1
|
Maltseva SY, Kulikovskiy MS, Maltsev YI. Functional State of Coelastrella multistriata (Sphaeropleales, Chlorophyta) in an Enrichment Culture. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
2
|
Narang U, Gautam R, Yadav KK, Bhattacharya S, Sahu PK, Aggarwal AK, Chauhan SMS. Hydrogen bond controlled self-assembly of nanostructured triazine-functionalized new porphyrin molecule. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Metal binding to the amyloid-β peptides in the presence of biomembranes: potential mechanisms of cell toxicity. J Biol Inorg Chem 2019; 24:1189-1196. [PMID: 31562546 DOI: 10.1007/s00775-019-01723-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
The amyloid-β (Aβ) peptides are key molecules in Alzheimer's disease (AD) pathology. They interact with cellular membranes, and can bind metal ions outside the membrane. Certain oligomeric Aβ aggregates are known to induce membrane perturbations and the structure of these oligomers-and their membrane-perturbing effects-can be modulated by metal ion binding. If the bound metal ions are redox active, as e.g., Cu and Fe ions are, they will generate harmful reactive oxygen species (ROS) just outside the membrane surface. Thus, the membrane damage incurred by toxic Aβ oligomers is likely aggravated when redox-active metal ions are present. The combined interactions between Aβ oligomers, metal ions, and biomembranes may be responsible for at least some of the neuronal death in AD patients.
Collapse
|
5
|
Headley CA, Hoffman CN, Freisen JM, Han Y, Macklin JM, Zweier JL, Rockenbauer A, Kuret J, Villamena FA. Membrane-specific spin trap, 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC 12PO): theoretical, bioorthogonal fluorescence imaging and EPR studies. Org Biomol Chem 2019; 17:7694-7705. [PMID: 31328213 PMCID: PMC6703941 DOI: 10.1039/c9ob01334b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membranous organelles are major endogenous sources of reactive oxygen and nitrogen species. When present at high levels, these species can cause macromolecular damage and disease. To better detect and scavenge free radical forms of the reactive species at their sources, we investigated whether nitrone spin traps could be selectively targeted to intracellular membranes using a bioorthogonal imaging approach. Electron paramagnetic resonance imaging demonstrated that the novel cyclic nitrone 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC12PO) could be used to target the nitrone moiety to liposomes composed of phosphatidyl choline. To test localization with authentic membranes in living cells, fluorophores were introduced via strain-promoted alkyne-nitrone cycloaddition (SPANC). Two fluorophore-conjugated alkynes were investigated: hexynamide-fluoresceine (HYA-FL) and dibenzylcyclooctyne-PEG4-5/6-sulforhodamine B (DBCO-Rhod). Computational and mass spectrometry experiments confirmed the cycloadduct formation of DBCO-Rhod (but not HYA-FL) with diC12PO in cell-free solution. Confocal microscopy of bovine aortic endothelial cells treated sequentially with diC12PO and DBCO-Rhod demonstrated clear localization of fluorescence with intracellular membranes. These results indicate that targeting of nitrone spin traps to cellular membranes is feasible, and that a bioorthogonal approach can aid the interrogation of their intracellular compartmentalization properties.
Collapse
Affiliation(s)
- Colwyn A Headley
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Claire N Hoffman
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Juliana M Freisen
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Yongbin Han
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Joseph M Macklin
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jeff Kuret
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Rodríguez E, Dégletagne C, Hagen TM, Abele D, Blier PU. Mitochondrial Traits Previously Associated With Species Maximum Lifespan Do Not Correlate With Longevity Across Populations of the Bivalve Arctica islandica. Front Physiol 2019; 10:946. [PMID: 31404340 PMCID: PMC6676799 DOI: 10.3389/fphys.2019.00946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial oxidative stress theory of aging posits that membrane susceptibility to peroxidation and the organization of the electron transport system (ETS) linked with reactive oxygen species (ROS) generation are two main drivers of lifespan. While a clear correlation has been established from species comparative studies, the significance of these characteristics as potential modulators of lifespan divergences among populations of individual species is still to be tested. The bivalve Arctica islandica, the longest-lived non-colonial animal with a record lifespan of 507 years, possesses a lower mitochondrial peroxidation index (PI) and reduced H2O2 efflux linked to complexes I and III activities than related species. Taking advantage of the wide variation in maximum reported longevities (MRL) among 6 European populations (36–507 years), we examined whether these two mitochondrial properties could explain differences in longevity. We report no relationship between membrane PI and MRL in populations of A. islandica, as well as a lack of intraspecific relationship between ETS complex activities and MRL. Individuals from brackish sites characterized by wide temperature and salinity windows had, however, markedly lower ETS enzyme activities relative to citrate synthase activity. Our results highlight environment-dependent remodeling of mitochondrial phenotypes.
Collapse
Affiliation(s)
| | - Cyril Dégletagne
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Doris Abele
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Pierre U Blier
- Département de Biologie, Université du Québec, Rimouski, QC, Canada
| |
Collapse
|
7
|
Hu Y, Zhao T, Zou L, Wang X, Zhang Y. Molecular dynamics simulations of membrane properties affected by plasma ROS based on the GROMOS force field. Biophys Chem 2019; 253:106214. [PMID: 31272076 DOI: 10.1016/j.bpc.2019.106214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
Cold atmospheric plasma (CAP) has attracted substantial attention in the field of medical disinfection because its main components, reactive oxygen species (ROS), have a strong destructive effect on various cell components. The cell membrane plays an important role in maintaining proper cellular function by blocking harmful substances such as ROS. In this paper, we used molecular dynamics simulations to study the behaviour of different ROS at the membrane-water interface. The results showed that the cell membrane presented a weak barrier to hydrophobic ROS (O2) but effectively prevented hydrophilic ROS (OH, HO2, H2O2) from entering the cell. The plasma treatment significantly enhanced the permeability of the cell membrane to HO2, while the energetic barrier to other types of ROS changed only slightly. O2 very likely stopped in the centre of the lipid bilayer when crossing the membrane and there attacked the unsaturated region of the phospholipid. Cholesterol was most likely oxidized by HO2, causing a condensing effect that destroyed the integrity and fluidity of the cell membrane. The study also found that large amounts of ROS decreased the thickness of the cell membrane, and the phospholipid arrangement became disordered.
Collapse
Affiliation(s)
- Yujia Hu
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China.
| | - Liang Zou
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| | - Xiaolong Wang
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| |
Collapse
|
8
|
Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys 2019; 48:63-91. [PMID: 30786231 DOI: 10.1146/annurev-biophys-052118-115451] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.
Collapse
Affiliation(s)
- Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| | - Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17165 Solna, Sweden;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| |
Collapse
|
9
|
Jové M, Pradas I, Dominguez-Gonzalez M, Ferrer I, Pamplona R. Lipids and lipoxidation in human brain aging. Mitochondrial ATP-synthase as a key lipoxidation target. Redox Biol 2018; 23:101082. [PMID: 30635167 PMCID: PMC6859548 DOI: 10.1016/j.redox.2018.101082] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
The human brain is a target of the aging process like other cell systems of the human body. Specific regions of the human brain exhibit differential vulnerabilities to the aging process. Yet the underlying mechanisms that sustain the preservation or deterioration of neurons and cerebral functions are unknown. In this review, we focus attention on the role of lipids and the importance of the cross-regionally different vulnerabilities in human brain aging. In particular, we first consider a brief approach to the lipidomics of human brain, the relationship between lipids and lipoxidative damage, the role of lipids in human brain aging, and the specific targets of lipoxidative damage in human brain and during aging. It is proposed that the restricted set of modified proteins and the functional categories involved may be considered putative collaborative factors contributing to neuronal aging, and that mitochondrial ATP synthase is a key lipoxidative target in human brain aging.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Mayelin Dominguez-Gonzalez
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain.
| |
Collapse
|
10
|
Yadav DK, Kumar S, Choi EH, Sharma P, Misra S, Kim MH. Insight Into the Molecular Dynamic Simulation Studies of Reactive Oxygen Species in Native Skin Membrane. Front Pharmacol 2018; 9:644. [PMID: 29997501 PMCID: PMC6030362 DOI: 10.3389/fphar.2018.00644] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, the role of reactive oxygen species (ROS) in regulating cancer cell apoptosis, inflammation, cell ischemia, and cell signaling pathways has been well established. The most common sources of intracellular ROS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this study, we investigated the dynamics and permeability of ROS using molecular dynamics (MD) simulations on native skin-lipid bilayer membranes. Native skin-lipid bilayers are composed of ceramide, cholesterol, and free fatty acid in an almost equal molar ratio (1:1:1). Dynamic distribution studies on ROS, i.e., hydrogen peroxide (H2O2) and O2 (1O2 by analogy), revealed that these species interact with cholesterol as a primary target in lipid peroxidation of the skin-lipid bilayer. Moreover, the permeability of ROS, i.e., H2O2, hydroxyl radicals (HO), hydroperoxy radical (HOO), and O2, along the skin-lipid bilayer was measured using free energy profiles (FEPs). The FEPs showed that in spite of high-energy barriers, ROS traveled through the membrane easily. Breaching the free energy barriers, these ROS permeated into the membrane, inflicting oxidative stress, and causing apoptosis. Collectively, the insight acquired from simulations may result in a better understanding of oxidative stress at the atomic level.
Collapse
Affiliation(s)
- Dharmendra K Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Seoul, South Korea
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Seoul, South Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
11
|
González-Fernández C, Lacroix C, Paul-Pont I, Le Grand F, Albentosa M, Bellas J, Viñas L, Campillo JA, Hegaret H, Soudant P. Effect of diet quality on mussel biomarker responses to pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:211-225. [PMID: 27300503 DOI: 10.1016/j.aquatox.2016.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
The effect of the quality of two microalgal species on select biological and biochemical responses used as indicators of pollution were assessed. Mussels were conditioned for 6 weeks with the diatom Chaetoceros neogracile and the dinoflagellate Heterocapsa triquetra, chosen for being two clearly different types of primary production quality that differ in both biometric and biochemical characteristics. After dietary conditioning, the mussels were exposed to a polycyclic aromatic hydrocarbon, fluoranthene (FLU), for 1 week followed by 1 week of depuration. Results showed higher FLU accumulation in mussels fed on C. neogracile compared to those fed on H. triquetra. Concomitantly, a greater impact of this toxicant was observed in the biomarker responses of mussels fed on C. neogracile. These mussels showed an increase in the percentage of dead hemocytes, an activation of phagocytosis and ROS production of hemocytes after exposure. Some enzymatic activities also increased upon FLU exposure (superoxide dismutase -SOD-, catalase -CAT-, and glutathione reductases -GR-) and after depuration (glutathione-s-transferase -GST-). Results suggest that FLU exposure as well as food quality influence biomarker responses, with higher values of SOD, CAT and GR in non-exposed mussels fed on C. neogracile. In addition, upon exposure to the same FLU concentration, GR response varied according to dietary conditioning, suggesting that diet could act as a confounding factor in biomarker responses to pollution. Consequently, trophic conditions should be considered in marine pollution monitoring programs for a better interpretation of biomarker responses.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain; LEMAR - UMR 6539 - IUEM, Technopôle de Brest-Iroise, 29280 Plouzané, France.
| | - Camille Lacroix
- LEMAR - UMR 6539 - IUEM, Technopôle de Brest-Iroise, 29280 Plouzané, France; CEDRE, 715 rue Alain Colas, 29218 Brest, Cedex 2, France
| | - Ika Paul-Pont
- LEMAR - UMR 6539 - IUEM, Technopôle de Brest-Iroise, 29280 Plouzané, France
| | - Fabienne Le Grand
- LEMAR - UMR 6539 - IUEM, Technopôle de Brest-Iroise, 29280 Plouzané, France
| | - Marina Albentosa
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Juan Bellas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Lucía Viñas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Juan A Campillo
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Helene Hegaret
- LEMAR - UMR 6539 - IUEM, Technopôle de Brest-Iroise, 29280 Plouzané, France
| | - Philippe Soudant
- LEMAR - UMR 6539 - IUEM, Technopôle de Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
12
|
Rosselin M, Meyer G, Guillet P, Cheviet T, Walther G, Meister A, Hadjipavlou-Litina D, Durand G. Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation. Bioconjug Chem 2016; 27:772-81. [DOI: 10.1021/acs.bioconjchem.6b00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie Rosselin
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Grégory Meyer
- Avignon University, Laboratoire de Pharm-Ecologie
Cardiovasculaire LAPEC EA4278, F-84000 Avignon, France
| | - Pierre Guillet
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Thomas Cheviet
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Guillaume Walther
- Avignon University, Laboratoire de Pharm-Ecologie
Cardiovasculaire LAPEC EA4278, F-84000 Avignon, France
| | - Annette Meister
- Martin Luther University Halle—Wittenberg, Institute of Chemistry and Institute of Biochemistry/Biotechnology, von-Danckelmann-Platz 4, D-06120 Halle/Saale, Germany
| | - Dimitra Hadjipavlou-Litina
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health
Sciences, AUTh, Thessaloniki 54124, Greece
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| |
Collapse
|
13
|
Yuan J, Jiang Z, Liu D, Li Y, Wang P. Synthesis and photophysical properties of multi-Ru2+ terpyridine complexes: from di-nuclear linear to star-shaped hexa-nuclear architectures. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00181a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyterpyridinyl multi-nuclear Ru2+ complex was synthesized through a heterocomplexation method. Introducing the tailed aliphatic chain greatly enhanced the solubility of multi-ionic paired complexes, which illustrated the photophysical and electrochemical structural differentiations.
Collapse
Affiliation(s)
- Jie Yuan
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha-410083
- China
| | - Zhilong Jiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha-410083
- China
| | - Die Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha-410083
- China
| | - Yiming Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha-410083
- China
| | - Pingshan Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha-410083
- China
| |
Collapse
|
14
|
Perspectives on the membrane fatty acid unsaturation/pacemaker hypotheses of metabolism and aging. Chem Phys Lipids 2015; 191:48-60. [PMID: 26291495 DOI: 10.1016/j.chemphyslip.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
The membrane pacemaker hypotheses of metabolism and aging are distinct, but interrelated hypotheses positing that increases in unsaturation of lipids within membranes are correlated with increasing basal metabolic rate and decreasing longevity, respectively. The two hypotheses each have evidence that either supports or contradicts them, but consensus has failed to emerge. In this review, we identify sources of weakness of previous studies supporting and contradicting these hypotheses and suggest different methods and lines of inquiry. The link between fatty acyl composition of membranes and membrane-bound protein activity is a central tenet of the membrane pacemaker hypothesis of metabolism, but the mechanism by which unsaturation would change protein activity is not well defined and, whereas fatty acid desaturases have been put forward by some as the mechanism behind evolutionary differences in fatty acyl composition of phospholipids among organisms, there have been no studies to differentiate whether desaturases have been more affected by natural selection on aging and metabolic rate than have elongases or acyltransferases. Past analyses have been hampered by potentially incorrect estimates of the peroxidizability of lipids and longevity of study animals, and by the confounding effect of phylogeny. According to some authors, body mass may also be a confounding effect that should be taken into account, though this is not universally accepted. Further research on this subject should focus more on mechanisms and take weaknesses of past studies into account.
Collapse
|
15
|
Hossain S, Bhowmick S, Islam S, Rozario L, Jahan S, Hassan M, Sarkar M, Choudhury BK, Ahmed S, Shahjalal H. Oral Administration of Ganoderma lucidum to Lead-Exposed Rats Protects Erythrocytes against Hemolysis: Implicates to Anti-Anemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:463703. [PMID: 26300947 PMCID: PMC4537730 DOI: 10.1155/2015/463703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/12/2015] [Indexed: 02/02/2023]
Abstract
We studied the effect of chronic oral exposure to lead acetate (PbA) on the sensitivity of RBC to hemolysis and whether the sensitivity could be decreased by feeding the rats with extract of medicinal mushroom Ganoderma lucidum. Three groups of rats, control, PbA-exposed, and G. lucidum (Gl)+PbA, were used. PbA (3 mM) was administered via drinking water and G. lucidum extract by gavage at 300 mg/Kg BW/day for 12 weeks. Afterwards, the rats were killed and washed RBCs were subjected to hemolysis in the presence of Fenton's reagents. Hemolysis was determined by estimating the amount of released hemoglobin. The levels of lipid peroxide (LPO) and GSH were determined from RBC membranes and whole RBCs, respectively. The levels of TNFα and LPO also were determined from hepatic tissues. The RBCs of PbA-exposed rats displayed significantly higher sensitivity to hemolysis than those of the Gl+PbA rats. The levels of LPO increased and GSH decreased in the RBCs, with concomitant increases in the levels of hepatic TNFα and LPO in the PbA-exposed rats. The degree of hemolysis was significantly low in the RBCs of Gl+PbA rats, concurrently with amelioration of hepatic parameters. Finally, the study suggests that PbA-induced-hemolysis and related oxidative-toxicity might be minimized by consumption of G. lucidum.
Collapse
Affiliation(s)
- Shahdat Hossain
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Sujan Bhowmick
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Saiful Islam
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Liza Rozario
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Sabrin Jahan
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Mehedi Hassan
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Marzan Sarkar
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Sohel Ahmed
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Hussain Shahjalal
- Department of Biochemistry and Molecular Biology, Laboratory of Alternative Medicine and Behavioral Neurosciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
16
|
Naudí A, Cabré R, Jové M, Ayala V, Gonzalo H, Portero-Otín M, Ferrer I, Pamplona R. Lipidomics of human brain aging and Alzheimer's disease pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:133-89. [PMID: 26358893 DOI: 10.1016/bs.irn.2015.05.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Hugo Gonzalo
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Biomedical Research Institute of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain.
| |
Collapse
|
17
|
Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A. Blood 2015; 125:3747-55. [DOI: 10.1182/blood-2014-12-619155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/21/2015] [Indexed: 01/12/2023] Open
Abstract
Key Points
Cytosolic HSP90-bound Lyn mediates resistance to apoptosis by strengthening PP2A/SET interaction in CLL cells. FTY720-analogues antagonizing the PP2A/SET interaction and Lyn inhibitors may provide a therapeutic approach of CLL.
Collapse
|
18
|
Melnyk AK, Sukhoveev OV, Kononets LA, Khilchevsky OM, Shulga SM, Kukhar VP, Vovk AI. An EPR spin probe study of liposomes from sunflower and soybean phospholipids. J Liposome Res 2015; 26:80-6. [PMID: 25945391 DOI: 10.3109/08982104.2015.1039031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Comparative properties of lecithin-based liposomes prepared from the mixed phospholipids of sunflower seeds, soybean and egg yolk were investigated by electron paramagnetic resonance (EPR) spectroscopy. For these investigations, stable nitroxide radicals, 1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl 5,7-dimethyladamantane-1-carboxylate (DMAC-TEMPO), 5-doxylstearic acid (5-DSA) and 16-doxylstearic acid (16-DSA) were used as spin probes. Binding of the spin probes to the liposome membranes resulted in a substantial increase of the apparent rotational diffusion correlation times. The EPR spectra of the incorporated nitroxides underwent temperature-dependent changes. For every spin probe, values of apparent enthalpy and entropy of activation were calculated from the temperature dependence of rotational diffusion correlation times via Arrhenius equation. In case of DMAC-TEMPO, the data point to differences between the phospholipid bilayer of liposomes derived from sunflower and soy lecithin, and some similarity between the sunflower and egg yolk liposomes. Anisotropic hyperfine interaction constants of DMAC-TEMPO and 16-DSA included in the liposomes have been analyzed and attributed to different micropolarity of the surroundings of the spin probes. The kinetics of EPR signal decay of DMAC-TEMPO in the presence of 2,2'-azobis(2-amidinopropane) suggest the better stability of the sunflower liposomes to lipid peroxidation as compared to the liposomes prepared from soy lecithin.
Collapse
Affiliation(s)
- Andrii K Melnyk
- a Department of Bioorganic Mechanisms , Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine , Kyiv , Ukraine
- b Department of Sorption and Fine Inorganic Synthesis , Institute for Sorption and Problems of Endoecology , NAS of Ukraine , Kyiv , Ukraine and
| | - Olexandr V Sukhoveev
- a Department of Bioorganic Mechanisms , Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine , Kyiv , Ukraine
| | - Lyudmyla A Kononets
- a Department of Bioorganic Mechanisms , Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine , Kyiv , Ukraine
| | - Olexandr M Khilchevsky
- a Department of Bioorganic Mechanisms , Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine , Kyiv , Ukraine
| | - Serhiy M Shulga
- c Department of Industrial and Food Biotechnology , Institute for Food Biotechnology and Genomics of NAS of Ukraine , Kyiv , Ukraine
| | - Valery P Kukhar
- a Department of Bioorganic Mechanisms , Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine , Kyiv , Ukraine
| | - Andriy I Vovk
- a Department of Bioorganic Mechanisms , Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine , Kyiv , Ukraine
| |
Collapse
|
19
|
Varela-López A, Quiles JL, Cordero M, Giampieri F, Bullón P. Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease. Antioxidants (Basel) 2015; 4:322-44. [PMID: 26783708 PMCID: PMC4665476 DOI: 10.3390/antiox4020322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is one of the main factors studied to explain the pathophysiological mechanisms of inflammatory conditions, such as periodontitis. In this respect, nutrition may be of great importance. Actually, research on nutrients' effects on periodontal diseases has expanded to include those influencing the redox status, which correlates to the inflammatory process. Dietary fat or lipids are often blamed as the major source of excess energy. Consequently, when caloric intake exceeds energy expenditure, the resultant substrate-induced increase in citric acid cycle activity generates an excess of reactive oxygen species (ROS). In addition, dietary fatty acid intake influences in relative fatty acid composition of biological membranes determining its susceptibility to oxidative alterations. From this standpoint, here, we reviewed studies analyzing the dietary fat role in periodontal disease. Research data suggest that periodontal health could be achieved by main dietary strategies which include substitution of saturated fats with monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Maybe in the future, we should analyze the diet and provide some advice to periodontitis patients to improve treatment outcomes.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Mario Cordero
- Department of Periodontology, Dental School, University of Sevilla, C/Avicena s.n., Sevilla 41009, Spain.
| | - Francesca Giampieri
- Department of Clinical Sciences, Marche Polytechnic University, Ancona 60100, Italy.
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Sevilla, C/Avicena s.n., Sevilla 41009, Spain.
| |
Collapse
|
20
|
Afri M, Alexenberg C, Aped P, Bodner E, Cohen S, Ejgenburg M, Eliyahu S, Gilinsky-Sharon P, Harel Y, Naqqash ME, Porat H, Ranz A, Frimer AA. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chem Phys Lipids 2014; 184:105-18. [DOI: 10.1016/j.chemphyslip.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 01/20/2023]
|
21
|
Afri M, Gottlieb HE, Frimer AA. Reichardt’s dye: the NMR story of the solvatochromic betaine dye. CAN J CHEM 2014. [DOI: 10.1139/cjc-2013-0349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reichardt’s dye, 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate (1), has a very large negative solvatochromism in the long wavelength absorption in the UV–vis spectrum when going from nonpolar to polar solvents. This shift provides the basis of the important and widely used ET(30) scale of solvent polarity. While many papers have investigated the properties of this dye, only a few describe the 1H and 13C NMR assignments in any detail. We report herein, our detailed analysis of the proton and carbon chemical shift assignments for this molecule based on 1D and 2D NMR measurements, as well as those of the protonated and methoxy derivatives 2 and 3, respectively. Much to our surprise, some of the critical chemical shift values we observed were significantly different from those previously reported. In addition, we discovered a good correlation not only between the solvent polarity and the chemical shifts of carbons C1 and C4 of Reichardt’s dye (1), but also between the concentration of the dye and these chemical shifts.
Collapse
Affiliation(s)
- Michal Afri
- The Ethel and David Resnick Chair in Active Oxygen Chemistry, The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hugo E. Gottlieb
- The Ethel and David Resnick Chair in Active Oxygen Chemistry, The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Aryeh A. Frimer
- The Ethel and David Resnick Chair in Active Oxygen Chemistry, The Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
22
|
Ortial S, Morandat S, Bortolato M, Roux B, Polidori A, Pucci B, Durand G. PBN derived amphiphilic spin-traps. II/Study of their antioxidant properties in biomimetic membranes. Colloids Surf B Biointerfaces 2014; 113:384-93. [DOI: 10.1016/j.colsurfb.2013.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
23
|
Marković JM, Trišović NP, Tóth-Katona T, Milčić MK, Marinković AD, Zhang C, Jákli AJ, Fodor-Csorba K. A structure–property relationship study of bent-core mesogens with pyridine as the central unit. NEW J CHEM 2014. [DOI: 10.1039/c3nj01430d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of pyridine bent-core liquid crystals are reported. Some compounds exhibit B1 and B7 mesophases. Lower and wider mesophase ranges are obtained by decreasing the polarity of linkers between the pyridine ring and the inner aromatic rings, and increasing the length of terminal chains.
Collapse
Affiliation(s)
- J. M. Marković
- Faculty of Technology and Metallurgy
- University of Belgrade
- Belgrade, Serbia
| | - N. P. Trišović
- Faculty of Technology and Metallurgy
- University of Belgrade
- Belgrade, Serbia
| | - T. Tóth-Katona
- Wigner Research Centre for Physics
- Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest
- , Hungary
| | - M. K. Milčić
- Faculty of Chemistry
- University of Belgrade
- Belgrade, Serbia
| | - A. D. Marinković
- Faculty of Technology and Metallurgy
- University of Belgrade
- Belgrade, Serbia
| | - C. Zhang
- Liquid Crystal Institute
- Kent State University
- Kent, USA
| | - A. J. Jákli
- Wigner Research Centre for Physics
- Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest
- , Hungary
- Liquid Crystal Institute
- Kent State University
| | - K. Fodor-Csorba
- Wigner Research Centre for Physics
- Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest
- , Hungary
| |
Collapse
|
24
|
Naudí A, Jové M, Ayala V, Portero-Otín M, Barja G, Pamplona R. Membrane lipid unsaturation as physiological adaptation to animal longevity. Front Physiol 2013; 4:372. [PMID: 24381560 PMCID: PMC3865700 DOI: 10.3389/fphys.2013.00372] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023] Open
Abstract
The appearance of oxygen in the terrestrial atmosphere represented an important selective pressure for ancestral living organisms and contributed toward setting up the pace of evolutionary changes in structural and functional systems. The evolution of using oxygen for efficient energy production served as a driving force for the evolution of complex organisms. The redox reactions associated with its use were, however, responsible for the production of reactive species (derived from oxygen and lipids) with damaging effects due to oxidative chemical modifications of essential cellular components. Consequently, aerobic life required the emergence and selection of antioxidant defense systems. As a result, a high diversity in molecular and structural antioxidant defenses evolved. In the following paragraphs, we analyze the adaptation of biological membranes as a dynamic structural defense against reactive species evolved by animals. In particular, our goal is to describe the physiological mechanisms underlying the structural adaptation of cellular membranes to oxidative stress and to explain the meaning of this adaptive mechanism, and to review the state of the art about the link between membrane composition and longevity of animal species.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Gustavo Barja
- Department of Animal Physiology II, Complutense University Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| |
Collapse
|
25
|
Cordeiro RM. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:438-44. [PMID: 24095673 DOI: 10.1016/j.bbamem.2013.09.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated.
Collapse
Affiliation(s)
- Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, CEP 09210-170, Santo André (SP), Brazil.
| |
Collapse
|
26
|
Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions. Int J Mol Sci 2013; 14:3285-313. [PMID: 23385235 PMCID: PMC3588044 DOI: 10.3390/ijms14023285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/11/2023] Open
Abstract
Non-enzymatic modification of aminophospholipids by lipid peroxidation-derived aldehydes and reducing sugars through carbonyl-amine reactions are thought to contribute to the age-related deterioration of cellular membranes and to the pathogenesis of diabetic complications. Much evidence demonstrates the modification of aminophospholipids by glycation, glycoxidation and lipoxidation reactions. Therefore, a number of early and advanced Maillard reaction-lipid products have been detected and quantified in different biological membranes. These modifications may be accumulated during aging and diabetes, introducing changes in cell membrane physico-chemical and biological properties.
Collapse
|
27
|
Wang W, Yu Y, An T, Li G, Yip HY, Yu JC, Wong PK. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4599-4606. [PMID: 22428729 DOI: 10.1021/es2042977] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bismuth vanadate nanotube (BV-NT), synthesized by a template-free solvothermal method, was used as an effective visible-light-driven (VLD) photocatalyst for inactivation of Escherichia coli K-12. The mechanism of photocatalytic bacterial inactivation was investigated by employing multiple scavengers combined with a simple partition system. The VLD photocatalytic bacterial inactivation by BV-NT did not allow any bacterial regrowth. The photogenerated h(+) and reactive oxidative species derived from h(+), such as OH(ads), H(2)O(2) and HO(2)/O(2)(-), were the major reactive species for bacterial inactivation. The inactivation by h(+) and OH(ads) required close contact between the BV-NT and bacterial cells, and only a limited amount of H(2)O(2) could diffuse into the solution to inactivate bacterial cells. The direct oxidation effect of h(+) to bacterial cells was confirmed by adopting F(-) surface modification and anaerobic experiments. The bacterial cells could trap e(-) in order to minimize e(-)-h(+) recombination, especially under anaerobic condition. Transmission electron microscopic study indicated the destruction process of bacterial cell began from the cell wall to other cellular components. The OH(ads) was postulated to be more important than OH(bulk) and was not supposed to be released very easily in the BV-NT bacterial inactivation system.
Collapse
Affiliation(s)
- Wanjun Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Pamplona R, Barja G. An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 2011; 12:409-35. [PMID: 21755337 DOI: 10.1007/s10522-011-9348-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/29/2011] [Indexed: 01/09/2023]
Abstract
Key mechanisms relating oxidative stress to longevity from an interespecies comparative approach are reviewed. Long-lived animal species show low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. Comparative physiology also shows that the specific compositional pattern of tissue macromolecules (proteins, lipids and nucleic acids) in long-lived animal species gives them an intrinsically high resistance to modification that likely contributes to their superior longevity. This is obtained in the case of lipids by decreasing the degree of fatty acid unsaturation, and in the case of proteins by lowering their methionine content. These findings are also substantiated from a phylogenomic approach. Nutritional or/and pharmacological interventions focused to modify some of these molecular traits were translated with modifications in animal longevity. It is proposed that natural selection tends to decrease the mitochondrial ROS generation and to increase the molecular resistance to the oxidative damage in long-lived species.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, 25008, Spain.
| | | |
Collapse
|
29
|
Naudí A, Jové M, Ayala V, Portero-Otín M, Barja G, Pamplona R. Regulation of Membrane Unsaturation as Antioxidant Adaptive Mechanism in Long-lived Animal Species. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/ax.2011.3.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
|
31
|
|
32
|
Synthesis of N-arylpyridinium salts bearing a nitrone spin trap as potential mitochondria-targeted antioxidants. Tetrahedron 2009; 65:5284-5292. [PMID: 19693262 PMCID: PMC2722452 DOI: 10.1016/j.tet.2009.04.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 04/06/2009] [Accepted: 04/23/2009] [Indexed: 12/30/2022]
Abstract
The generation of excess reactive oxygen species (ROS) in mitochondria is responsible for much of the oxidative stress associated with ageing (aging), and mitochondrial dysfunction is part of the pathology of neurodegeneration and type 2 diabetes. Lipophilic pyridinium ions are known to accumulate in mitochondria and this paper describes a general route for the preparation of nitrone-containing N-arylpyridinium salts having a range of lipophilicities, as potential therapeutic antioxidants. The compatibility of nitrones with the Zincke reaction is the key to their synthesis. Their trapping of carbon-centred radicals and the EPR spectra of the resulting nitroxides are reported.
Collapse
|
33
|
Yan J, Gong Y, She YM, Wang G, Roberts MS, Burczynski FJ. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity. J Lipid Res 2009; 50:2445-54. [PMID: 19474456 DOI: 10.1194/jlr.m900177-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrupole time-of-flight MS after being digested by endoproteinase Glu-C. L-FABP was observed to have better antioxidative activity when free radicals were generated by the hydrophilic generator than by the lipophilic generator. Oxidative modification of L-FABP included up to five methionine oxidative peptide products with a total of approximately 80 Da mass shift compared with native L-FABP. Protection against lipid peroxidation of L-FABP after binding with palmitate or alpha-bromo-palmitate by the AAPH or AMVN free radical generators indicated that ligand binding can partially block antioxidant activity. We conclude that the mechanism of L-FABP's antioxidant activity is through inactivation of the free radicals by L-FABP's methionine and cysteine amino acids. Moreover, exposure of the L-FABP binding site further promotes its antioxidant activity. In this manner, L-FABP serves as a hepatocellular antioxidant.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Fortier CA, Guan B, Cole RB, Tarr MA. Covalently bound fluorescent probes as reporters for hydroxyl radical penetration into liposomal membranes. Free Radic Biol Med 2009; 46:1376-85. [PMID: 19268527 DOI: 10.1016/j.freeradbiomed.2009.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/23/2009] [Accepted: 02/22/2009] [Indexed: 11/16/2022]
Abstract
The ability of hydroxyl radicals to penetrate into liposomal model membranes (dimyristoylphosphatidylcholine) has been demonstrated. Liposomes were prepared and then characterized by digital fluorescence microscopy and dynamic light scattering after extrusion to determine liposomal lamellarity, size, and shape. Hydroxyl radicals were generated in the surrounding aqueous medium using a modified Fenton reagent (hydrogen peroxide and Fe(2+)) with the water-soluble iron chelator EDTA. High and low doses of radical were used, and the low dose was achieved with physiologically relevant iron and peroxide concentrations. Fluorescent probes covalently bound to the membrane phospholipid were used, including two lipophilic pyrenyl probes within the membrane bilayer and one polar probe at the water-membrane interface. Radical reactions with the probes were monitored by following the decrease in fluorescence and by observing oxidation products via matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Differences in the probe position within the membrane were correlated with the reactivity of the probe to assess radical access to the site of the probe. For all probes, reaction rates increased with increasing temperature. Within the membrane bilayer, reaction rates were greater for the probe closest to the membrane-water interface. Cholesterol protected these probes from oxidation. Kinetic models, scavenger studies, and product identification studies indicated that hydroxyl radical reacted directly with the in-membrane probes without the mediation of a secondary radical.
Collapse
Affiliation(s)
- Chanel A Fortier
- Department of Chemistry, University of New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
35
|
Pamplona R. Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1249-62. [DOI: 10.1016/j.bbabio.2008.07.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|
36
|
Cohen Y, Bodner E, Richman M, Afri M, Frimer AA. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chem Phys Lipids 2008; 155:98-113. [DOI: 10.1016/j.chemphyslip.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/06/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
37
|
Spin trapping experiments with different carbamoyl-substituted EMPO derivatives. Bioorg Med Chem 2008; 16:8082-9. [DOI: 10.1016/j.bmc.2008.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/17/2008] [Accepted: 07/22/2008] [Indexed: 11/22/2022]
|
38
|
Cohen Y, Afri M, Frimer AA. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer Part II. The preparation of a molecular ruler. Chem Phys Lipids 2008; 155:114-9. [PMID: 18691565 DOI: 10.1016/j.chemphyslip.2008.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/06/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
We have previously shown how the location of an intercalant within the lipid bilayer can be qualitatively determined by using the excellent correlation that exists between the 13C NMR chemical shift of a polarizable carbon (e.g., the carbonyl or nitronyl carbon) and the polarity (using the Dimroth-Reichardt's ET(30) parameter) of the microenvironment in which that carbon resides. In a companion paper, we have determined criteria for reporter molecules that will assist us in converting this qualitative polarity data into quantitative Angstrom values. In the present paper, we report on our initial success in quantitatively mapping of the DMPC bilayer by linking two or more vertical points within a bilayer by both distance (in Angstroms) and ET(30) polarity. The results correlated well with the values obtained using the "parallax method" of Erwin London.
Collapse
Affiliation(s)
- Yael Cohen
- The Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|