1
|
Zhang Y, Zhou XQ, Jiang WD, Wu P, Liu Y, Ren HM, Zhang L, Mi HF, Tang L, Zhong CB, Feng L. Emerging role of vitamin D 3 in alleviating intestinal structure injury caused by Aeromonas hydrophila in grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:202-217. [PMID: 38362511 PMCID: PMC10867611 DOI: 10.1016/j.aninu.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 02/17/2024]
Abstract
Bacterial pathogens destroy the structural integrity of functional organs in fish, leading to severe challenges in the aquaculture industry. Vitamin D3 (VD3) prevents bacterial infections and strengthens immune system function via vitamin D receptor (VDR). However, the correlation between VD3/VDR and the structural integrity of functional organs remains unclarified. This study aimed to investigate the influence of VD3 supplementation on histological characteristics, apoptosis, and tight junction characteristics in fish intestine during pathogen infection. A total of 540 healthy grass carp (257.24 ± 0.63 g) were fed different levels of VD3 (15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg) for 70 d. Subsequently, fish were challenged with Aeromonas hydrophila, a pathogen that causes intestinal inflammation. Our present study demonstrated that optimal supplementation with VD3 (1) alleviated intestinal structural damage, and inhibited oxidative damage by reducing levels of oxidative stress biomarkers; (2) attenuated excessive apoptosis-related death receptor and mitochondrial pathway processes in relation to p38 mitogen-activated protein kinase signaling (P < 0.05); (3) enhanced tight junction protein expression by inhibiting myosin light chain kinase signaling (P < 0.05); and (4) elevated VDR isoform expression in fish intestine (P < 0.05). Overall, the results demonstrated that VD3 alleviates oxidative injury, apoptosis, and the destruction of tight junction protein under pathogenic infection, thereby strengthening pathogen defenses in the intestine. This finding supports the rationale for VD3 intervention as an essential practice in sustainable aquaculture.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, China
| | - Hai-Feng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co., Ltd., Chengdu, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co., Ltd., Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Zhang Y, Zhou XQ, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Feng L. Vitamin D Promotes Mucosal Barrier System of Fish Skin Infected with Aeromonas hydrophila through Multiple Modulation of Physical and Immune Protective Capacity. Int J Mol Sci 2023; 24:11243. [PMID: 37511003 PMCID: PMC10379486 DOI: 10.3390/ijms241411243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The vertebrate mucosal barrier comprises physical and immune elements, as well as bioactive molecules, that protect organisms from pathogens. Vitamin D is a vital nutrient for animals and is involved in immune responses against invading pathogens. However, the effect of vitamin D on the mucosal barrier system of fish, particularly in the skin, remains unclear. Here, we elucidated the effect of vitamin D supplementation (15.2, 364.3, 782.5, 1167.9, 1573.8, and 1980.1 IU/kg) on the mucosal barrier system in the skin of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila. Dietary vitamin D supplementation (1) alleviated A. hydrophila-induced skin lesions and inhibited oxidative damage by reducing levels of reactive oxygen species, malondialdehyde, and protein carbonyl; (2) improved the activities and transcription levels of antioxidant-related parameters and nuclear factor erythroid 2-related factor 2 signaling; (3) attenuated cell apoptosis by decreasing the mRNA and protein levels of apoptosis factors involved death receptor and mitochondrial pathway processes related to p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signaling; (4) improved tight junction protein expression by inhibiting myosin light-chain kinase signaling; and (5) enhanced immune barrier function by promoting antibacterial compound and immunoglobulin production, downregulating pro-inflammatory cytokine expression, and upregulating anti-inflammatory cytokines expression, which was correlated with nuclear factor kappa B and the target of rapamycin signaling pathways. Vitamin D intervention for mucosal barrier via multiple signaling correlated with vitamin D receptor a. Overall, these results indicate that vitamin D supplementation enhanced the skin mucosal barrier system against pathogen infection, improving the physical and immune barriers in fish. This finding highlights the viability of vitamin D in supporting sustainable aquaculture.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
3
|
Pan L, E T, Xu C, Fan X, Xia J, Liu Y, Liu J, Zhao J, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. The apoptotic effects of soybean agglutinin were induced through three different signal pathways by down-regulating cytoskeleton proteins in IPEC-J2 cells. Sci Rep 2023; 13:5753. [PMID: 37031286 PMCID: PMC10082828 DOI: 10.1038/s41598-023-32951-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Soybean agglutinin (SBA) is a main anti-nutritional factor in soybean. SBA exhibits its anti-nutritional functions by binding to intestinal epithelial cells. Keratin8 (KRT8), Keratin18 (KRT18) and Actin (ACTA) are the representative SBA-specific binding proteins. Such cytoskeletal proteins act a crucial role in different cell activities. However, limited reports reveal what the signal transduction pathway of apoptosis caused by SBA when binding to KRT8, KRT18 and ACTA. We aimed to evaluate the effects of SBA on cell apoptosis and the expression of the cytoskeletal protein (KRT8, KRT18 and ACTA), reveal the roles of these cytoskeletal proteins or their combinations on SBA-induced cell apoptosis in IPEC-J2 cell line, evaluate the influences of SBA on the mitochondria, endoplasmic reticulum stress and death receptor-mediated apoptosis signal pathway and to show the roles of KRT8, KRT18 and ACTA in different apoptosis signal pathways induced by SBA. The results showed that SBA induced the IPEC-J2 cell apoptosis and decreased the mRNA expression of KRT8, KRT18 and ACTA (p < 0.05). The degree of effect of three cytoskeleton proteins on cell apoptosis was ACTA > KRT8 > KRT18. The roles of these three cytoskeletal proteins on IPEC-J2 apoptotic rates had a certain accumulation effect. SBA up-regulated mitochondrial fission variant protein (FIS1) and fusion protein (Mfn2) promoted CytC and AIF in mitochondria to enter the cytoplasm, activated caspase-9 and caspase-3, damaged or declined mitochondrial function and reduced ATP synthesis (p < 0.05). Also, SBA up-regulated the expression of GRP78, XBP-1, eIF2α, p-eIF2α and CHOP (p < 0.05), down-regulated the expression level of ASK1 protein (p < 0.05). SBA led to the recruitment of FADD to the cytoplasmic membrane and increased the expression of FasL, resulting in caspase-8 processing. SBA up-regulated the expression level of Bax protein and decreased cytosolic Bcl-2 and Bid (p < 0.05). In addition, there was a significant negative correlation between the gene expression of cytoskeleton proteins and apoptosis, as well as the expression of key proteins of apoptosis-related signal transduction pathways. In conclusion, SBA induced the activation of the mitochondria, endoplasmic reticulum stress and the death receptor-mediated apoptosis signal pathway and the crosstalk between them. The effect of SBA on these three pathways was mainly exhibited via down-regulation of the mRNA expression of the three cytoskeletal expressions. This study elucidates the molecular mechanism and signaling pathway of SBA that lead to apoptosis from the perspective of cell biology and molecular biology and provides a new perspective on the toxicity mechanism of other food-derived anti-nutrients, medical gastrointestinal health and related cancer treatment.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tianjiao E
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Chengyu Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xiapu Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiajia Xia
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiawei Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinpeng Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
4
|
Shafie B, Pourahmad J, Rezaei M. N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver. J Food Biochem 2021; 45:e13775. [PMID: 34080202 DOI: 10.1111/jfbc.13775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022]
Abstract
Acrolein, a common environmental, food, and water pollutant, has been linked to the pathology of several diseases. This toxic substance is an unsaturated aldehyde and a major component of cigarette smoke and also produced during the processing of fat-containing foods. This study aimed to evaluate the protective effect of ellagic acid and N-acetylcysteine (NAC) in acrolein-induced toxicity in mitochondria isolated from the rat liver. The mitochondria were exposed to different concentrations of acrolein for 40 min, then functionality was assessed. Contact with acrolein rapidly and remarkably depleted the intracellular glutathione and antioxidant capacity, because of increased ROS production and lipid peroxidation which may lead to the cell death. Mitochondria were then pre-exposed to different concentrations of ellagic acid, NAC, and IC50 concentration of acrolein. Consistent with the results, acrolein decreased GSH content and increased ROS level and lipid peroxidation, which led to ATP depletion and mitochondrial dysfunction. While ellagic acid has been able to reduce ROS and therefore the permeability of the mitochondrial membrane potential (MMP), presumably via its antioxidant properties, we've not detected its favorable effect on GSH and ATP restoration and also on mitochondrial complex II function. However, NAC strongly decreased ROS, lipid peroxidation and MMP and improved GSH content and complex II activity. These results showed that ellagic acid while reported to possess some cellular protective properties, did not prevent mitochondria from being affected by acrolein during this in vitro study. PRACTICAL APPLICATIONS: Ellagic acid is found in fruits, vegetables, and nuts which are revealed to possess strong antioxidant and protective properties. Mitochondrial dysfunction has been implicated in the pathogenesis of some chronic diseases including cancer, diabetes, liver disease, and neurodegenerative disorders, and presumably, ellagic acid by its mitochondrial protective effects can be helpful in these chronic conditions. Acrolein is an α,β-unsaturated aldehyde that can be produced during cooking at high temperature. By increasing the ROS level and lipid peroxidation and depleting the glutathione content, acrolein induces cellular damage and mitochondrial toxicity. This toxicant is taken into account as a carcinogen and mutagen. In this study, the protective effect of ellagic acid in comparison with N-acetylcysteine has been investigated during the toxicity of acrolein in the rat liver mitochondria to look for evidence of whether it is useful or not through this insult.
Collapse
Affiliation(s)
- Behnaz Shafie
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Gökçe AB, Eren B, Sağir D, Yilmaz BD. Inhibition of acrolein-induced apoptosis by the antioxidant selenium. Toxicol Ind Health 2021; 36:84-92. [PMID: 32279646 DOI: 10.1177/0748233720909043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the effects of a potent antioxidant, selenium, on apoptosis induced by acrolein, a cytotoxic and genotoxic environmental pollutant, were investigated by immunohistochemical and electron microscopic methods. One hundred adult male Wistar albino rats were used in the study. The rats were divided into four main groups: control, acrolein, selenium, and acrolein + selenium. The animals in the experimental groups were given 1 mg/kg/day selenium and 4 mg/kg/day acrolein daily for 7 days by gavage. After drug administration, each group was divided into subgroups according to the time they were to be euthanized: 12th hour, 1st, 2nd, 3rd, and 5th day. The rats in each group at the determined time were euthanized and their livers were removed. Routine histological procedures were performed for light and electron microscopy examinations. After applying the Terminal Deoxynucleotidyl Transferase dUTP nick end labeling assay on the liver sections, apoptotic index values were calculated. Comparing the liver sections of the rats in the acrolein group and the control group, acrolein was found to cause a significant increase in the apoptotic index. The apoptotic index values of the acrolein + selenium group decreased compared to the acrolein group. In the electron microscopic examinations, apoptotic findings were observed in the liver tissues of the rats given acrolein, such as chromatin condensation in the nucleus of hepatocytes, dilatations in the perinuclear space, and cytoplasmic vacuolization. These apoptotic findings were not observed in the acrolein + selenium group after the 12th hour. These findings show that selenium may potentially be useful as a protective agent for people exposed to acrolein.
Collapse
Affiliation(s)
- Ayşe Başardı Gökçe
- Biology Department, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Banu Eren
- Biology Department, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Dilek Sağir
- Nursing Department, Health School, Sinop University, Sinop, Turkey
| | | |
Collapse
|
6
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
7
|
Yin Z, Jiang K, Shi L, Fei J, Zheng J, Ou S, Ou J. Formation of di-cysteine acrolein adduct decreases cytotoxicity of acrolein by ROS alleviation and apoptosis intervention. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121686. [PMID: 31780296 DOI: 10.1016/j.jhazmat.2019.121686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Acrolein (ACR) is a toxic contaminant for humans. Our previous research indicated that l-cysteine (Cys) decreased the cytotoxicity of acrolein possibly via adduct formation, but which adduct contributed to the toxicity-lowering effect remains unknown. In this work, we identified a di-cysteine acrolein adduct (ACR-di-Cys) and investigated its toxicity against human bronchial epithelial cell line HBE and colon cancer cell line Caco-2. ACR-di-Cys tremendously decreased acrolein-induced cytotoxicity via alleviating ROS and apoptosis intervention. In the condition of no presence of free cysteine, however, this adduct can convert to mono-ACR-Cys in PBS solution by losing a molecule of cysteine conjugated at CC bond. ACR-mono-Cys showed much higher toxicity than ACR-di-Cys, and even higher than acrolein after 48 h exposure. This study indicated that cysteine can react with acrolein to form adducts with different acrolein-detoxifying capacity, and a sufficient intake of cysteine or cysteine-containing proteins can maximize the detoxifying effect for acrolein via the formation of a highly detoxifying agent, ACR-di-Cys.
Collapse
Affiliation(s)
- Zhao Yin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Jia Fei
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Zhang S, Zhang J, Cheng W, Chen H, Wang A, Liu Y, Hou H, Hu Q. Combined cell death of co-exposure to aldehyde mixtures on human bronchial epithelial BEAS-2B cells: Molecular insights into the joint action. CHEMOSPHERE 2020; 244:125482. [PMID: 31812766 DOI: 10.1016/j.chemosphere.2019.125482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Aldehydes are common air pollutants and metabolites of the organism, which widely exist in many in vivo (e.g. Alzheimer's disease) and in vitro (e.g. cigarette smoke) situations. Individual aldehydes have been studied well alone, while their combined toxicity is still obscure. Here, we examined the combined apoptosis of aldehyde mixtures in BEAS-2B cells at smoking-related environmental/physiologically relevant concentrations, and the potential mechanism was investigated further based on the related signaling pathway. Co-exposure to aldehyde mixtures demonstrated significant synergistic interaction on apoptosis in a concentration-dependent manner, which differed from the expectation based on single aldehydes. Moreover, formaldehyde significantly potentiated the induction of death receptor-5, caspase 8/10, cleaved caspase 3/7/9, pro-apoptotic proteins (Bim, Bad and Bax), depolarization of MMP (mitochondrial membrane potential) and AIF (apoptosis-inducing factor) induced by acrolein, and synergistically decreased expressions of pro-survival proteins (Bcl-2 and Bcl-XL) and poly ADP-ribose polymerase. Therefore, aldehyde mixture-induced synergistic apoptosis was mediated both by TRAIL death receptor and mitochondrial pathway. Additionally, reactive oxygen species, Ca2+ levels, DNA damage, and phosphorylated MDM2 were all synergistically induced by aldehyde mixtures, while total p53, phosphorylated p53 and phosphorylated AKT (serine/threonine kinase) were inhibited. Antioxidants N-acetylcysteine suppressed the aldehyde mixture-induced ROS, DNA damage and apoptosis, and blocked the TRAIL death receptor and mitochondrial pathway, while it did not rescue the p53 and AKT pathway. Briefly, aldehyde mixtures induced synergistic apoptosis even at smoking-related environmental/physiologically relevant concentrations, which could be enhanced through ROS-mediated death receptor/mitochondrial pathway, and the down-regulation of phosphorylated AKT.
Collapse
Affiliation(s)
- Sen Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Jingni Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Wanyan Cheng
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| |
Collapse
|
9
|
Chen L, Wu X, Zeb F, Huang Y, An J, Jiang P, Chen A, Xu C, Feng Q. Acrolein-induced apoptosis of smooth muscle cells through NEAT1-Bmal1/Clock pathway and a protection from asparagus extract. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113735. [PMID: 31864078 DOI: 10.1016/j.envpol.2019.113735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/08/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) accelerates manifestation of plaque vulnerability in atherosclerosis. Long noncoding RNA NEAT1 participates in the proliferation and apoptosis of cells. In addition, circadian clock genes play a significant role in cell apoptosis. However, whether acrolein, an environmental pollutant, affects the apoptosis of VSMCs by regulating NEAT1 and clock genes is still elusive. We established VSMCs as an atherosclerotic cell model in vitro. Acrolein exposure reduced survival rate of VSMCs, and raised apoptosis percentage through upregulating the expression of Bax, Cytochrome c and Cleaved caspase-3 and downregulating Bcl-2. Asparagus extract (AE), as a dietary supplementation, was able to protect VSMCs against acrolein-induced apoptosis. Expression of NEAT1, Bmal1 and Clock was decreased by acrolein, while was ameliorated by AE. Knockdown of NEAT1, Bmal1 or Clock promoted VSMCs apoptosis by regulating Bax, Bcl-2, Cytochrome c and Caspase-3 levels. Correspondingly, overexpression of NEAT1 inhibited the apoptosis. We also observed that silence of NEAT1 repressed the expression of Bmal1/Clock and vice versa. In this study, we demonstrated that VSMCs apoptosis induced by acrolein was associated with downregulation of NEAT1 and Bmal1/Clock. AE alleviated the effects of proapoptotic response and circadian disorders caused by acrolein, which shed a new light on cardiovascular protection.
Collapse
Affiliation(s)
- Lijun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxiang Huang
- Hebei Province Asparagus Industry Technology Research Institute, Qinhuangdao, 066004, China
| | - Jing An
- Hebei Province Asparagus Industry Technology Research Institute, Qinhuangdao, 066004, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Du F, Zhao T, Ji HC, Luo YB, Wang F, Mao GH, Feng WW, Chen Y, Wu XY, Yang LQ. Dioxin-like (DL-) polychlorinated biphenyls induced immunotoxicity through apoptosis in mice splenocytes via the AhR mediated mitochondria dependent signaling pathways. Food Chem Toxicol 2019; 134:110803. [PMID: 31563530 DOI: 10.1016/j.fct.2019.110803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Polychlorinated biphenyls (PCBs) would do serious damage to multiple systems, while coplanar polychlorinated biphenyls, the most toxic member of the family, has been widely taken into consideration. In this study, ICR mice were fed with different doses of PCB126 to explore the underlying molecular mechanisms on immunotoxicity. The results showed that PCB126 caused immunosuppression as evidenced by inhibiting the ratios of thymus and spleen weights, changing the organizational structure and decreasing levels and mRNA expression of TNF-α, IFN-γ and IL-2. PCB126 inhibited the SOD activity and spurred the accumulation of MDA in spleen and thymus. Meanwhile, it also disturbed the Nrf2 signaling pathway as evidenced by up-regulating the mRNA expression of Nrf2 and Keap1. Additionally, a remarkable reduction in the mRNA expression of AhR and enhancement in the mRNA expression of Cyp1 enzymes (Cyp1a1, Cyp1a2 and Cyp1b1) were observed, which increased the ROS levels. PCB126 could increase protein expression of Bax, Caspase-3, Caspase-8 and Caspase-9, while the protein expression of Bcl-2 was decreased. In summary, the results indicated that PCB126 modulated the AhR signaling pathway, which interacted with apoptosis and oxidative stress to induce immunotoxicity, enrich the immunotoxicological mechanisms of PCB126.
Collapse
Affiliation(s)
- Fang Du
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| | - Hong-Chen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Ying-Biao Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Guang-Hua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Wei-Wei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Xiang-Yang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Liu-Qing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Wang L, Guo X, Guo X, Zhang X, Ren J. Decitabine promotes apoptosis in mesenchymal stromal cells isolated from patients with myelodysplastic syndromes by inducing reactive oxygen species generation. Eur J Pharmacol 2019; 863:172676. [PMID: 31542488 DOI: 10.1016/j.ejphar.2019.172676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a group of clonal disorders of hematopoietic stem cells, resulting in ineffective hematopoiesis. Previous studies have reported that decitabine (DAC) plays an essential role in cell cycle arrest and cell death induction in multiple cell types. Nevertheless, the effect of decitabine on mesenchymal stromal cells derived from bone marrow of patients with MDSs is not completely clarified. Here, we explored the apoptotic and anti-proliferative effect of DAC on MSCs isolated from patients with MDSs. Treatment with DAC inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. We found a positive relationship between cell death triggered by DAC in MSCs and the death receptor family members Fas and FasL mRNA and protein levels (***P < 0.00085), cleaved caspase (-3, -8, and -9) activity, and mitochondrial membrane potential reduction. Additionally, DAC-induced apoptosis was inhibited by Kp7-6, a FasL/Fas antagonist, indicating a crucial role of FasL/Fas, a cell death receptor, in mediating the apoptotic effect of DAC. DAC also induced reactive oxygen species (ROS) generation in MSCs derived from MDSs patients (*P = 0.038). Furthermore, N-acetyl-L-cysteine (NAC), a widely accepted ROS scavenger, efficiently reversed DAC-induced apoptosis by inhibiting ROS generation (***P < 0.00051) in mitochondria and restoring mitochondrial membrane potential. Furthermore, ROS production was found to be a consequence of caspase activation via caspases inhibition. Our data imply that DAC triggers ROS production in human MSCs, which serves as a crucial factor for mitochondrial membrane potential reduction, and DAC induces cell death prior to FasL/Fas stimulation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaonan Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaoling Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaolei Zhang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jinhai Ren
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
12
|
Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget 2018; 7:80450-80464. [PMID: 27741518 PMCID: PMC5348333 DOI: 10.18632/oncotarget.12608] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022] Open
Abstract
Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.
Collapse
|
13
|
Wang HT, Lin JH, Yang CH, Haung CH, Weng CW, Maan-Yuh Lin A, Lo YL, Chen WS, Tang MS. Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells. Oncotarget 2017; 8:70406-70421. [PMID: 29050289 PMCID: PMC5642564 DOI: 10.18632/oncotarget.19710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/28/2017] [Indexed: 02/03/2023] Open
Abstract
Acrolein (Acr), a highly reactive unsaturated aldehyde, can cause various lung diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We have found that Acr can damage not only genomic DNA but also DNA repair proteins causing repair dysfunction and enhancing cells’ mutational susceptibility. While these effects may account for Acr lung carcinogenicity, the mechanisms by which Acr induces lung diseases other than cancer are unclear. In this study, we found that Acr induces damages in mitochondrial DNA (mtDNA), inhibits mitochondrial bioenergetics, and alters mtDNA copy number in human lung epithelial cells and fibroblasts. Furthermore, Acr induces mitochondrial fission which is followed by autophagy/ mitophagy and Acr-induced DNA damages can trigger apoptosis. However, the autophagy/ mitophagy process does not change the level of Acr-induced mtDNA damages and apoptosis. We propose that Acr-induced mtDNA damages trigger loss of mtDNA via mitochondrial fission and mitophagy. These processes and mitochondria dysfunction induced by Acr are causes that lead to lung diseases.
Collapse
Affiliation(s)
- Hsiang-Tsui Wang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Jing-Heng Lin
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hsiang Yang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hao Haung
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wen Weng
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Anya Maan-Yuh Lin
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans, General Hospital, Taipei, Taiwan
| | - Yu-Li Lo
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Shen Chen
- Department of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, New York, NY, USA
| | - Moon-Shong Tang
- Department of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Horvat T, Landesmann B, Lostia A, Vinken M, Munn S, Whelan M. Adverse outcome pathway development from protein alkylation to liver fibrosis. Arch Toxicol 2016; 91:1523-1543. [PMID: 27542122 PMCID: PMC5364266 DOI: 10.1007/s00204-016-1814-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
In modern toxicology, substantial efforts are undertaken to develop alternative solutions for in vivo toxicity testing. The adverse outcome pathway (AOP) concept could facilitate knowledge-based safety assessment of chemicals that does not rely exclusively on in vivo toxicity testing. The construction of an AOP is based on understanding toxicological processes at different levels of biological organisation. Here, we present the developed AOP for liver fibrosis and demonstrate a linkage between hepatic injury caused by chemical protein alkylation and the formation of liver fibrosis, supported by coherent and consistent scientific data. This long-term process, in which inflammation, tissue destruction, and repair occur simultaneously, results from the complex interplay between various hepatic cell types, receptors, and signalling pathways. Due to the complexity of the process, an adequate liver fibrosis cell model for in vitro evaluation of a chemical's fibrogenic potential is not yet available. Liver fibrosis poses an important human health issue that is also relevant for regulatory purposes. An AOP described with enough mechanistic detail might support chemical risk assessment by indicating early markers for downstream events and thus facilitating the development of an in vitro testing strategy. With this work, we demonstrate how the AOP framework can support the assembly and coherent display of distributed mechanistic information from the literature to support the use of alternative approaches for prediction of toxicity. This AOP was developed according to the guidance document on developing and assessing AOPs and its supplement, the users' handbook, issued by the Organisation for Economic Co-operation and Development.
Collapse
Affiliation(s)
- Tomislav Horvat
- Chemicals Safety and Alternative Methods Unit (F.3), Directorate F - Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, Ispra, Italy
| | - Brigitte Landesmann
- Chemicals Safety and Alternative Methods Unit (F.3), Directorate F - Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, Ispra, Italy.
| | - Alfonso Lostia
- Chemicals Safety and Alternative Methods Unit (F.3), Directorate F - Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, Ispra, Italy
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sharon Munn
- Chemicals Safety and Alternative Methods Unit (F.3), Directorate F - Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, Ispra, Italy
| | - Maurice Whelan
- Chemicals Safety and Alternative Methods Unit (F.3), Directorate F - Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, Ispra, Italy
| |
Collapse
|
15
|
Yeager RP, Kushman M, Chemerynski S, Weil R, Fu X, White M, Callahan-Lyon P, Rosenfeldt H. Proposed Mode of Action for Acrolein Respiratory Toxicity Associated with Inhaled Tobacco Smoke. Toxicol Sci 2016; 151:347-64. [DOI: 10.1093/toxsci/kfw051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
16
|
Séïde M, Marion M, Mateescu MA, Averill-Bates DA. The fungicide thiabendazole causes apoptosis in rat hepatocytes. Toxicol In Vitro 2015; 32:232-9. [PMID: 26748015 DOI: 10.1016/j.tiv.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 02/04/2023]
Abstract
Many pharmaceutical drugs cause hepatotoxicity in humans leading to severe liver diseases, representing a serious public health issue. This study investigates the ability of the anthelmintic and antifungal drug thiabendazole to cause cell death by apoptosis and metabolic changes in primary cultures of rat hepatocytes. Thiabendazole (200-500 μM) induced apoptosis in hepatocytes after 1 to 24h, causing loss of mitochondrial membrane potential, cytochrome c release from mitochondria, Fas-associated death domain (FADD) translocation from the cytosol to membranes, and activation of caspases-3, -8 and -9. Thus, thiabendazole activated both the mitochondrial and death receptor pathways of apoptosis. Under these conditions, cell death by necrosis was not detected following exposure to thiabendazole (100-500 μM) for 24-48 h, measured by lactate dehydrogenase release and propidium iodide uptake. Furthermore, thiabendazole increased activities of cytochrome P450 (CYP) isoenzymes CYP1A and CYP2B after 24 and 48 h, determined by 7-ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) activities, respectively. An important finding is that thiabendazole can eliminate hepatocytes by apoptosis, which could be a sensitive marker for hepatic damage and cell death. This study improves understanding of the mode of cell death induced by thiabendazole, which is important given that humans and animals are exposed to this compound as a pharmaceutical agent and in an environmental context.
Collapse
Affiliation(s)
- Marilyne Séïde
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Michel Marion
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Diana A Averill-Bates
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Research Centre for Environmental Toxicology (TOXEN), Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada.
| |
Collapse
|
17
|
Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 2015; 143:242-55. [PMID: 25628402 DOI: 10.1093/toxsci/kfu233] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer's disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies.
Collapse
Affiliation(s)
- Akshata Moghe
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Smita Ghare
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Bryan Lamoreau
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Mohammad Mohammad
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Shirish Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Craig McClain
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Swati Joshi-Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| |
Collapse
|
18
|
Kurotani R, Shima R, Miyano Y, Sakahara S, Matsumoto Y, Shibata Y, Abe H, Kimura S. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation. Acta Histochem Cytochem 2015; 48:61-8. [PMID: 26019375 PMCID: PMC4427566 DOI: 10.1267/ahc.14065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/21/2015] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels.
Collapse
Affiliation(s)
- Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Reika Shima
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yuki Miyano
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoshie Matsumoto
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health
| |
Collapse
|
19
|
Tanel A, Pallepati P, Bettaieb A, Morin P, Averill-Bates DA. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:827-35. [DOI: 10.1016/j.bbamcr.2013.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 12/29/2022]
|
20
|
Guth S, Habermeyer M, Baum M, Steinberg P, Lampen A, Eisenbrand G. Thermally induced process-related contaminants: the example of acrolein and the comparison with acrylamide: opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol Nutr Food Res 2013; 57:2269-82. [PMID: 23970446 DOI: 10.1002/mnfr.201300418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
α,β-Unsaturated aliphatic carbonyl compounds are naturally widespread in food, but are also formed during the thermal treatment of food. This applies, for example, to the genotoxic carcinogen acrylamide (AA), but also to acrolein (AC), the simplest α,β-unsaturated aldehyde. First observations indicate that human exposure to AC may be higher than the exposure to AA. The DFG Senate Commission on Food Safety therefore compared data on AC and AA available in the scientific literature, evaluating current knowledge on formation, occurrence, exposure, metabolism, biological effects, toxicity, and carcinogenicity and defined knowledge gaps as well as research needs in an opinion on November 19, 2012, in German. The English version was agreed on April 17, 2013.
Collapse
Affiliation(s)
- Sabine Guth
- Department of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Doggui S, Belkacemi A, Paka GD, Perrotte M, Pi R, Ramassamy C. Curcumin protects neuronal-like cells against acrolein by restoring Akt and redox signaling pathways. Mol Nutr Food Res 2013; 57:1660-70. [DOI: 10.1002/mnfr.201300130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sihem Doggui
- INRS-Institut Armand Frappier; Laval Québec Canada
| | | | | | | | - Rongbiao Pi
- Department of Pharmacology & Toxicology; School of Pharmaceutical Sciences; Sun Yat-Sen University; Guangzhou China
| | - Charles Ramassamy
- INRS-Institut Armand Frappier; Laval Québec Canada
- Department of Medical Biology; Faculty of Medicine; Laval University; Québec Canada
| |
Collapse
|
22
|
Yamada T, Tanaka Y, Hasegawa R, Sakuratani Y, Yamada J, Kamata E, Ono A, Hirose A, Yamazoe Y, Mekenyan O, Hayashi M. A category approach to predicting the repeated-dose hepatotoxicity of allyl esters. Regul Toxicol Pharmacol 2013; 65:189-95. [DOI: 10.1016/j.yrtph.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/02/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
23
|
Protective Effect of Silymarin against Acrolein-Induced Cardiotoxicity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:352091. [PMID: 23320028 PMCID: PMC3535759 DOI: 10.1155/2012/352091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 02/07/2023]
Abstract
Reactive α,β-unsaturated aldehydes such as acrolein (ACR) are major components of environmental pollutants and have been implicated in the neurodegenerative and cardiac diseases. In this study, the protective effect of silymarin (SN) against cardiotoxicity induced by ACR in mice was evaluated. Studies were performed on seven groups of six animals each, including vehicle-control (normal saline + 0.5% w/v methylcellulose), ACR (7.5 mg/kg/day, gavage) for 3 weeks, SN (25, 50 and 100 mg/kg/day, i.p.) plus ACR, vitamin E (Vit E, 100 IU/kg, i.p.) plus ACR, and SN (100 mg/kg, i.p.) groups. Mice received SN 7 days before ACR and daily thereafter throughout the study. Pretreatment with SN attenuated ACR-induced increased levels of malondialdehyde (MDA), serum cardiac troponin I (cTnI), and creatine kinase-MB (CK-MB), as well as histopathological changes in cardiac tissues. Moreover, SN improved glutathione (GSH) content, superoxide dismutase (SOD), and catalase (CAT) activities in heart of ACR-treated mice. Western blot analysis showed that SN pretreatment inhibited apoptosis provoked by ACR through decreasing Bax/Bcl-2 ratio, cytosolic cytochrome c content, and cleaved caspase-3 level in heart. In conclusion, SN may have protective effects against cardiotoxicity of ACR by reducing lipid peroxidation, renewing the activities of antioxidant enzymes, and preventing apoptosis.
Collapse
|
24
|
Jaganjac M, Prah IO, Cipak A, Cindric M, Mrakovcic L, Tatzber F, Ilincic P, Rukavina V, Spehar B, Vukovic JP, Telen S, Uchida K, Lulic Z, Zarkovic N. Effects of bioreactive acrolein from automotive exhaust gases on human cells in vitro. ENVIRONMENTAL TOXICOLOGY 2012; 27:644-652. [PMID: 21374787 DOI: 10.1002/tox.20683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
Acrolein is a toxic unsaturated aldehyde and widespread environmental pollutant produced during lipid peroxidation and also by burning of tobacco or liquid fuels. Inhalation or dermal exposure to acrolein could be toxic to organisms. This very reactive aldehyde has a strong affinity for binding to proteins thus forming pathogenic protein-adducts. In the present study we have analyzed formation of bioreactive acrolein-protein adducts in bovine serum albumin solution exposed to exhaust gases of mineral diesel fuel and of mineral diesel fuel supplemented with different amounts of a novel diesel fuel additive denoted Ecodiesel (produced by a genuine procedure of recycling of plant oils used for food preparation). The effects of acrolein-protein adducts were tested on human microvascular endothelial cells and on human osteosarcoma cells that are sensitive to bioactivities of lipid peroxidation products. The results have shown a reduction of the bioreactive acrolein in exhaust gases when mineral diesel was supplemented with 5-20% Ecodiesel. Moreover, acrolein-protein adducts obtained from mineral diesel supplemented with Ecodiesel were less toxic than those obtained from mineral diesel alone. Thus, we assume that supplementing mineral diesel fuel with Ecodiesel would be of benefit for the use of renewable energy, for environment and for human health due to reduced environmental pollution with bioreactive acrolein.
Collapse
Affiliation(s)
- Morana Jaganjac
- Department of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu XY, Yang ZH, Pan XJ, Zhu MX, Xie JP. Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett 2010; 197:113-22. [PMID: 20471460 DOI: 10.1016/j.toxlet.2010.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/01/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Crotonaldehyde is an environment pollutant and lipid peroxidation product. Crotonaldehyde produces adverse effects to humans and serves as a risk factor for human pulmonary diseases. Like acrolein and 4-hydroxynonenal, crotonaldehyde seems likely to alter many cell signaling cascades, including inflammatory responses. The purpose of this study was to investigate the genome-wide transcriptional responses of normal human bronchial epithelial cells exposed to crotonaldehyde. Using microarrays technology, the global changes in transcriptional level were analyzed. Prior to RNA extraction, cells were exposed to crotonaldehyde at 40 or 80 microM for 3 or 6h. Real-time quantitative polymerase chain reaction (qPCR) was performed to validate microarray data and cell cycle arrest was determined. The commonly differentially regulated genes in many biological processes were dysregulated including inflammatory responses, exogenous metabolism, cell cycle, heat shock responses, and antioxidant responses. Results in the present study screen out the important roles of HMOX1 in regulating other signaling cascades and ALDH1A3 in detoxifying exogenous toxicants. Collectively, our study demonstrated that crotonaldehyde altered gene expression profile in the genome-wide transcriptional level in normal human bronchial epithelial cells. And many of them represented potential mechanisms of crotonaldehyde causing cytotoxicity and tissue injury in the human lung.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | | | | | | | | |
Collapse
|
26
|
Liu XY, Zhu MX, Xie JP. Mutagenicity of acrolein and acrolein-induced DNA adducts. Toxicol Mech Methods 2010; 20:36-44. [PMID: 20158384 DOI: 10.3109/15376510903530845] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acrolein mutagenicity relies on DNA adduct formation. Reaction of acrolein with deoxyguanosine generates alpha-hydroxy-1, N(2)-propano-2'-deoxyguanosine (alpha-HOPdG) and gamma-hydroxy-1, N(2)-propano-2'-deoxyguanosine (gamma-HOPdG) adducts. These two DNA adducts behave differently in mutagenicity. gamma-HOPdG is the major DNA adduct and it can lead to interstrand DNA-DNA and DNA-peptide/protein cross-links, which may induce strong mutagenicity; however, gamma-HOPdG can be repaired by some DNA polymerases complex and lessen its mutagenic effects. alpha-HOPdG is formed much less than gamma-HOPdG, but difficult to be repaired, which contributes to accumulation in vivo. Results of acrolein mutagenicity studies haven't been confirmed, which is mainly due to the conflicting mutagenicity data of the major acrolein adduct (gamma-HOPdG). The minor alpha-HOPdG is mutagenic in both in vitro and in vivo test systems. The role of alpha-HOPdG in acrolein mutagenicity needs further investigation. The inconsistent result of acrolein mutagenicity can be attributed, at least partially, to a variety of acrolein-DNA adducts formation and their repair in diverse detection systems. Recent results of detection of acrolein-DNA adduct in human lung tissues and analysis of P53 mutation spectra in acrolein-treated cells may shed some light on mechanisms of acrolein mutagenicity. These aspects are covered in this mini review.
Collapse
Affiliation(s)
- Xing-yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | | | | |
Collapse
|
27
|
Roy J, Pallepati P, Bettaieb A, Averill-Bates DA. Acrolein induces apoptosis through the death receptor pathway in A549 lung cells: role of p53. Can J Physiol Pharmacol 2010; 88:353-68. [PMID: 20393600 DOI: 10.1139/y09-134] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Acrolein, a highly reactive alpha,beta-unsaturated aldehyde, is an omnipresent environmental pollutant. Chronic and acute human exposures occur through exogenous and endogenous sources, including food, vapors of overheated cooking oil, house and forest fires, cigarette smoke, and automobile exhaust. Acrolein is a toxic byproduct of lipid peroxidation, which has been implicated in pulmonary, cardiac, and neurodegenerative diseases. This study shows that p53 is an initiating factor in acrolein-induced death receptor activation during apoptosis in A549 human lung cells. Exposure of cells to acrolein (0-50 micromol/L) mainly caused apoptosis, which was manifested by execution phase events such as condensation of nuclear chromatin, phosphatidylserine externalization, and poly(ADP-ribose) polymerase (PARP) cleavage. Levels of necrosis (approximately 5%) were low. Acrolein triggered the death receptor pathway of apoptosis, causing elevation of Fas ligand (FasL) and translocation of adaptor protein Fas-associated death domain to the plasma membrane. Acrolein caused activation of caspase-8, caspase-2, caspase-7, and the cross-talk pathway mediated by Bid cleavage. Activation of p53 and increased expression of p53-upregulated modulator of apoptosis (PUMA) occurred in response to acrolein. FasL upregulation and caspase-8 activation were decreased by p53 inhibitor pifithrin-alpha and antioxidant polyethylene glycol catalase. These findings increase our knowledge about the induction of cell death pathways by acrolein, which has important implications for human health.
Collapse
Affiliation(s)
- Julie Roy
- Département des Sciences Biologiques, TOXEN, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, QC H3C 3P8, Canada
| | | | | | | |
Collapse
|
28
|
Boobis A, Watelet JB, Whomsley R, Benedetti MS, Demoly P, Tipton K. Drug interactions. Drug Metab Rev 2009; 41:486-527. [PMID: 19601724 DOI: 10.1080/10837450902891550] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drugs for allergy are often taken in combination with other drugs, either to treat allergy or other conditions. In common with many pharmaceuticals, most such drugs are subject to metabolism by P450 enzymes and to transmembrane transport. This gives rise to considerable potential for drug-drug interactions, to which must be added consideration of drug-diet interactions. The potential for metabolism-based drug interactions is increasingly being taken into account during drug development, using a variety of in silico and in vitro approaches. Prediction of transporter-based interactions is not as advanced. The clinical importance of a drug interaction will depend upon a number of factors, and it is important to address concerns quantitatively, taking into account the therapeutic index of the compound.
Collapse
Affiliation(s)
- Alan Boobis
- Department of Experimental Medicine and Toxicology, Division of Medicine, Imperial College London, Hammersmith Campus, London.
| | | | | | | | | | | |
Collapse
|
29
|
Sarkar P, Hayes BE. Proteomic profiling of rat lung epithelial cells induced by acrolein. Life Sci 2009; 85:188-95. [PMID: 19490921 DOI: 10.1016/j.lfs.2009.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/09/2009] [Accepted: 05/14/2009] [Indexed: 01/11/2023]
Abstract
AIMS Acrolein is a highly toxic unsaturated aldehyde and is also an endogenous byproduct produced from lipid peroxidation. It can be formed from the breakdown of certain pollutants in outdoor air or from burning tobacco or gasoline. Inhalation and dermal exposure to acrolein are extremely toxic to human tissue. Although it is known that acrolein is toxic to lung tissue, no studies have attempted to address the changes induced by acrolein on a global scale. MAIN METHODS In the present study we have attempted to address the changes in global protein expression induced by acrolein using proteomics analysis in rat lung epithelial cells. KEY FINDINGS Our analysis reveals a comprehensive profiling of the proteins that includes a heterogeneous class of proteins and this compels one to consider that the toxic response to acrolein is very complex. There were 34 proteins that showed changes between the control cells and after acrolein treatment. The expression of 18 proteins was increased and the expression of 16 proteins was decreased following exposure to acrolein. We have further validated two differentially expressed proteins namely annexin II (ANXII) and prohibitin (PHB) in lung epithelial cells treated with acrolein. SIGNIFICANCE Based on the results of the overall proteomic analysis, acrolein appears to induce changes in a diverse range of proteins suggesting a complex mechanism of acrolein-induced toxicity in lung epithelial cells.
Collapse
Affiliation(s)
- Poonam Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | | |
Collapse
|
30
|
Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 2009; 82:625-38. [PMID: 19184597 DOI: 10.1007/s00253-009-1875-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/30/2022]
Abstract
There is a growing awareness that lignocellulose will be a major raw material for production of both fuel and chemicals in the coming decades--most likely through various fermentation routes. Considerable attention has been given to the problem of finding efficient means of separating the major constituents in lignocellulose (i.e., lignin, hemicellulose, and cellulose) and to efficiently hydrolyze the carbohydrate parts into sugars. In these processes, by-products will inevitably form to some extent, and these will have to be dealt with in the ensuing microbial processes. One group of compounds in this category is the furaldehydes. 2-Furaldehyde (furfural) and substituted 2-furaldehydes--most importantly 5-hydroxymethyl-2-furaldehyde--are the dominant inhibitory compounds found in lignocellulosic hydrolyzates. The furaldehydes are known to have biological effects and act as inhibitors in fermentation processes. The effects of these compounds will therefore have to be considered in the design of biotechnological processes using lignocellulose. In this short review, we take a look at known metabolic effects, as well as strategies to overcome problems in biotechnological applications caused by furaldehydes.
Collapse
Affiliation(s)
- João R M Almeida
- Department of Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
31
|
Berry KAZ, Henson PM, Murphy RC. Effects of Acrolein on Leukotriene Biosynthesis in Human Neutrophils. Chem Res Toxicol 2008; 21:2424-32. [DOI: 10.1021/tx800333u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karin A. Zemski Berry
- Department of Pharmacology, MSC 8303, University of Colorado Denver, RC1 South, L18-6120, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, and Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Peter M. Henson
- Department of Pharmacology, MSC 8303, University of Colorado Denver, RC1 South, L18-6120, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, and Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Robert C. Murphy
- Department of Pharmacology, MSC 8303, University of Colorado Denver, RC1 South, L18-6120, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, and Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| |
Collapse
|
32
|
Thompson CA, Burcham PC. Genome-Wide Transcriptional Responses to Acrolein. Chem Res Toxicol 2008; 21:2245-56. [DOI: 10.1021/tx8001934] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Colin A. Thompson
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Perth WA 6009, Australia
| | - Philip C. Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
33
|
Zhang X, Lai Y, McCance DR, Uchida K, McDonald DM, Gardiner TA, Stitt AW, Curtis TM. Evaluation of N (epsilon)-(3-formyl-3,4-dehydropiperidino)lysine as a novel biomarker for the severity of diabetic retinopathy. Diabetologia 2008; 51:1723-30. [PMID: 18587559 DOI: 10.1007/s00125-008-1071-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/14/2008] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Recent studies suggest that oxidative stress should be monitored alongside HbA(1c) to identify subgroups of diabetic patients at high risk of initiation or progression of retinopathy. The acrolein-derived advanced lipoxidation end-product (ALE), [Formula: see text]-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine), is a useful biomarker that reflects the cumulative burden of oxidative stress over long periods of time. The purpose of the present study was to investigate whether serum and haemoglobin levels of FDP-lysine are associated with the severity of diabetic retinopathy in type 1 and type 2 diabetic patients. METHODS Serum and haemoglobin levels of FDP-lysine were measured by competitive ELISA in 59 type 1 and 76 type 2 diabetic patients with no retinopathy, non-proliferative retinopathy or proliferative retinopathy (mean age [+/-SEM] 54.3 +/- 1.3 years), and in 47 non-diabetic control individuals (mean age 51.9 +/- 2.1 years). RESULTS Serum and haemoglobin levels of FDP-lysine were significantly increased in diabetic patients compared with control individuals (p = 0.04 and p = 0.002, respectively). However, no significant association was found between levels of serum FDP-lysine and the severity of diabetic retinopathy (p = 0.97). In contrast, increased haemoglobin FDP-lysine levels were observed in patients with proliferative retinopathy compared with patients without retinopathy and with non-proliferative retinopathy (p = 0.04). The relationship of FDP-lysine with proliferative retinopathy was unaltered after adjustment for HbA(1c), or other clinical parameters. CONCLUSIONS/INTERPRETATION Our data suggest that haemoglobin FDP-lysine may provide a useful risk marker for the development of proliferative diabetic retinopathy independently of HbA(1c), and that elevated intracellular ALE formation may be involved in the pathogenesis of this sight-threatening complication of diabetes.
Collapse
Affiliation(s)
- X Zhang
- Centre for Vision Sciences, School of Biomedical Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lordan S, Mackrill JJ, O'Brien NM. Involvement of Fas signalling in 7beta-hydroxycholesterol-and cholesterol-5beta,6beta-epoxide-induced apoptosis. Int J Toxicol 2008; 27:279-85. [PMID: 18569169 DOI: 10.1080/10915810802208616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The induction of apoptosis in cells of the arterial wall is a critical event in the development of atheroma. 7beta-Hydroxycholesterol (7beta-OH) and cholesterol-5beta,6beta-epoxide (beta-epoxide) are components of oxLDL and have previously been shown to be potent inducers of apoptosis. However, the exact mechanisms through which these oxysterols induce apoptosis remains to be fully elucidated. The specific interaction of the Fas death receptor with Fas ligand (FasL) initiates a caspase cascade culminating in apoptosis. The purpose of the present study was to determine the involvement of Fas signalling in 7beta-OH-and beta-epoxide-induced apoptosis. To this end we employed the Fas/FasL antagonist, Kp7-6, and examined the effect of Fas inhibition on oxysterol-induced cell death in U937 cells. Fas levels were increased following 24 h exposure to 30 micro M 7beta-OH while treatment with 30 micro M beta-epoxide had no effect. Kp7-6 reduced the Fas content of 7beta-OH-treated cells to control levels and partially protected against 7beta-OH-induced apoptosis. This coincided with a decrease in cytochrome c release along with a reduction in caspase-3 and caspase-8 activity. Our data implicate Fas signalling in the apoptotic pathway induced by 7beta-OH and also highlight differences between apoptosis induced by 7beta-OH and beta-epoxide.
Collapse
Affiliation(s)
- Sinead Lordan
- Department of Food and Nutritional Sciences, University College, Cork, Republic of Ireland
| | | | | |
Collapse
|
35
|
Thompson CA, Burcham PC. Protein alkylation, transcriptional responses and cytochrome c release during acrolein toxicity in A549 cells: Influence of nucleophilic culture media constituents. Toxicol In Vitro 2008; 22:844-53. [DOI: 10.1016/j.tiv.2007.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/07/2007] [Accepted: 12/25/2007] [Indexed: 12/20/2022]
|
36
|
Ishii T, Yamada T, Mori T, Kumazawa S, Uchida K, Nakayama T. Characterization of acrolein-induced protein cross-links. Free Radic Res 2008; 41:1253-60. [PMID: 17922343 DOI: 10.1080/10715760701678652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lipid peroxidation products contribute to protein aggregation that occurs during oxidative stress in a number of degenerative disorders. Acrolein (ACR), a highly toxic lipid peroxidation aldehyde, is a strong cross-linking agent of cellular components such as proteins. To understand the mechanisms of oxidative stress-induced protein aggregation, this study characterized the ACR modification of chain B from bovine insulin by mass spectrometry. To identify the cross-linking sites, the ACR-treated peptide was digested with a protease and the resulting peptides were analysed by liquid chromatography-tandem mass spectrometry. Inter- and intra-molecular cross-linking adducts were identified between amino groups and the side chain of histidine in the peptide. These results indicated that the ACR-induced cross-links were accompanied by two reactions, namely Michael addition and Schiff base formation. In conclusion, the use of mass spectrometric techniques provided chemical evidence for protein cross-linking with ACR.
Collapse
Affiliation(s)
- Takeshi Ishii
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Stevens JF, Maier CS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 2008; 52:7-25. [PMID: 18203133 PMCID: PMC2423340 DOI: 10.1002/mnfr.200700412] [Citation(s) in RCA: 521] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acrolein (2-propenal) is ubiquitously present in (cooked) foods and in the environment. It is formed from carbohydrates, vegetable oils and animal fats, amino acids during heating of foods, and by combustion of petroleum fuels and biodiesel. Chemical reactions responsible for release of acrolein include heat-induced dehydration of glycerol, retro-aldol cleavage of dehydrated carbohydrates, lipid peroxidation of polyunsaturated fatty acids, and Strecker degradation of methionine and threonine. Smoking of tobacco products equals or exceeds the total human exposure to acrolein from all other sources. The main endogenous sources of acrolein are myeloperoxidase-mediated degradation of threonine and amine oxidase-mediated degradation of spermine and spermidine, which may constitute a significant source of acrolein in situations of oxidative stress and inflammation. Acrolein is metabolized by conjugation with glutathione and excreted in the urine as mercapturic acid metabolites. Acrolein forms Michael adducts with ascorbic acid in vitro, but the biological relevance of this reaction is not clear. The biological effects of acrolein are a consequence of its reactivity towards biological nucleophiles such as guanine in DNA and cysteine, lysine, histidine, and arginine residues in critical regions of nuclear factors, proteases, and other proteins. Acrolein adduction disrupts the function of these biomacromolecules which may result in mutations, altered gene transcription, and modulation of apoptosis.
Collapse
Affiliation(s)
- Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA.
| | | |
Collapse
|