treating lung cancer often lead to apoptosis; however, the drug resistance of apoptosis restricts the effect of these drugs. Oncosis is a passive form of cell death that is different from apoptosis. It is characterized by cell swelling, and Porimin is a specific marker for oncosis. In this study, the role of DHT in mediating oncosis in A549 cells was investigated. In vitro, the MTS assay was used to detect cell activity after DHT treatment. Microscopy and electron microscopy were used to observe cell morphology changes. Western blotting was used to detect protein expression. Flow cytometry was used to detect intracellular reactive oxygen species (ROS) level, calcium ion (Ca2+) level, and cell mortality. The intracellular Lactic dehydrogenase (LDH) level was detected by an LDH detection kit after DHT treatment. The ATP level was detected using an ATP detection kit. In vivo, Lewis lung cancer (LLC) xenograft mice were used to evaluate the anti-tumor effect of DHT. Hematoxylin and eosin (HE) staining was used to detect the pathology of lung cancer tumors. The detection of Porimin in the tumor tissues of the mice after DHT administration was assessed by immunohistochemistry (IHC). The results of this study showed that DHT treatment changed the cell morphology; destroyed the mitochondrial structure; increased the expression of Porimin; increased the levels of LDH, ROS, and Ca2+; decreased the mitochondrial membrane potential and ATP level; and played an anti-tumor role in vitro by mediating oncosis in A549 cells. The in vivo studies showed that DHT could effectively inhibit tumor growth. The results of protein detection and IHC detection in the tumor tissues showed that the expression of Porimin was increased and that oncosis occurred in the tumor tissues of mice. DHT triggered Porimin-dependent oncosis by ROS-mediated mitochondrial dysfunction in NSCLC. The in vivo studies showed that DHT could inhibit tumor growth in LLC xenograft mice by triggering oncosis. This study indicates the potential for DHT to treat NSCLC.
Collapse
Affiliation(s)
- Dongjie Zhang
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiaping Pan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qiumei Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhipeng Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiang Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qinqin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yaqing Ye
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhengrong Mu
- College of Basic Medical, Guangxi Medical University, Nanning 530200, China
| | - Jing Leng
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
2
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
3
|
Yen CC, Chang WH, Tung MC, Chen HL, Liu HC, Liao CH, Lan YW, Chong KY, Yang SH, Chen CM. Lactoferrin Protects Hyperoxia-Induced Lung and Kidney Systemic Inflammation in an In Vivo Imaging Model of NF-κB/Luciferase Transgenic Mice. Mol Imaging Biol 2019; 22:526-538. [DOI: 10.1007/s11307-019-01390-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Fratantonio D, Cimino F, Speciale A, Virgili F. Need (more than) two to Tango: Multiple tools to adapt to changes in oxygen availability. Biofactors 2018; 44:207-218. [PMID: 29485192 DOI: 10.1002/biof.1419] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
Oxygen is a fundamental element for the life of a large number of living organisms allowing an efficient energetic utilization of substrates. Organisms relying on oxygen evolved complex structures for oxygen delivery and biochemical machineries dealing with its safe utilization and the ability to overcome the potentially harmful consequences of changes in oxygen availability. On fact, cells composing complex Eukaryotic organisms are set to live within an optimum narrow range of oxygen, quite specific for each cell type. Minute modifications of oxygen availability, either positive or negative, induce the expression of specific genes, the major actors of this responses being the transcription factors HIF and Nrf2 that control the attempt to cope with low oxygen (hypoxia) or to either high oxygen or to an oxygen "overflow," respectively. This review describes the interaction between these two transcription factors and their interaction with the transcription factor NF-κB acting as a pivotal determinant of final cell response. © 2018 BioFactors, 44(3):207-218, 2018.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics-Food and Nutrition Research Centre (CREA-AN), Rome, Italy
| |
Collapse
|
5
|
Abstract
The transcription factor nuclear factor-κB (NF-κB) modulates gene expression in diverse cellular processes such as innate immune response, embryogenesis and organ development, cell proliferation and apoptosis, and stress responses to a variety of noxious stimuli. When cellular production of reactive oxygen species (ROS) overwhelms its antioxidant capacity, it leads to a state of oxidative stress, which in turn contributes to the pathogenesis of several human diseases. Different models of oxidative stress have been studied to elucidate the effects of oxidant stress on NF-κB related activities. ROS can both activate and repress NF-κB signaling in a phase and context dependent manner. The NF-κB pathway can have both anti- and pro-oxidant roles in the setting of oxidative stress. In this review, we focus on role of oxidative stress on different mediators of the NF-κB pathway, and the role of NF-κB activation in the modulation of oxidative stress. A greater understanding of the complex interplay between the NF-κB signaling and oxidative stress may lead to the development of therapeutic strategies for the treatment of a myriad of human diseases for which oxidative stress has an etiologic role.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA. Address: 1102 Bates Avenue, MC: FC530.01, Houston, Texas 77030
| |
Collapse
|
6
|
Narala VR, Fukumoto J, Hernández-Cuervo H, Patil SS, Krishnamurthy S, Breitzig M, Galam L, Soundararajan R, Lockey RF, Kolliputi N. Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018; 314:L860-L870. [PMID: 29388469 DOI: 10.1152/ajplung.00365.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Critically ill patients are commonly treated with high levels of oxygen, hyperoxia, for prolonged periods of time. Unfortunately, extended exposure to hyperoxia can exacerbate respiratory failure and lead to a high mortality rate. Mitochondrial A-kinase anchoring protein (Akap) has been shown to regulate mitochondrial function. It has been reported that, under hypoxic conditions, Akap121 undergoes proteolytic degradation and promotes cardiac injury. However, the role of Akap1 in hyperoxia-induced acute lung injury (ALI) is largely unknown. To address this gap in our understanding of Akap1, we exposed wild-type ( wt) and Akap1-/- mice to 100% oxygen for 48 h, a time point associated with lung damage in the murine model of ALI. We found that under hyperoxia, Akap1-/- mice display increased levels of proinflammatory cytokines, immune cell infiltration, and protein leakage in lungs, as well as increased alveolar capillary permeability compared with wt controls. Further analysis revealed that Akap1 deletion enhances lung NF-κB p65 activity as assessed by immunoblotting and DNA-binding assay and mitochondrial autophagy-related markers, PINK1 and Parkin. Ultrastructural analysis using electron microscopy revealed that Akap1 deletion was associated with remarkably aberrant mitochondria and lamellar bodies in type II alveolar epithelial cells. Taken together, these results demonstrate that Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Venkata Ramireddy Narala
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida.,Department of Zoology, Yogi Vemana University, Kadapa, India
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sudarshan Krishnamurthy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
7
|
Differential sex-specific effects of oxygen toxicity in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2017; 486:431-437. [PMID: 28315681 DOI: 10.1016/j.bbrc.2017.03.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 11/21/2022]
Abstract
Despite the well-established sex-specific differences in the incidence of bronchopulmonary dysplasia (BPD), the molecular mechanism(s) behind these are not completely understood. Pulmonary angiogenesis is critical for alveolarization and arrest in vascular development adversely affects lung development. Human neonatal umbilical vein endothelial cells (HUVECs) provide a robust in vitro model for the study of endothelial cell physiology and function. Male and Female HUVECs were exposed to room air (21% O2, 5% CO2) or hyperoxia (95% O2, 5% CO2) for up to 72 h. Cell viability, proliferation, H2O2 production and angiogenesis were analyzed. Sex-specific differences in the expression of VEGFR2 and modulation of NF-kappa B pathway were measured. Male HUVECs have decreased survival, greater oxidative stress and impairment in angiogenesis compared to similarly exposed female cells. There is differential expression of VEGFR2 between male and female HUVECs and greater activation of the NF-kappa B pathway in female HUVECs under hyperoxic conditions. The results indicate that sex differences exist between male and female HUVECs in vitro after hyperoxia exposure. Since endothelial dysfunction has a major role in the pathogenesis of BPD, these differences could explain in part the mechanisms behind sex-specific differences in the incidence of this disease.
Collapse
|
8
|
Wu J, Ravikumar P, Nguyen KT, Hsia CCW, Hong Y. Lung protection by inhalation of exogenous solubilized extracellular matrix. PLoS One 2017; 12:e0171165. [PMID: 28151947 PMCID: PMC5289529 DOI: 10.1371/journal.pone.0171165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 01/29/2023] Open
Abstract
Decellularized extracellular matrix (ECM) contains complex tissue-specific components that work in concert to promote tissue repair and constructive remodeling and has been used experimentally and clinically to accelerate epithelial wound repair, leading us to hypothesize that lung-derived ECM could mitigate acute lung injury. To explore the therapeutic potential of ECM for noninvasive delivery to the lung, we decellularized and solubilized porcine lung ECM, then characterized the composition, concentration, particle size and stability of the preparation. The ECM preparation at 3.2 mg/mL with average particle size <3 μm was tested in vitro on human A549 lung epithelial cells exposed to 95% O2 for 24 hours, and in vivo by tracheal instillation or nebulization into the lungs of rats exposed intermittently or continuously to 90% O2 for a cumulative 72 hours. Our results showed that the preparation was enriched in collagen, reduced in glycosaminoglycans, and contained various bioactive molecules. Particle size was concentration-dependent. Compared to the respective controls treated with cell culture medium in vitro or saline in vivo, ECM inhalation normalized cell survival and alveolar morphology, and reduced hyperoxia-induced apoptosis and oxidative damage. This proof-of-concept study established the methodology, feasibility and therapeutic potential of exogenous solubilized ECM for pulmonary cytoprotection, possibly as an adjunct or potentiator of conventional therapy.
Collapse
Affiliation(s)
- Jinglei Wu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
- Joint Graduate Program in Biomedical Engineering between University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Priya Ravikumar
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
- Joint Graduate Program in Biomedical Engineering between University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Connie C. W. Hsia
- Joint Graduate Program in Biomedical Engineering between University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
- Joint Graduate Program in Biomedical Engineering between University of Texas at Arlington and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
9
|
Ulker P. The effect of acute and short term normobaric hyperoxia on hemorheologic parameters. Biorheology 2016; 53:171-177. [PMID: 27567747 DOI: 10.3233/bir-16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Backround:Possible toxic effects of hyperoxia have been reported previously. However, the number of studies investigating the influence of hyperoxia on blood cells is limited and there are no data regarding its hemorheological effects. OBJECTIVE The aim of this study was to investigate the effects of acute hyperoxia, performed in human subjects at normal atmospheric pressure, on the rheological properties of blood. METHOD The study was conducted with 12 brain death patients mechanically ventilated in the intensive care unit. The patients were ventilated with 21%, 40%, and 100% oxygen before induction of apnea testing performed for diagnosis of brain death. Blood samples were obtained at each oxygen concentration value for all patients. RESULT The results of the study indicated no significant change of red blood cell aggregation, deformability and plasma or whole blood viscosity associated with acute hyperoxia at normobaric conditions. CONCLUSION The results of the study suggest that application of normobaric hyperoxia does not have detrimental effects on hemorheological parameters in brain death patients, and that organs considered for donation from such subjects are not adversely affected by abnormalities of blood flow and tissue perfusion.
Collapse
Affiliation(s)
- Pinar Ulker
- Department of Physiology, Medical Faculty, Akdeniz University, Kampus, 07070, Antalya, Turkey. Tel.: +90 242 2496960; Fax: +90 242 2274483; E-mail:
| |
Collapse
|
10
|
Knockdown of placental growth factor (PLGF) mitigates hyperoxia-induced acute lung injury in neonatal rats: Suppressive effects on NFκB signaling pathway. Int Immunopharmacol 2016; 38:167-74. [DOI: 10.1016/j.intimp.2016.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022]
|
11
|
Lingappan K, Jiang W, Wang L, Moorthy B. Sex-specific differences in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311:L481-93. [PMID: 27343189 DOI: 10.1152/ajplung.00047.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Male sex is considered an independent predictor for the development of bronchopulmonary dysplasia (BPD) after adjusting for other confounders. BPD is characterized by an arrest in lung development with marked impairment of alveolar septation and vascular development. The reasons underlying sexually dimorphic outcomes in premature neonates are not known. In this investigation, we tested the hypothesis that male neonatal mice will be more susceptible to hyperoxic lung injury and will display larger arrest in lung alveolarization. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% FiO2, postnatal day (PND) 1-5] and euthanized on PND 7 and 21. Extent of alveolarization, pulmonary vascularization, inflammation, and modulation of the NF-κB pathway were determined and compared with room air controls. Macrophage and neutrophil infiltration was significantly increased in hyperoxia-exposed animals but was increased to a larger extent in males compared with females. Lung morphometry showed a higher mean linear intercept (MLI) and a lower radial alveolar count (RAC) and therefore greater arrest in lung development in male mice. This was accompanied by a significant decrease in the expression of markers of angiogenesis (PECAM1 and VEGFR2) in males after hyperoxia exposure compared with females. Interestingly, female mice showed increased activation of the NF-κB pathway in the lungs compared with males. These results support the hypothesis that sex plays a crucial role in hyperoxia-mediated lung injury in this model. Elucidation of the sex-specific molecular mechanisms may aid in the development of novel individualized therapies to prevent/treat BPD.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Helmerhorst HJF, Schultz MJ, van der Voort PHJ, de Jonge E, van Westerloo DJ. Bench-to-bedside review: the effects of hyperoxia during critical illness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:284. [PMID: 26278383 PMCID: PMC4538738 DOI: 10.1186/s13054-015-0996-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxygen administration is uniformly used in emergency and intensive care medicine and has life-saving potential in critical conditions. However, excessive oxygenation also has deleterious properties in various pathophysiological processes and consequently both clinical and translational studies investigating hyperoxia during critical illness have gained increasing interest. Reactive oxygen species are notorious by-products of hyperoxia and play a pivotal role in cell signaling pathways. The effects are diverse, but when the homeostatic balance is disturbed, reactive oxygen species typically conserve a vicious cycle of tissue injury, characterized by cell damage, cell death, and inflammation. The most prominent symptoms in the abundantly exposed lungs include tracheobronchitis, pulmonary edema, and respiratory failure. In addition, absorptive atelectasis results as a physiological phenomenon with increasing levels of inspiratory oxygen. Hyperoxia-induced vasoconstriction can be beneficial during vasodilatory shock, but hemodynamic changes may also impose risk when organ perfusion is impaired. In this context, oxygen may be recognized as a multifaceted agent, a modifiable risk factor, and a feasible target for intervention. Although most clinical outcomes are still under extensive investigation, careful titration of oxygen supply is warranted in order to secure adequate tissue oxygenation while preventing hyperoxic harm.
Collapse
Affiliation(s)
- Hendrik J F Helmerhorst
- Department of Intensive Care Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300 RC, The Netherlands. .,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.,Department of Intensive Care Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Peter H J van der Voort
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Oosterpark 9, Amsterdam, 1091 AZ, The Netherlands.,TIAS School for Business and Society, Tilburg University, Warandelaan 2, Tilburg, 5000 LE, The Netherlands
| | - Evert de Jonge
- Department of Intensive Care Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| | - David J van Westerloo
- Department of Intensive Care Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| |
Collapse
|
13
|
Villalta PC, Townsley MI. Transient receptor potential channels and regulation of lung endothelial permeability. Pulm Circ 2014; 3:802-15. [PMID: 25006396 DOI: 10.1086/674765] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
This review highlights our current knowledge regarding expression of transient receptor potential (TRP) cation channels in lung endothelium and evidence for their involvement in regulation of lung endothelial permeability. Six mammalian TRP families have been identified and organized on the basis of sequence homology: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin). To date, only TRPC1/4, TRPC6, TRPV4, and TRPM2 have been extensively studied in lung endothelium. Calcium influx through each of these channels has been documented to increase lung endothelial permeability, although their channel-gating mechanisms, downstream signaling mechanisms, and impact on endothelial structure and barrier integrity differ. While other members of the TRPC, TRPV, and TRPM families may be expressed in lung endothelium, we have little or no evidence linking these to regulation of lung endothelial permeability. Further, neither the expression nor functional role(s) of any TRPML, TRPP, and TRPA family members has been studied in lung endothelium. In addition to this assessment organized by TRP channel family, we also discuss TRP channels and lung endothelial permeability from the perspective of lung endothelial heterogeneity, using outcomes of studies focused on TRPC1/4 and TRPV4 channels. The diversity within the TRP channel family and the relative paucity of information regarding roles of a number of these channels in lung endothelium make this field ripe for continued investigation.
Collapse
Affiliation(s)
- Patricia C Villalta
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mary I Townsley
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
14
|
Bao XC, Fang YQ, You P, Zhang S, Ma J. Protective role of peroxisome proliferator-activated receptor β/δ in acute lung injury induced by prolonged hyperbaric hyperoxia in rats. Respir Physiol Neurobiol 2014; 199:9-18. [PMID: 24780550 DOI: 10.1016/j.resp.2014.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-β/δ is a transcription factor that belongs to the PPAR family, but the role of PPAR-β/δ in acute lung injury (ALI) induced by hyperbaric oxygen is unknown. In this study we investigated if PPAR-β/δ activation protects from hyperoxia-induced ALI in a rat model. ALI was induced by prolonged hyperbaric oxygen (HBO2) (2.3ATA, 100% O2) for 8h. Administration of PPAR-β/δ agonist GW0742 (0.3mg/kg, i.p.) at 1 and 6h prior to HBO2 exposure significantly reduced the (1) lung injury, (2) proinflammatory cytokines (TNF-α, IL-1β, IL-6), (3) apoptosis (Bax/Bcl-2, cleaved-caspase-3 and TUNEL), (4) nuclear factor (NF)-κB expression level and DNA binding activity in the nucleus, and (5) extracellular signal-regulated kinase (ERK)1/2 phosphorylation and markedly elevated (6) superoxide dismutase and glutathione peroxidase activities as well as (7) IκB expression. However, administration of the PPAR-β/δ antagonist GSK0660 abolished these protective effects. These findings indicate that activation of PPAR-β/δ ameliorates hyperoxia-induced ALI in rats by up-regulating antioxidant enzyme activity as well as suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Xiao-Chen Bao
- Department of Diving Medicine, Institute of Naval Medical Research, Shanghai 200433, China
| | - Yi-Qun Fang
- Department of Diving Medicine, Institute of Naval Medical Research, Shanghai 200433, China.
| | - Pu You
- Department of Diving Medicine, Institute of Naval Medical Research, Shanghai 200433, China
| | - Shi Zhang
- Department of Diving Medicine, Institute of Naval Medical Research, Shanghai 200433, China
| | - Jun Ma
- Department of Diving Medicine, Institute of Naval Medical Research, Shanghai 200433, China
| |
Collapse
|
15
|
McKenna S, Michaelis KA, Agboke F, Liu T, Han K, Yang G, Dennery PA, Wright CJ. Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1078-89. [PMID: 24748603 DOI: 10.1152/ajplung.00001.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxygen toxicity contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Neonatal mice exposed to hyperoxia develop a simplified lung structure that resembles BPD. Sustained activation of the transcription factor NF-κB and increased expression of protective target genes attenuate hyperoxia-induced mortality in adults. However, the effect of enhancing hyperoxia-induced NF-κB activity on lung injury and development in neonatal animals is unknown. We performed this study to determine whether sustained NF-κB activation, mediated through IκBβ overexpression, preserves lung development in neonatal animals exposed to hyperoxia. Newborn wild-type (WT) and IκBβ-overexpressing (AKBI) mice were exposed to hyperoxia (>95%) or room air from day of life (DOL) 0-14, after which all animals were kept in room air. Survival curves were generated through DOL 14. Lung development was assessed using radial alveolar count (RAC) and mean linear intercept (MLI) at DOL 3 and 28 and pulmonary vessel density at DOL 28. Lung tissue was collected, and NF-κB activity was assessed using Western blot for IκB degradation and NF-κB nuclear translocation. WT mice demonstrated 80% mortality through 14 days of exposure. In contrast, AKBI mice demonstrated 60% survival. Decreased RAC, increased MLI, and pulmonary vessel density caused by hyperoxia in WT mice were significantly attenuated in AKBI mice. These findings were associated with early and sustained NF-κB activation and expression of cytoprotective target genes, including vascular endothelial growth factor receptor 2. We conclude that sustained hyperoxia-induced NF-κB activation improves neonatal survival and preserves lung development. Potentiating early NF-κB activity after hyperoxic exposure may represent a therapeutic intervention to prevent BPD.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine A Michaelis
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Fadeke Agboke
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thanh Liu
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Kristie Han
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Guang Yang
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phyllis A Dennery
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado;
| |
Collapse
|
16
|
Steer JH, Mann TS, Lo SZY, Inglis JJ, Yap HS, Henry PJ, Joyce DA. Early induction of uncoupling protein-2 in pulmonary macrophages in hyperoxia-associated lung injury. Inhal Toxicol 2014; 25:544-52. [PMID: 23905971 DOI: 10.3109/08958378.2013.810679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT High concentrations of inspired oxygen contribute to the pathogenesis of neonatal bronchopulmonary dysplasia and adult acute respiratory distress syndrome. Animal models of hyperoxia-associated lung injury (HALI) are characterized by enhanced generation of reactive oxygen species (ROS) and an adaptive antioxidant response. ROS contribute to pathogenesis, partly through enhancing pro-inflammatory activity in macrophages. Uncoupling protein-2 (UCP2) is an inner mitochondrial membrane protein whose expression lowers mitochondrial superoxide (O₂ⁱ⁻) production. UCP2, therefore, has potential to contribute to antioxidant response. It is inducible in macrophages. OBJECTIVES AND METHODS We hypothesized that induction of UCP2 occurred in response to pulmonary hyperoxia in vivo and that expression localized to pulmonary macrophages. We then investigated mechanisms of UCP2 regulation in hyperoxia-exposed macrophages in vitro and correlated changing UCP2 expression with mitochondrial membrane potential (Δψm) and O₂ⁱ⁻ production. RESULTS UCP2 is induced in lungs of mice within 1 h of hyperoxia exposure. Induction occurs in pulmonary alveolar macrophages in vivo, and can be replicated in vitro in isolated macrophages. UCP2 mRNA does not change. UCP2 increases quickly after the first hyperoxia-induced burst of mitochondrial O₂ⁱ⁻ generation. Suppression of Δψm and mitochondrial O₂ⁱ⁻ production follow and persist while UCP2 is elevated. DISCUSSION AND CONCLUSIONS Induction of UCP2 is an early response to hyperoxia in pulmonary macrophages. The mechanism is post-transcriptional. UCP2 induction follows a transient rise in mitochondrial ROS generation. The subsequent falls in Δψm and mitochondrial O₂ⁱ⁻ support the notion that regulable UCP2 expression in macrophages acts to contain mitochondrial ROS generation. That, in turn, may limit inappropriate pro-inflammatory activation in HALI.
Collapse
Affiliation(s)
- James H Steer
- School of Medicine & Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury. Redox Biol 2014; 2:314-22. [PMID: 24563849 PMCID: PMC3926109 DOI: 10.1016/j.redox.2014.01.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 01/07/2023] Open
Abstract
Prolonged exposure to hyperoxia results in acute lung injury (ALI), accompanied by a significant elevation in the levels of proinflammatory cytokines and leukocyte infiltration in the lungs. However, the mechanisms underlying hyperoxia-induced proinflammatory ALI remain to be elucidated. In this study, we investigated the role of the proinflammatory cytokine high mobility group box protein 1 (HMGB1) in hyperoxic inflammatory lung injury, using an adult mouse model. The exposure of C57BL/6 mice to ≥99% O2 (hyperoxia) significantly increased the accumulation of HMGB1 in the bronchoalveolar lavage fluids (BALF) prior to the onset of severe inflammatory lung injury. In the airways of hyperoxic mice, HMGB1 was hyperacetylated and existed in various redox forms. Intratracheal administration of recombinant HMGB1 (rHMGB1) caused a significant increase in leukocyte infiltration into the lungs compared to animal treated with a non-specific peptide. Neutralizing anti-HMGB1 antibodies, administrated before hyperoxia significantly attenuated pulmonary edema and inflammatory responses, as indicated by decreased total protein content, wet/dry weight ratio, and numbers of leukocytes in the airways. This protection was also observed when HMGB1 inhibitors were administered after the onset of the hyperoxic exposure. The aliphatic antioxidant, ethyl pyruvate (EP), inhibited HMGB1 secretion from hyperoxic macrophages and attenuated hyperoxic lung injury. Overall, our data suggest that HMGB1 plays a critical role in mediating hyperoxic ALI through the recruitment of leukocytes into the lungs. If these results can be translated to humans, they suggest that HMGB1 inhibitors provide treatment regimens for oxidative inflammatory lung injury in patients receiving hyperoxia through mechanical ventilation. Exposure to hyperoxia results in accumulation of high levels of airway HMGB1 that precede inflammatory acute lung injury (ALI). Airway HMGB1 is critical in mediating hyperoxia-induced inflammatory ALI via recruiting leukocytes including neutrophils. Extracellular HMGB1-accumulated upon prolonged exposure to hyperoxia is hyperacetylated, existing in different redox states. Small molecule EP, administrated even after the onset of hyperoxic exposure, can mitigate hyperoxia-induced inflammatory ALI by inhibiting HMGB1 release into the extracellular milieu.
Collapse
Key Words
- ALI, acute lung injury
- BALF, bronchoalveolar lavage fluids
- EP, ethyl pyruvate
- GST, gluthatione-s-transferase
- HMGB1
- HMGB1, high mobility group box protein 1
- Hyperacetylation
- Hyperoxia
- MV, mechanical ventilation
- Macrophage
- NLS, nuclear localization signal
- PMNs, polymorphonuclear neutrophils
- RA, room air
- ROS, reactive oxygen species
- Redox state
- rHMGB1, recombinant HMGB1
Collapse
|
18
|
Haugen M, Dammen R, Svejda B, Gustafsson BI, Pfragner R, Modlin I, Kidd M. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1164-73. [PMID: 22936271 PMCID: PMC3517648 DOI: 10.1152/ajpgi.00027.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.
Collapse
Affiliation(s)
- Martin Haugen
- 1Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, Connecticut;
| | - Rikard Dammen
- 1Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, Connecticut;
| | - Bernhard Svejda
- 1Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, Connecticut;
| | - Bjorn I. Gustafsson
- 2Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway;
| | - Roswitha Pfragner
- 3Institute of Pathophysiology and Immunology, Centre for Molecular Medicine, Graz, Austria
| | - Irvin Modlin
- 1Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, Connecticut;
| | - Mark Kidd
- 1Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, Connecticut;
| |
Collapse
|
19
|
Oncosis: an important non-apoptotic mode of cell death. Exp Mol Pathol 2012; 93:302-8. [PMID: 23036471 DOI: 10.1016/j.yexmp.2012.09.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/02/2012] [Indexed: 02/05/2023]
Abstract
It is now increasingly accepted that apoptosis may not be the only form of cell death seen in vitro and in vivo; hence there is a need to study novel forms of cell death. The explosion of cell death research that followed the recognition of apoptosis by Kerr and colleagues in the late 1960s completely obscured the fact that apoptosis is not the only form of cell death. Apoptosis manifests itself by cell shrinkage followed by breakup; another form (oncosis) is almost the opposite: it involves cell swelling and coagulation of the cytoplasm. The name oncosis was chosen over a century ago by von Recklinghausen, a top collaborator of Rudolph Virchow and thereby one of the founders of cellular pathology. Nevertheless, oncosis was forgotten, largely because a satisfactory technique for preparing tissue sections did not exist at the time. Also confusion developed regarding the distinction between oncosis as a mode of cell injury and cell death, and necrosis as a degradation process following cell death. In this review we have described the many characteristics of oncosis from a morphological and biochemical standpoint, and we briefly examine the application of oncosis in disease processes.
Collapse
|
20
|
Weerasinghe P, Hallock S, Brown RE, Loose DS, Buja LM. A model for cardiomyocyte cell death: insights into mechanisms of oncosis. Exp Mol Pathol 2012; 94:289-300. [PMID: 22609242 DOI: 10.1016/j.yexmp.2012.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 11/16/2022]
Abstract
It is now known that there are at least two basic patterns of cell injury progressing to cell death: cell injury with swelling, known as oncosis, and cell injury with shrinkage, known as apoptosis. Both types of cell death are "programmed" in the sense that the genetic information and many of the enzymes and other factors pre-exist in the cell. Previous investigation has pointed to cardiomyocyte ischemic injury evolving as the oncotic pattern of injury, although apoptosis has also been implicated. This study was designed, using a unique cell model system, to gain insight into the molecular events of anticancer agent-induced cardiomyocyte injury. Cardiomyocytes exposed for 2 h to 1.5 μg/ml sanguinarine consistently displayed the morphology of apoptosis in over 80% of cells, whereas a higher dose of 25 μg/ml at 2 h yielded the pattern of oncosis in over 90% of cells. Microarray analysis revealed altered expression of 2514 probes in sanguinarine-induced oncosis and 1643 probes in apoptosis at a level of significance of p<0.001. Some of the inductions such as perforin were found to be higher than 11-fold in oncosis. When perforin was blocked by perforin-specific siRNA we found a reduction in oncotic cell death. These results strengthen the notion that oncosis is not representative of nonspecific necrosis, but constitutes a genetically controlled form of "programmed cell death"; and also that oncosis might represent a pathogenetic mechanism of cardiomyocyte injury. This is also the first demonstration of the involvement of perforin in cardiomyocyte oncosis.
Collapse
Affiliation(s)
- Priya Weerasinghe
- University of Texas Health Sciences Center Houston, Department of Pathology and Laboratory Medicine, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
21
|
Urban P, Bilecova-Rabajdova M, Marekova M, Vesela J. Progression of apoptic signaling from mesenteric ischemia-reperfusion injury to lungs: correlation in the level of ER chaperones expression. Mol Cell Biochem 2011; 362:133-40. [PMID: 22083547 DOI: 10.1007/s11010-011-1135-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 10/22/2011] [Indexed: 12/28/2022]
Abstract
Multiple organ dysfunction syndrome (MODS) is characterized by the development of probably reversible, progressive dysfunction of vital systems in two or more organs, directly undamaged by surgery or other trauma. The organs which have the most common potential dysfunction are lungs, liver, kidneys, heart and gastrointestinal tract. The small intestine is the source of production of proinflammatory mediators leading and contributing to multiorgan failure. The endoplasmic reticulum (ER), after ischemia and post-ischemic reperfusion, is significantly involved in the activation of enterocyte apoptosis. The purpose of this study was to determine the stage of apoptosis in the lungs, initiated through inflammatory response from the small intestine. We analyzed changes in mRNA levels of pro-apoptotic genes Gadd153 (Chop) and anti-apoptotic genes Grp78 (Bip) in the small intestine wall and lung parenchyma. During experimental procedure the rats underwent 60 min of ischemia, caused by complete occlusion of the mesenteric arteria cranialis, with subsequent reperfusion and evaluation after 1 h, 24 h and 30 days (from R1, R24 to R30, respectively, each group n = 8). The gene expression levels were measured using RT-PCR followed by electrophoresis and visualization under UV. In the lungs we detected significantly lower level of expression Grp78 by 45 ± 6.9%. This suggests that ischemic attack and subsequent reperfusion did not promote ER stress in the lungs through induction of Gadd153 expression in the small intestine. There is still no effective approach to the treatment of affected ischemic intestine tissue, to stop the processes with could eventually lead to MODS. Therefore it is necessary to study changes in the damaged tissue at the molecular level and try to suggest possible therapeutic defined routes to the protection of tissue.
Collapse
Affiliation(s)
- P Urban
- Department of Chemistry, Biochemistry, Medical Biochemistry and LABMED, Faculty of Medicine, Pavol Jozef Šafárik University, Kosice, Slovakia.
| | | | | | | |
Collapse
|
22
|
Schlage WK, Westra JW, Gebel S, Catlett NL, Mathis C, Frushour BP, Hengstermann A, Van Hooser A, Poussin C, Wong B, Lietz M, Park J, Drubin D, Veljkovic E, Peitsch MC, Hoeng J, Deehan R. A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue. BMC SYSTEMS BIOLOGY 2011; 5:168. [PMID: 22011616 PMCID: PMC3224482 DOI: 10.1186/1752-0509-5-168] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022]
Abstract
Background Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke (CS). Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics) could enable comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks are needed to determine which specific pathways are activated in response to different stressors and to drive the qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the availability of detailed mechanistic networks that can be used as an analytical substrate. Results We have built a detailed network model that captures the biology underlying the physiological cellular response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells. The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia, shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response, largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS exposure in the mammalian lung. Conclusions The results presented here describe the construction of a cellular stress network model and its application towards the analysis of environmental stress using transcriptomic data. The proof-of-principle analysis described here, coupled with the future development of additional network models covering distinct areas of biology, will help to further clarify the integrated biological responses elicited by complex environmental stressors such as CS, in pulmonary and cardiovascular cells.
Collapse
Affiliation(s)
- Walter K Schlage
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstr.3, 51149 Koeln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Morash MG, Douglas SE, Robotham A, Ridley CM, Gallant JW, Soanes KH. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents. Dis Model Mech 2011; 4:622-33. [PMID: 21729875 PMCID: PMC3177944 DOI: 10.1242/dmm.007310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. Cytotoxicities were assessed in vitro using cell-based assays and in vivo using zebrafish embryos. Morphological changes were assessed by both transmission and scanning electron microscopy, and functional assays were performed on zebrafish embryos to investigate the mechanism of cell death. A total of 14 peptides were virtually inactive against HL60 human leukemia cells, whereas 12 caused >50% death at ≤32 μg/ml. Morphological changes characteristic of oncosis were evident by electron microscopy after only 1 minute of treatment with 32 μg/ml of variant NRC-03. Only two peptides were hemolytic. Four peptides showed no toxicity towards zebrafish embryos at the highest concentration tested (25 μM; ∼64 μg/ml) and one peptide was highly toxic, killing 4-hour-post-fertilization (hpf) embryos immediately after exposure to 1 μM peptide. Four other peptides killed embryos after 24 hours of exposure at 1 μM. Most peptides caused mortality at one or more developmental stages only after continuous exposure (24 hours) with higher lethal doses (≥5 μM). Pleurocidin NRC-03 bound to embryos and induced the release of superoxide, caused an increase in the number of TUNEL-positive nuclei, and caused membrane damage and the loss of embryonic epithelial integrity, marked by the exclusion of cells from the outer epithelium and the appearance of F-actin within the circumferential cells of the repair site. Our results indicate that specific pleurocidin variants are attractive cancer-selective agents that selectively induce cell death in target cells but leave non-target cells such as erythrocytes and non-transformed cells unaffected.
Collapse
Affiliation(s)
- Michael G Morash
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Huang CS, Kawamura T, Peng X, Tochigi N, Shigemura N, Billiar TR, Nakao A, Toyoda Y. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation. Biochem Biophys Res Commun 2011; 408:253-8. [PMID: 21473852 DOI: 10.1016/j.bbrc.2011.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 02/08/2023]
Abstract
We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1h of ventilation and decreased NFκB DNA binding after 2h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway activation during VILI.
Collapse
Affiliation(s)
- Chien-Sheng Huang
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ao X, Fang F, Xu F. Vasoactive intestinal peptide protects alveolar epithelial cells against hyperoxia via promoting the activation of STAT3. ACTA ACUST UNITED AC 2011; 168:1-4. [PMID: 21334383 DOI: 10.1016/j.regpep.2011.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/28/2010] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress injury and death in alveolar epithelial cells plays an important role in the pathogenesis of prolonged hyperoxia-induced lung impairment. A reduced survival of type II alveolar epithelial cells (AECIIs) may lead to abnormal repair, resulting in acute and chronic pulmonary diseases. Hyperoxia lung injury is associated with the secretion of various bioactive substances and the activation of multiple transcription factors. Vasoactive intestinal peptide (VIP), as a pulmonary sensory neuropeptide, performs a vital function in regulating cell proliferation and cell death through signal transducers and activators of transcription 3 (STAT3). In the present study, we investigated the effects of VIP and STAT3 on AECIIs upon the exposure of hyperoxia. MLE-12 cells were random to air (21% oxygen), hyperoxia (95% oxygen) and VIP treatment with or without STAT3 siRNA transfection. The proliferation of AECIIs was detected by MTT cell proliferation assay. The apoptosis rate was measured by flow cytometry. Mitochondrial membrane potential was evaluated by fluorescent dye JC-1 to understand mitochondrial and cell damage. The activation of STAT3 was assessed by western blot detection of phosphorylated STAT3. Compared with hyperoxia exposure alone, additional VIP treatment promoted cell proliferation, maintained the mitochondrial membrane potential and reduced the apoptosis and necrosis of AECIIs. The protective effects aforesaid were weakened after STAT3 expression was down regulated by siRNA. Cells with STAT3 siRNA transfection had a higher mortality and a sharper decline in the mitochondrial membrane potential as well as a lower proliferation compared with wild-type cells after hyperoxia exposure with VIP administration. VIP interference, a protective management, could decrease hyperoxia-induced cell injury and death and improve the survival of AECIIs exposed to hyperoxia, which might be associated with the activation of STAT3.
Collapse
Affiliation(s)
- Xiaoxiao Ao
- Children's Hospital of Chongqing Medical University, China
| | | | | |
Collapse
|
26
|
Phan BD, Entezari M, Lockshin RA, Bartelt DC, Mantell LL. Hydrogen peroxide enhances phagocytosis of Pseudomonas aeruginosa in hyperoxia. J Immunotoxicol 2011; 8:3-9. [PMID: 21261440 DOI: 10.3109/1547691x.2010.531063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mechanical ventilation with hyperoxia is a necessary treatment for patients with respiratory distress. However, patients on mechanical ventilation have increased susceptibility to infection. Studies including ours have shown that reactive oxygen species (ROS), generated by exposure to prolonged hyperoxia, can cause a decrease in the phagocytic activity of alveolar macrophages. Hydrogen peroxide (H₂O₂) is a form of ROS generated under hyperoxic conditions. In this study, we examined whether treatment with H₂O₂ directly affects macrophage phagocytic ability in RAW 264.7 cells that were exposed to either 21% O₂ (room air) or 95% O₂ (hyperoxia). Moderate concentrations (ranging from 10 to 250 μM) of H₂O₂ significantly enhanced macrophage phagocytic activity and restored hyperoxia-suppressed phagocytosis through attenuation of hyperoxia-induced disorganization of actin cytoskeleton and actin oxidation. These results indicate that H₂O₂ at low-moderate concentrations can be beneficial to host immune responses by improving macrophage phagocytic activity.
Collapse
Affiliation(s)
- Binh D Phan
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy, Queens, NY 11439, USA
| | | | | | | | | |
Collapse
|
27
|
Wu YCM, O'Reilly MA. Bcl-X(L) is the primary mediator of p21 protection against hyperoxia-induced cell death. Exp Lung Res 2010; 37:82-91. [PMID: 21128858 DOI: 10.3109/01902148.2010.521617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tight balance between anti- and proapoptotic members of the Bcl-2 family controls cell survival and death. Exposure to hyperoxia shifts this balance towards a prodeath state that ultimately activates Bak- and Bax-dependent cell death. Mechanisms underlying this shift are undefined; however, the cell cycle inhibitor p21 delays the loss of antiapoptotic Mcl-1 and Bcl-X(L), and protects against hyperoxia. Here, H1299 human lung adenocarcinoma cells are used to investigate how these and other members of the Bcl-2 family cooperate with p21 to protect against hyperoxia. Expression of antiapoptotic Mcl-1 and Bcl-X(L), but not Bcl-2 or A1, declined during hyperoxia, whereas proapoptotic Bak, but not Bax, increased. Conditional overexpression of p21 selectively delayed the loss of Mcl-1 and Bcl-X(L), without affecting expression of the other members. siRNA knockdown of Mcl-1 and Bcl-X(L) sensitized cells to hyperoxia, but only the loss of Bcl-X(L) ablated the protective effects of p21. Conversely, overexpression of Mcl-1 and Bcl-X(L) protected against hyperoxia, but only Bcl-X(L) bound Bak and Bax. Altogether, these data suggest that Bcl-X(L) is the primary mediator by which p21 protects against hyperoxia-induced Bak/Bax-dependent cell death.
Collapse
Affiliation(s)
- Yu-Chieh M Wu
- Department of Biomedical Genetics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
28
|
Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 2010; 7:239-54. [PMID: 20586583 DOI: 10.3109/1547691x.2010.492254] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxygen therapy using mechanical ventilation with hyperoxia is necessary to treat patients with respiratory failure and distress. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), causing cellular damage and multiple organ dysfunctions. As the lungs are directly exposed, hyperoxia can cause both acute and chronic inflammatory lung injury and compromise innate immunity. ROS may contribute to pulmonary oxygen toxicity by overwhelming redox homeostasis, altering signaling cascades that affect cell fate, ultimately leading to hyperoxia-induced acute lung injury (HALI). HALI is characterized by pronounced inflammatory responses with leukocyte infiltration, injury, and death of pulmonary cells, including epithelia, endothelia, and macrophages. Under hyperoxic conditions, ROS mediate both direct and indirect modulation of signaling molecules such as protein kinases, transcription factors, receptors, and pro- and anti-apoptotic factors. The focus of this review is to elaborate on hyperoxia-activated key sensing molecules and current understanding of their signaling mechanisms in HALI. A better understanding of the signaling pathways leading to HALI may provide valuable insights on its pathogenesis and may help in designing more effective therapeutic approaches.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY, USA
| | | | | | | | | |
Collapse
|
29
|
Franco-Montoya ML, Bourbon JR, Durrmeyer X, Lorotte S, Jarreau PH, Delacourt C. Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 2009; 297:L965-76. [PMID: 19700645 DOI: 10.1152/ajplung.00136.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute lung injury and compromised alveolar development characterize bronchopulmonary dysplasia (BPD) of the premature neonate. High levels of keratinocyte growth factor (KGF), a cell-cell mediator with pleiotrophic lung effects, are associated with low BPD risk. KGF decreases mortality in hyperoxia-exposed newborn rodents, a classic model of injury-induced impaired alveolarization, although the pulmonary mechanisms of this protection are poorly defined. These were explored through in vitro and in vivo approaches in the rat. Hyperoxia decreased by 30% the rate of wound closure of a monolayer of fetal alveolar epithelial cells, due to cell death, which was overcome by recombinant human KGF (100 ng/ml). In rat pups exposed to >95% O2 from birth, increased viability induced by intraperitoneal injection of KGF (2 microg/g body wt) every other day was associated with prevention of neutrophil influx in bronchoalveolar lavage (BAL), prevention of decreases in whole lung DNA content and cell proliferation rate, partial prevention of apoptosis increase, and a markedly increased proportion of surfactant protein B-immunoreactive cells in lung parenchyma. Increased lung antioxidant capacity is likely to be due in part to enhanced CAAT/enhancer binding protein alpha expression. By contrast, KGF neither corrected changes induced by hyperoxia in parameters of lung morphometry that clearly indicated impaired alveolarization nor had any significant effect on tissue or BAL surfactant phospholipids. These findings evidence KGF alveolar epithelial cell protection, enhancing effects on alveolar repair capacity, and anti-inflammatory effects in the injured neonatal lung that may account, at least in part, for its ability to reduce mortality. They argue in favor of a therapeutic potential of KGF in the injured neonatal lung.
Collapse
Affiliation(s)
- Marie-Laure Franco-Montoya
- Institut National de la Santé et de la Recherche Médicale, Unité 955, Faculté de Médecine, Université Paris-Val-de-Marne, Centre Hospitalier Intercommunal, Créteil, France
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
For nearly 100 y, pediatricians have regularly used oxygen to treat neonatal and childhood diseases. During this time, it has become clear that oxygen is toxic and that overzealous use can lead to significant morbidity. As we have learned more about the appropriate clinical indications for oxygen therapy, studies at the bench have begun to elucidate the molecular mechanisms by which cells respond to hyperoxia. In this review, we discuss transcription factors whose activity is regulated by oxygen, including nuclear factor, erythroid 2-related factor 2 (Nrf2), activator protein 1 (AP-1), p53, nuclear factor kappaB (NF-kappaB), signal transducers and activators of transcription protein (STAT), and ccat/enhancer binding protein (CEBP). Special attention is paid to the mechanisms by which hyperoxia affects these transcription factors in the lung. Finally, we identify downstream targets of these transcription factors, with a focus on heme oxygenase-1. A better understanding of how oxygen affects various signaling pathways could lead to interventions aimed at preventing hyperoxic injury.
Collapse
Affiliation(s)
- Clyde J Wright
- Division of Neonatology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
31
|
Shao L, Perez RE, Gerthoffer WT, Truog WE, Xu D. Heat shock protein 27 protects lung epithelial cells from hyperoxia-induced apoptotic cell death. Pediatr Res 2009; 65:328-33. [PMID: 19047919 DOI: 10.1203/pdr.0b013e3181961a51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxygen toxicity or hyperoxia is one of the major contributing factors in the development of bronchopulmonary dysplasia. Heat shock protein 27 (Hsp27) is an important chaperone protein in the postnatal lung development. However, the role of Hsp27 in lung epithelial cells during hyperoxia is unclear. Our studies by cDNA array and immunohistochemistry revealed that hyperoxia decreased Hsp27 expression in newborn rat lungs. Western blot showed that hyperoxic treatment significantly decreased Hsp27 protein expression in cultured human lung epithelial cells (A549). The expression of Hsp27 was decreased approximately twofold after 24-h and threefold after 48- and 72-h hyperoxic exposure compared with that of the A549 cells exposed to normoxia (p < 0.05, n = 3). Knockdown of Hsp27 expression by siRNA resulted in more apoptotic cell death in A549 cells. Overexpression of Hsp27 reduced hyperoxia-induced apoptotic cell death to 9.2% in Hsp27 overexpressing A549 cells from 12.6% in control A549 cells after 72-h hyperoxic exposure (p < 0.01, n = 8-9). Overexpression of Hsp27 also diminished hyperoxia-induced caspase-9 activation in A549 cells. Our results demonstrated that hyperoxia decreased Hsp27 expression in newborn rat lung and cultured human lung epithelial cells. Overexpression of Hsp27 could reduce hyperoxia-induced apoptosis in cultured human lung epithelial cells.
Collapse
Affiliation(s)
- Lei Shao
- Department of Pathology, The Children's Mercy Hospitals and Clinics, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | | | | | | | |
Collapse
|
32
|
Wright CJ, Zhuang T, La P, Yang G, Dennery PA. Hyperoxia-induced NF-kappaB activation occurs via a maturationally sensitive atypical pathway. Am J Physiol Lung Cell Mol Physiol 2008; 296:L296-306. [PMID: 19074556 DOI: 10.1152/ajplung.90499.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NF-kappaB activation is exaggerated in neonatal organisms after oxidant and inflammatory insults, but the reason for this and the downstream effects are unclear. We hypothesized that specific phosphorylation patterns of IkappaBalpha could account for differences in NF-kappaB activation in hyperoxia-exposed fetal and adult lung fibroblasts. After exposure to hyperoxia (>95% O(2)), nuclear NF-kappaB binding increased in fetal, but not adult, lung fibroblasts. Unique to fetal cells, phosphorylation of IkappaBalpha on tyrosine 42, rather than serine 32/36 as seen in TNF-alpha-exposed cells, preceded NF-kappaB nuclear translocation. In fetal cells stably transfected with an NF-kappaB-driven luciferase reporter, hyperoxia significantly suppressed reporter activity, in contrast to increased reporter activity after TNF-alpha incubation. Targeted gene profiling analysis showed that hyperoxia resulted in decreased expression of multiple genes, including proapoptotic factors. Transfection with a dominant-negative IkappaBalpha (Y42F), which cannot be phosphorylated on tyrosine 42, resulted in upregulation of multiple proapoptotic genes. In support of this finding, caspase-3 activity and DNA laddering were specifically increased in fetal lung fibroblasts expressing Y42F after exposure to hyperoxia. These data demonstrate a unique pathway of NF-kappaB activation in fetal lung fibroblasts after exposure to hyperoxia, whereby these cells are protected against apoptosis. Activation of this pathway in fetal cells may prevent the normal pattern of fibroblast apoptosis necessary for normal lung development, resulting in aberrant lung morphology in vivo.
Collapse
Affiliation(s)
- Clyde J Wright
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Boncoeur E, Roque T, Bonvin E, Saint-Criq V, Bonora M, Clement A, Tabary O, Henrion-Caude A, Jacquot J. Cystic fibrosis transmembrane conductance regulator controls lung proteasomal degradation and nuclear factor-kappaB activity in conditions of oxidative stress. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1184-94. [PMID: 18372427 DOI: 10.2353/ajpath.2008.070310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-kappaB/IkappaB-alpha signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr(-/-)) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr(+/+)) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-kappaB inhibitor IkappaB-alpha. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-kappaB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl(-) channel by CFTR(inh-172) in the normal bronchial immortalized cell line 16HBE14o- increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-kappaB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl(-) channel activity is crucial for regulation of lung proteasomal degradation and NF-kappaB activity in conditions of oxidative stress.
Collapse
|
34
|
Jacquot J, Tabary O, Le Rouzic P, Clement A. Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 2008; 40:1703-15. [DOI: 10.1016/j.biocel.2008.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 01/14/2023]
|
35
|
Boncoeur E, Criq VS, Bonvin E, Roque T, Henrion-Caude A, Gruenert DC, Clement A, Jacquot J, Tabary O. Oxidative stress induces extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase in cystic fibrosis lung epithelial cells: Potential mechanism for excessive IL-8 expression. Int J Biochem Cell Biol 2007; 40:432-46. [PMID: 17936667 DOI: 10.1016/j.biocel.2007.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/18/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Cystic fibrosis (CF) is a lethal disease caused by defective function of the cftr gene product, the CF transmembrane conductance regulator (CFTR) that leads to oxidative damage and excessive inflammatory response in lungs of CF patients. We here report the effects of oxidative stress (hyperoxia, 95% O(2)) on the expression of pro-inflammatory interleukin (IL)-8 and CXCR1/2 receptors in two human CF lung epithelial cell lines (IB3-1, with the heterozygous F508del/W1282X mutation and CFBE41o- with the homozygous F508del/F508del mutation) and two control non-CF lung epithelial cell lines (S9 cell line derived from IB3-1 after correction with wtCFTR and the normal bronchial cell line 16HBE14o-). Under oxidative stress, the expression of IL-8 and CXCR1/2 receptors was increased in CF, corrected and normal lung cell lines. The effects of oxidative stress were also investigated by measuring the transcription nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1) activities. Under oxidative stress, no increase of NF-kappaB activation was observed in CF lung cells in contrast to that observed in normal and corrected CF lung cells. The signalling of mitogen-activated protein (MAP) kinases was further studied. We demonstrated that extracellular signal-regulated kinase (ERK1/2) and AP-1 activity was markedly enhanced in CF but not non-CF lung cells under oxidative stress. Consistently, inhibition of ERK1/2 in oxidative stress-exposed CF lung cells strongly decreased both the IL-8 production and CXCR1/2 expression. Therefore, targeting of ERK1/2 MAP kinase may be critical to reduce oxidative stress-mediated inflammation in lungs of CF patients.
Collapse
|
36
|
Mura M, Andrade CF, Han B, Seth R, Zhang Y, Bai XH, Waddell TK, Hwang D, Keshavjee S, Liu M. INTESTINAL ISCHEMIA-REPERFUSION-INDUCED ACUTE LUNG INJURY AND ONCOTIC CELL DEATH IN MULTIPLE ORGANS. Shock 2007; 28:227-38. [PMID: 17666944 DOI: 10.1097/01.shk.0000278497.47041.e3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most acute respiratory distress syndrome studies have been focused on the lung injury. Little is known about other organs during the development of acute respiratory distress syndrome. Herein, we investigated the injury and cell death in multiple organs after intestinal ischemia-reperfusion (IIR) in C57BL/6 mice. Terminal transferase dUTP nick end labeling staining was used as a marker of cell death. Caspase 3 and cathepsin B activation as markers of caspase-dependent and caspase-independent apoptosis, respectively, and electron microscopy for ultimate characterization of cell death were used. In comparison with control and sham-operated mice, the IIR group showed interstitial inflammatory infiltrates in the lung and significant increases of lung injury parameters and plasma lactate dehydrogenase and aspartate aminotransferase levels. Terminal transferase dUTP nick end labeling-positive cells and immunostaining for hemeoxygenase 1, an enzyme induced by inflammatory stimuli, were increased in the lung, heart, and kidney, but not in the liver. The number of hemeoxygenase 1-positive cells positively and significantly correlated to the number of terminal transferase dUTP nick end labeling-positive cells. Cell death was not associated with caspase 3 or cathepsin B activation. Electron microscopy showed morphological features compatible with oncotic rather than apoptotic cell death or necrosis, including mitochondrial swelling and cytoplasm disorganization in pulmonary and renal epithelial cells, lung and cardiac endothelial cells, and myocytes. These results indicate that, although lung injury is the most significant manifestation after IIR, oncotic cell death occurs in the lung, heart, and kidney, which may be related to ischemia and inflammation.
Collapse
Affiliation(s)
- Marco Mura
- Thoracic Surgery Research Laboratories, Toronto General Hospital, University Health Network, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Li LF, Liao SK, Ko YS, Lee CH, Quinn DA. Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases: a prospective, controlled animal experiment. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2007; 11:R25. [PMID: 17316425 PMCID: PMC2151853 DOI: 10.1186/cc5704] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 01/09/2007] [Accepted: 02/22/2007] [Indexed: 01/13/2023]
Abstract
Introduction Large-tidal volume (VT) mechanical ventilation and hyperoxia used in patients with acute respiratory distress syndrome can damage pulmonary epithelial cells through lung inflammation and apoptotic cell death. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between large VT and hyperoxia are unclear. We hypothesized that the addition of hyperoxia to large-VT ventilation would increase neutrophil infiltration by upregulation of the cytokine macrophage inflammatory protein-2 (MIP-2) and would increase apoptosis via the mitogen-activated protein kinase pathways. Methods C57BL/6 mice were exposed to high-VT (30 ml/kg) mechanical ventilation with room air or hyperoxia for one to five hours. Results The addition of hyperoxia to high-VT ventilation augmented lung injury, as demonstrated by increased apoptotic cell death, neutrophil migration into the lung, MIP-2 production, MIP-2 mRNA expression, increased DNA binding activity of activator protein-1, increased microvascular permeability, and c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 activation. Hyperoxia-induced augmentation of high-VT-induced lung injury was attenuated in JNK-deficient mice and in mice with pharmacologic inhibition of ERK activity by PD98059. However, only JNK-deficient mice, and not mice with ERK activity inhibition by PD98059, were protected from high-VT-induced lung injury without hyperoxia. Conclusion We conclude that hyperoxia increased high-VT-induced cytokine production, neutrophil influx, and apoptotic cell death through activation of the JNK and ERK1/2 pathways.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
| | - Shuen-Kuei Liao
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 333, Taiwan
| | - Yu-Shien Ko
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
| | - Cheng-Huei Lee
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
| | - Deborah A Quinn
- Pulmonary and Critical Care Units, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| |
Collapse
|
39
|
Hallock S, Tang SC, Buja LM, Trump BF, Liepins A, Weerasinghe P. Aurintricarboxylic acid inhibits protein synthesis independent, sanguinarine-induced apoptosis and oncosis. Toxicol Pathol 2007; 35:300-9. [PMID: 17366325 DOI: 10.1080/01926230701194211] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sanguinarine, a benzophenanthridine alkaloid, has anticancer potential through induction of cell death. We previously demonstrated that sanguinarine treatment at a low concentration (1.5 microg/ml) induced apoptosis in K562 human erythroleukemia cells, and a high concentration (12.5 microg/ml) induced the morphology of blister formation or oncosis-blister cell death (BCD). Treatment of cells at an intermediate sanguinarine concentration (6.25 microg/ml) induced diffuse swelling or oncosis-diffuse cell swelling (DCS). To assess the underlying mechanism of sanguinarine-induced apoptosis and oncosis-BCD in K562 cells, we studied their response to pre-treatment with two chemical compounds: aurintricarboxylic acid (ATA) and cycloheximide (CHX). The pretreatment effects of both chemical compounds on apoptosis and oncosis-BCD were evaluated by measuring multiple parameters using quantitative morphology, electron microscopy, terminal deoxynucleotidyl transferase (TdT) end-labeling and annexin-V-binding. ATA, a DNA endonuclease inhibitor, efficiently prevented DNA nicking and inhibited apoptosis almost completely and oncosis-BCD by about 40%, while CHX, a protein synthesis inhibitor, failed to inhibit both apoptosis and oncosis-BCD. These results demonstrate, first, the importance of endonuclease in sanguinarine-induced apoptosis and to some extent in oncosis-BCD and, second, that this inhibition does not require de novo protein synthesis.
Collapse
Affiliation(s)
- Sarathi Hallock
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Zaher TE, Miller EJ, Morrow DMP, Javdan M, Mantell LL. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 2007; 42:897-908. [PMID: 17349918 PMCID: PMC1876680 DOI: 10.1016/j.freeradbiomed.2007.01.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses on exposure to hyperoxia. We discuss in detail some of the most interesting players, such as NF-kappaB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses.
Collapse
Affiliation(s)
- Tahereh E. Zaher
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Edmund J. Miller
- Surgercal Immunology, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Dympna M. P. Morrow
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Mohammad Javdan
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- *Correspondence author: Lin L. Mantell, Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, 108/SB28 St. Albert Hall, 8000 Utopia Parkway, Queens, New York 11439, Tel: 718-990-5933, Fax: 718-990-1877,
| |
Collapse
|
41
|
Xu D, Guthrie JR, Mabry S, Sack TM, Truog WE. Mitochondrial aldehyde dehydrogenase attenuates hyperoxia-induced cell death through activation of ERK/MAPK and PI3K-Akt pathways in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L966-75. [PMID: 16782756 DOI: 10.1152/ajplung.00045.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oxygen toxicity is one of the major risk factors in the development of the chronic lung disease or bronchopulmonary dysplasia in premature infants. Using proteomic analysis, we discovered that mitochondrial aldehyde dehydrogenase (mtALDH or ALDH2) was downregulated in neonatal rat lung after hyperoxic exposure. To study the role of mtALDH in hyperoxic lung injury, we overexpressed mtALDH in human lung epithelial cells (A549) and found that mtALDH significantly reduced hyperoxia-induced cell death. Compared with control cells (Neo-A549), the necrotic cell death in mtALDH-overexpressing cells (mtALDH-A549) decreased from 25.3 to 6.5%, 50.5 to 9.1%, and 52.4 to 15.1% after 24-, 48-, and 72-h hyperoxic exposure, respectively. The levels of intracellular and mitochondria-derived reactive oxygen species (ROS) in mtALDH-A549 cells after hyperoxic exposure were significantly lowered compared with Neo-A549 cells. mtALDH overexpression significantly stimulated extracellular signal-regulated kinase (ERK) phosphorylation under normoxic and hyperoxic conditions. Inhibition of ERK phosphorylation partially eliminated the protective effect of mtALDH in hyperoxia-induced cell death, suggesting ERK activation by mtALDH conferred cellular resistance to hyperoxia. mtALDH overexpression augmented Akt phosphorylation and maintained the total Akt level in mtALDH-A549 cells under normoxic and hyperoxic conditions. Inhibition of phosphatidylinositol 3-kinase (PI3K) activation by LY294002 in mtALDH-A549 cells significantly increased necrotic cell death after hyperoxic exposure, indicating that PI3K-Akt activation by mtALDH played an important role in cell survival after hyperoxia. Taken together, these data demonstrate that mtALDH overexpression attenuates hyperoxia-induced cell death in lung epithelial cells through reduction of ROS, activation of ERK/MAPK, and PI3K-Akt cell survival signaling pathways.
Collapse
Affiliation(s)
- Dong Xu
- Neonatology Research Laboratory, Children's Mercy Hospital, Pediatric Research Center, 4th Floor, 2401 Gillham Rd., Kansas City, MO 64108, USA.
| | | | | | | | | |
Collapse
|
42
|
Borchers MT, Harris NL, Wesselkamper SC, Vitucci M, Cosman D. NKG2D ligands are expressed on stressed human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L222-31. [PMID: 16473864 DOI: 10.1152/ajplung.00327.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immune surveillance of the airways is critical to maintain the integrity and health of the lung. We have identified a family of ligands expressed on the surface of stressed airway epithelial cells whose function is to bind the NKG2D-activating receptor found on several pulmonary lymphocytes, including natural killer cells, γδ+ T cells, and CD8+ T cells. We employed real-time PCR and flow cytometry in normal and transformed airway epithelial cell to demonstrate that major histocompatibility complex class I chain-related (MIC) B and the UL-16 binding protein (ULBP) ligands (ULBP1–4) are ubiquitously expressed at the mRNA level in all cell lines. MICA/B surface expression was present on 70% of transformed cell lines but was undetectable on primary cells. We demonstrate that MICA/B and ULBP 1, 2, 3, and 4 expression is rare or absent on the cell surface of unstimulated normal human bronchial epithelial cells although transcripts and intracellular proteins are present. Normal human bronchial epithelial cells exposed to 0.3 mM hydrogen peroxide exhibit an induction of all ligands examined on the cell surface. Surface expression is independent of changes in transcript level or total cellular protein and is mediated by the ERK family of mitogen-activated protein kinases. The induction of NKG2D ligands on stressed airway epithelial cells represents a potentially important mechanism of immune cell activation in regulation of pulmonary health and disease.
Collapse
Affiliation(s)
- Michael T Borchers
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, OH 45267, USA.
| | | | | | | | | |
Collapse
|
43
|
Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 2006; 41:4-18. [PMID: 16781448 DOI: 10.1016/j.freeradbiomed.2006.01.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/18/2006] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
Cytokines are peptides that are produced by virtually every nucleated cell type in the body, possess overlapping biological activities, exert different effects at different concentrations, can either synergize or antagonize the effects of other cytokines, are regulated in a complex manner, and function via cytokine cascades. Hyperoxia-induced acute lung injury (HALI) is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell injury/death. Some of these effects are orchestrated by cytokines. There are significant differences in the response of the developing versus the adult lung to hyperoxia. We review here cytokines (and select growth factors) that are involved in tolerance toward HALI in animal models. Increased cytokine expression and release have a cascade effect in HALI. IL-1 precedes the increase in IL-6 and CINC-1/IL-8 and this seems to predate the influx of inflammatory cells. Inflammatory cells in the alveolar space amplify the lung damage. Other cytokines that are primarily involved in this inflammatory response include IFN-gamma, MCP-1, and MIP-2. Certain cytokines (and growth factors) seem to ameliorate HALI by affecting cell death pathways. These include GM-CSF, KGF, IL-11, IL-13, and VEGF. There are significant differences in the type and temporal sequence of cytokine expression and release in the adult and newborn lung in response to hyperoxia. The newborn lung is greatly resistant to hyperoxia compared to the adult. The delayed increase in lung IL-1 and IL-6 in the newborn could induce protective factors that would help in the resolution of hyperoxia-induced injury. Designing a therapeutic approach to counteract oxygen toxicity in the adult and immature lung first needs understanding of the unique responses in each scenario.
Collapse
Affiliation(s)
- Vineet Bhandari
- Divison of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520-8064, USA.
| | | |
Collapse
|
44
|
Boncoeur E, Tabary O, Bonvin E, Muselet C, Fritah A, Lefait E, Redeuilh G, Clement A, Jacquot J, Henrion-Caude A. Oxidative stress response results in increased p21WAF1/CIP1 degradation in cystic fibrosis lung epithelial cells. Free Radic Biol Med 2006; 40:75-86. [PMID: 16337881 DOI: 10.1016/j.freeradbiomed.2005.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 07/27/2005] [Accepted: 08/15/2005] [Indexed: 12/31/2022]
Abstract
Lung epithelium in cystic fibrosis (CF) patients is characterized by structural damage and altered repair due to oxidative stress. To gain insight into the oxidative stress-related damage in CF, we studied the effects of hyperoxia in CF and normal lung epithelial cell lines. In response to a 95% O2 exposure, both cell lines exhibited increased reactive oxygen species. Unexpectedly, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 protein was undetectable in CF cells under hyperoxia, contrasting with increased levels of p21WAF1/CIP1 in normal cells. In both cell lines, exposure to hyperoxia led to S-phase arrest. Apoptotic features including nuclear condensation, DNA laddering, Annexin V incorporation, and elevated caspase-3 activity were not readily observed in CF cells in contrast to normal cells. Interestingly, treatment of hyperoxia-exposed CF cells with two proteasome inhibitors, MG132 and lactacystin, restored p21WAF1/CIP1 protein and was associated with an increase of caspase-3 activity. Moreover, transfection of p21WAF1/CIP1 protein in CF cells led to increased caspase-3 activity and was associated with increased apoptotic cell death, specifically under hyperoxia. Taken together, our data suggest that modulating p21WAF1/CIP1 degradation may have the therapeutic potential of reducing lung epithelial damage related to oxidative stress in CF patients.
Collapse
Affiliation(s)
- Emilie Boncoeur
- Inserm U719, Université Pierre et Marie Curie, Hôpital Saint-Antoine, 184 rue du Fg St Antoine, Bâtiment Kourilsky, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pagano A, Pitteloud C, Reverdin C, Métrailler-Ruchonnet I, Donati Y, Barazzone Argiroffo C. Poly(ADP-ribose)polymerase Activation Mediates Lung Epithelial Cell DeathIn Vitrobut Is Not Essential in Hyperoxia-Induced Lung Injury. Am J Respir Cell Mol Biol 2005; 33:555-64. [PMID: 16151053 DOI: 10.1165/rcmb.2004-0361oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hyperoxia induces extensive DNA damage and lung cell death by apoptotic and nonapoptotic pathways. We analyzed the regulation of Poly(ADP-ribose)polymerase-1 (PARP-1), a nuclear enzyme activated by DNA damage, and its relation to cell death during hyperoxia in vitro and in vivo. In lung epithelial-derived A549 cells, which are known to die by necrosis when exposed to oxygen, a minimal amount of PARP-1 was cleaved, correlating with the absence of active caspase-3. Conversely, in primary lung fibroblasts, which die mainly by apoptosis, the complete cleavage of PARP-1 was concomitant to the induction of active caspase-3, as assessed by Western blot and caspase activity. Blockade of caspase activity by Z-VAD reduced the amount of cleaved PARP-1 in fibroblasts. Hyperoxia induced PARP activity in both cell types, as revealed by poly-ADP-ribose accumulation. In A549 cells, the final outcome of necrosis was dependent on PARP activity because it was prevented by the PARP inhibitor 3-aminobenzamide. In contrast, apoptosis of lung fibroblasts was not sensitive to 3-aminobenzamide and was not affected by PARP-1 deletion. In vivo, despite evidence of PARP activation in hyperoxia-exposed mouse lungs, absence of PARP-1 did not change the extent of lung damage, arguing for redundant oxidative stress-induced cell death pathways.
Collapse
Affiliation(s)
- Alessandra Pagano
- Departments of Pediatrics and Pathology, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|