1
|
Tai CJ, Chao CH, Ahmed AF, Yen CH, Hwang TL, Chang FR, Huang YM, Sheu JH. New 3,4- seco-3,19-Dinor- and Spongian-Based Diterpenoid Lactones from the Marine Sponge Spongia sp. Int J Mol Sci 2023; 24:ijms24021252. [PMID: 36674768 PMCID: PMC9860656 DOI: 10.3390/ijms24021252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Continuing chemical investigation of the Red Sea sponge Spongia sp. led to the isolation of four new 3,4-seco-3,19-dinorspongian diterpenoid lactones, secodinorspongins A-D (1-4), along with a classical spongian diterpenoid lactone, sponginolide (5). The chemical structures, including the absolute configurations of these compounds, were elucidated using the extensive spectroscopic study composed of 1D and 2D NMR data analyses, and a comparison between calculated-electronic-circular-dichroism (ECD) and experimental-circular-dichroism (CD) spectra. A plausible biosynthetic pathway of 1-4 was also proposed. Furthermore, the cytotoxicity, antibacterial and anti-inflammatory activities of 1-5 were evaluated. Compound 1 was found to exhibit inhibitory activity against the growth of Staphylococcus aureus (S. aureus), and 4 and 5 exhibited suppression of superoxide-anion generation and elastase release in fMLF/CB-induced human neutrophils.
Collapse
Affiliation(s)
- Chi-Jen Tai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 40604, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40604, Taiwan
| | - Atallah F. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong 88046, Taiwan
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Magong 88046, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000 (ext. 5030); Fax: +886-7-525-5020
| |
Collapse
|
2
|
Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp. Mar Drugs 2022; 20:md20080498. [PMID: 36005501 PMCID: PMC9410434 DOI: 10.3390/md20080498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Three new 5,5,6,6,5-pentacyclic spongian diterpenes, spongenolactones A–C (1–3), were isolated from a Red Sea sponge Spongia sp. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and the absolute configurations of 1–3 were determined on the basis of comparison of the experimental circular dichroism (CD) and calculated electronic circular dichroism (ECD) spectra. Compounds 1–3 are the first 5,5,6,6,5-pentacyclic spongian diterpenes bearing an β-hydroxy group at C-1. These metabolites were assayed for their cytotoxic, antibacterial, and anti-inflammatory activities. All three compounds were found to exert inhibitory activity against superoxide anion generation in fMLF/CB-stimulated human neutrophils. Furthermore, 1 showed a higher activity against the growth of Staphylococcus aureus in comparison to 2.
Collapse
|
3
|
Computationally Assisted Structural Elucidation of Cembranoids from the Soft Coral Sarcophyton tortuosum. Mar Drugs 2022; 20:md20050297. [PMID: 35621948 PMCID: PMC9147035 DOI: 10.3390/md20050297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
A persistent study on soft coral Sarcophyton tortuosum resulted in the characterization of two new cembranolides, tortuolides A and B (1 and 2), and a new related diterpene, epi-sarcophytonolide Q. Their structures were determined not only by extensive spectroscopic analysis but also by DFT calculations of ECD and NMR data, the latter of which was combined with statistical analysis methods, e.g., DP4+ and J-DP4 approaches. Anti-inflammatory and cytotoxicity activities were evaluated in this study.
Collapse
|
4
|
Tai CJ, Ahmed AF, Chao CH, Yen CH, Hwang TL, Chang FR, Huang YM, Sheu JH. The Chemically Highly Diversified Metabolites from the Red Sea Marine Sponge Spongia sp. Mar Drugs 2022; 20:md20040241. [PMID: 35447914 PMCID: PMC9028682 DOI: 10.3390/md20040241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/18/2023] Open
Abstract
A polyoxygenated and halogenated labdane, spongianol (1); a polyoxygenated steroid, 3β,5α,9α-trihydroxy-24S-ethylcholest-7-en-6-one (2); a rare seven-membered lactone B ring, (22E,24S)-ergosta-7,22-dien-3β,5α-diol-6,5-olide (3); and an α,β-unsaturated fatty acid, (Z)-3-methyl-9-oxodec-2-enoic acid (4) as well as five known compounds, 10-hydroxykahukuene B (5), pacifenol (6), dysidamide (7), 7,7,7-trichloro-3-hydroxy-2,2,6-trimethyl-4-(4,4,4-trichloro-3-methyl-1-oxobu-tylamino)-heptanoic acid methyl ester (8), and the primary metabolite 2’-deoxynucleoside thymidine (9), have been isolated from the Red Sea sponge Spongia sp. The stereoisomer of 3 was discovered in Ganoderma resinaceum, and metabolites 5 and 6, isolated previously from red algae, were characterized unprecedentedly in the sponge. Compounds 7 and 8 have not been found before in the genus Spongia. Compounds 1–9 were also assayed for cytotoxicity as well as antibacterial and anti-inflammatory activities.
Collapse
Affiliation(s)
- Chi-Jen Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Atallah F. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan;
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 406040, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.Y.); (F.-R.C.)
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.Y.); (F.-R.C.)
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong 880011, Taiwan;
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Magong 880011, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.Y.); (F.-R.C.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000 (ext. 5030); Fax: +886-7-525-5020
| |
Collapse
|
5
|
Thuan NN, Ngan NT, Kuo PC, Trinh NTN, Thien LT, Mai DS, Tuan NN, Tan LV, Thang TD. Secondary Metabolites from the Fruiting Bodies of Coriolopsis aspera in Vietnam and their Bioactivities. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Lin KH, Lin YC, Huang CY, Tseng YJ, Chen SR, Cheng YB, Hwang TL, Wang SY, Chen HY, Dai CF, Sheu JH. Cembranoid-Related Diterpenes, Novel Secoditerpenes, and an Unusual Bisditerpene from a Formosan Soft Coral Sarcophyton Tortuosum. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kuan-Hua Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Chi Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yen-Ju Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shu-Rong Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung 402204, Taiwan
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Feng Dai
- Institute of Oceanography, National Taiwan University, Taipei 112216, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| |
Collapse
|
7
|
Anti-Inflammatory Principles from the Needles of Pinus taiwanensis Hayata and In Silico Studies of Their Potential Anti-Aging Effects. Antioxidants (Basel) 2021; 10:antiox10040598. [PMID: 33924612 PMCID: PMC8069155 DOI: 10.3390/antiox10040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Pinus needle tea are very popular in Eastern countries such as Japan, Russia, Korea, and China. Pine needle tea is claimed to have significant anti-aging effects, but no clear evidence has supported this until now. In the present study, five undescribed compounds (1–5) as well as seventy-two known compounds were purified and characterized from the bioactive fraction of methanol extracts of P. taiwanensis needles. Most of the isolates were examined for their anti-inflammatory bioactivity by cellular neutrophil model and six compounds (45, 47, 48, 49, 50, and 51) exhibited a significant inhibition on superoxide anion generation and elastase release with IC50 values ranging from 3.3 ± 0.9 to 8.3 ± 0.8 μM. These anti-inflammatory ingredients were subjected to docking computing to evaluate their binding affinity on the ghrelin receptor, which played an important role in regulating metabolism, with anti-aging effects. Compounds 49, 50, and 51 formed a stable complex with the ghrelin receptor via hydrogen bonds and different types of interactions. These results suggest the flavonoids are responsible for the potential anti-aging effects of pine needle tea.
Collapse
|
8
|
Lin ZC, Hwang TL, Huang TH, Tahara K, Trousil J, Fang JY. Monovalent antibody-conjugated lipid-polymer nanohybrids for active targeting to desmoglein 3 of keratinocytes to attenuate psoriasiform inflammation. Theranostics 2021; 11:4567-4584. [PMID: 33754014 PMCID: PMC7978323 DOI: 10.7150/thno.56995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
To improve the treatment of psoriasiform inflammation, we developed actively targeted nanocarriers loaded with the phosphodiesterase 4 inhibitor AN2728. Methods: Phospholipid-poly(lactic-co-glycolic acid) nanohybrids were prepared and conjugated with monovalent anti-desmoglein 3 antibody to bind keratinocytes. Results: The actively targeted nanohybrids were 229 nm in mean size with a nearly neutral surface charge. Flow cytometry and confocal microscopy showed a 9-fold increase in keratinocyte uptake of targeted nanohybrids relative to non-targeted nanoparticles. The nanoparticles localized mainly in lysosomes after internalization. AN2728-loaded antibody-conjugated nanocarriers inhibited cytokine/chemokine overexpression in activated keratinocytes without affecting cell viability. The targeted nanohybrids also suppressed neutrophil migration by reducing CXCL1 and CXCL2 release from keratinocytes. Following subcutaneous administration in mice, the nanohybrids distributed to the epidermis and hair follicles. In a psoriasis-like skin mouse model, the actively targeted nanoparticles were superior to free drug and non-targeted nanoparticles in mitigating skin inflammation. Intervention with the targeted nanosystem reduced the epidermal thickness of the psoriasiform lesion from 191 to 42 µm, decreased the Psoriasis Area Severity Index by 74%, restored barrier function, and returned chemokine levels to baseline. Conclusions: Our developed nanosystem was safe and demonstrated efficient targeting properties for the treatment of cutaneous inflammation.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
9
|
Liao CC, Yu HP, Yang SC, Alalaiwe A, Dai YS, Liu FC, Fang JY. Multifunctional lipid-based nanocarriers with antibacterial and anti-inflammatory activities for treating MRSA bacteremia in mice. J Nanobiotechnology 2021; 19:48. [PMID: 33588861 PMCID: PMC7885212 DOI: 10.1186/s12951-021-00789-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/02/2021] [Indexed: 01/12/2023] Open
Abstract
Background Bacteremia-induced sepsis is a leading cause of mortality in intensive care units. To control a bacterial infection, an immune response is required, but this response might contribute to organ failure. Kidneys are one of the main organs affected by bacteremia. Combination therapies with antibacterial and anti-inflammatory effects may be beneficial in treating bacteremia. This study aimed to develop nanostructured lipid carriers (NLCs) loaded with ciprofloxacin and rolipram that exert a combination of anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-inflammatory effects. Retinol was incorporated into the nanoparticles to transport retinol-binding protein 4 (RBP4) to the kidneys, which abundantly express RBP receptors. The NLCs were fabricated by high-shear homogenization and sonication, and neutrophils were used as a model to assess their anti-inflammatory effects. Mice were injected with MRSA to establish a model of bacteremia with organ injury. Results The mean nanoparticle size and zeta potential of the NLCs were 171 nm and − 39 mV, respectively. Ciprofloxacin (0.05%, w/v) and rolipram (0.02%) achieved encapsulation percentages of 88% and 96%, respectively, in the nanosystems. The minimum bactericidal concentration of free ciprofloxacin against MRSA increased from 1.95 to 15.63 µg/ml when combined with rolipram, indicating a possible drug-drug interaction that reduced the antibacterial effect. Nanoparticle inclusion promoted the anti-MRSA activity of ciprofloxacin according to time-kill curves. The NLCs were found to be largely internalized into neutrophils and exhibited superior superoxide anion inhibition than free drugs. Retinol incorporation into the nanocarriers facilitated their efficient targeting to the kidneys. The NLCs significantly mitigated MRSA burden and elastase distribution in the organs of MRSA-infected animals, and the greatest inhibition was observed in the kidneys. Bacterial clearance and neutrophil infiltration suppression attenuated the bacteremia-induced cytokine overexpression, leading to an improvement in the survival rate from 22% to 67%. Conclusions The dual role of our NLCs endowed them with greater efficacy in treating MRSA bacteremia than that of free drugs. ![]()
Collapse
Affiliation(s)
- Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - You-Shan Dai
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan. .,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan. .,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan. .,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Chen KJ, Chen YL, Ueng SH, Hwang TL, Kuo LM, Hsieh PW. Neutrophil elastase inhibitor (MPH-966) improves intestinal mucosal damage and gut microbiota in a mouse model of 5-fluorouracil-induced intestinal mucositis. Biomed Pharmacother 2021; 134:111152. [PMID: 33373916 DOI: 10.1016/j.biopha.2020.111152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU)-based chemotherapy is first-line chemotherapy for colorectal cancer. However, 5-FU-induced intestinal mucositis (FUIIM) is a common adverse effect that severely impairs drug tolerance and results in poor patient health. METHODS Male C57BL/6 mice were given 5-FU (50 mg/kg/day, i.p.) and treated with MPH-966 (5 and 7.5 mg/kg/day, p.o.) for five days. The body weight loss and the amount of food intake, and histopathological findings were recorded and analyzed. In addition, the neutrophil infiltration, levels of neutrophil serine proteases and pro-inflammatory cytokines, and tight junction proteins expression in intestinal tissues were determined. The ecology of gut microbiota was performed through next-generation sequencing technologies. RESULTS Neutrophil elastase (NE) overexpression is a key feature in FUIIM. This study showed that treatment with the specific NE inhibitor MPH-966 (7.5 mg/kg/day, p.o.) significantly reversed 5-FU-induced loss in body weight and food intake; reversed villous atrophy; significantly suppressed myeloperoxidase, NE, and proteinase 3 activity; and reduced pro-inflammatory cytokine expression in an FUIIM mouse model. In addition, MPH-966 prevented 5-FU-induced intestinal barrier dysfunction, as indicated by the modulated expression of the tight junction proteins zonula occludin-1 and occludin. MPH-966 also reversed 5-FU-induced changes in gut microbiota diversity and abundances, specifically the Firmicutes-to-Bacteroidetes ratio; Muribaculaceae, Ruminococcaceae, and Eggerthellaceae abundances at the family level; and Candidatus Arthromitus abundance at the genus level. CONCLUSION These data indicate that NE inhibitor is a key treatment candidate to alleviate FUIIM by regulating abnormal inflammatory responses, intestinal barrier dysfunction, and gut microbiota imbalance.
Collapse
Affiliation(s)
- Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Li Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Tai CJ, Huang CY, Ahmed AF, Orfali RS, Alarif WM, Huang YM, Wang YH, Hwang TL, Sheu JH. An Anti-Inflammatory 2,4-Cyclized-3,4-Secospongian Diterpenoid and Furanoterpene-Related Metabolites of a Marine Sponge Spongia sp. from the Red Sea. Mar Drugs 2021; 19:md19010038. [PMID: 33467112 PMCID: PMC7830757 DOI: 10.3390/md19010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (-)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 μM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.
Collapse
Affiliation(s)
- Chi-Jen Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Atallah F. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.F.A.); (J.-H.S.); Tel.: +966-114-677264 (A.F.A.); +886-7-525-2000 (ext. 5030) (J.-H.S.); Fax: +966-114-677245 (A.F.A.); +886-7-525-5020 (J.-H.S.)
| | - Raha S. Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walied M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong, Penghu 88046, Taiwan;
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Magong, Penghu 88046, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.W.); (T.-L.H.)
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.W.); (T.-L.H.)
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
- Correspondence: (A.F.A.); (J.-H.S.); Tel.: +966-114-677264 (A.F.A.); +886-7-525-2000 (ext. 5030) (J.-H.S.); Fax: +966-114-677245 (A.F.A.); +886-7-525-5020 (J.-H.S.)
| |
Collapse
|
12
|
Peng CC, Huang CY, Ahmed AF, Hwang TL, Sheu JH. Anti-Inflammatory Cembranoids from a Formosa Soft Coral Sarcophyton cherbonnieri. Mar Drugs 2020; 18:md18110573. [PMID: 33228224 PMCID: PMC7699541 DOI: 10.3390/md18110573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The present investigation on chemical constituents of the soft coral Sarcophyton cherbonnieri resulted in the isolation of seven new cembranoids, cherbonolides F–L (1–7). The chemical structures of 1–7 were determined by spectroscopic methods, including infrared, one- and two-dimensional (1D and 2D) NMR (COSY, HSQC, HMBC, and NOESY), MS experiments, and a chemical reduction of hydroperoxide by triphenylphosphine. The anti-inflammatory activities of 1–7 against neutrophil proinflammatory responses were evaluated by measuring their inhibitory ability toward N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced superoxide anion generation and elastase release in primary human neutrophils. The results showed that all isolates exhibited moderate activities, while cherbonolide G (2) and cherbonolide H (3) displayed a more active effect than others on the inhibition of elastase release (48.2% ± 6.2%) and superoxide anion generation (44.5% ± 4.6%) at 30 µM, respectively.
Collapse
Affiliation(s)
- Chia-Chi Peng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (C.-C.P.); (C.-Y.H.)
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (C.-C.P.); (C.-Y.H.)
| | - Atallah F. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (C.-C.P.); (C.-Y.H.)
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000 (ext. 5030); Fax: +886-7-525-5020
| |
Collapse
|
13
|
Li YC, Tanapichatsakul C, Pripdeevech P, Hwang TL, Kuo PC, Tzen JTC. Characterisation of teaghrelin-like principles from Assam tea cultivated in Thailand. Nat Prod Res 2020; 36:305-311. [PMID: 32551988 DOI: 10.1080/14786419.2020.1779715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Teaghrelins were identified as unique acylated flavonoid tetraglycosides and firstly reported in Chin-shin oolong tea. In the present study, two new teaghrelin-like compounds (1 and 2) were purified and characterised from Assam tea varieties collected in Thailand. Their chemical structures were constructed by the spectroscopic and spectrometric analysis. These two teaghrelin-like compounds were also not supposed to exhibit significant ghrelin receptor affinity according to the structural comparison with those teaghrelin-like compounds previously reported. In addition, compounds 1 and 2 did not display notable anti-inflammatory activity in human neutrophils assay.[Formula: see text].
Collapse
Affiliation(s)
- Yue-Chiun Li
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chutima Tanapichatsakul
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan.,School of Science, Mae Fah Luang University, Thailand
| | | | - Tsong Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
14
|
Chang YC, Lai KH, Kumar S, Chen PJ, Wu YH, Lai CL, Hsieh HL, Sung PJ, Hwang TL. 1H NMR-Based Isolation of Anti-Inflammatory 9,11-Secosteroids from the Octocoral Sinularia leptoclados. Mar Drugs 2020; 18:md18050271. [PMID: 32455584 PMCID: PMC7281107 DOI: 10.3390/md18050271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Octocoral Sinularia leptoclados has been identified as a source of bioactive 9,11-secosteroids. This study adopted a targeted isolation approach to the discovery and analysis of five 9,11-secosteroids, including two novel compounds named sinleptosterols A (1) and B (2) as well as five known analogues (8αH-3β,11-dihydroxy-24-methylene-9,11-secocholest-5-en-9-one (3), 8βH-3β,11-dihydroxy-24-methylene-9,11-secocholest-5-en-9-one (4), leptosterol A (5), (24S)-3β,11-dihydroxy-24-methyl-9,11-secocholest-5-en-9-one (6), and 3β,11-dihydroxy-9,11-secogorgost-5-en-9-one (7)) in terms of 1H-NMR patterns and potency against neutrophilic inflammation. The structure of secosteroids 1 and 2 was deduced from general spectroscopic analysis and an examination of NMR spectra. Among the above-mentioned isolates, compound 4 had the most pronounced effect in inhibiting elastase release and superoxide anion generation, with the IC50 values of 2.96 and 1.63 μM, respectively.
Collapse
Affiliation(s)
- Yu-Chia Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; (Y.-C.C.); (K.-H.L.); (Y.-H.W.); (C.-L.L.)
| | - Kuei-Hung Lai
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; (Y.-C.C.); (K.-H.L.); (Y.-H.W.); (C.-L.L.)
| | - Sunil Kumar
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung 433303, Taiwan;
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; (Y.-C.C.); (K.-H.L.); (Y.-H.W.); (C.-L.L.)
| | - Ching-Long Lai
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; (Y.-C.C.); (K.-H.L.); (Y.-H.W.); (C.-L.L.)
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; (Y.-C.C.); (K.-H.L.); (Y.-H.W.); (C.-L.L.)
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Correspondence: (H.-L.H.); (P.-J.S.); (T.-L.H.); Tel.: +886-3-211-8999 (ext. 5421) (H.-L.H.); +886-8-882-5037 (P.-J.S.); +886-3-211-8800 (T.-L.H.); Fax: +886-8-882-5087 (P.-J.S.); +886-3-211-8506 (T.-L.H.)
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944401, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
- Correspondence: (H.-L.H.); (P.-J.S.); (T.-L.H.); Tel.: +886-3-211-8999 (ext. 5421) (H.-L.H.); +886-8-882-5037 (P.-J.S.); +886-3-211-8800 (T.-L.H.); Fax: +886-8-882-5087 (P.-J.S.); +886-3-211-8506 (T.-L.H.)
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; (Y.-C.C.); (K.-H.L.); (Y.-H.W.); (C.-L.L.)
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333323, Taiwan;
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Correspondence: (H.-L.H.); (P.-J.S.); (T.-L.H.); Tel.: +886-3-211-8999 (ext. 5421) (H.-L.H.); +886-8-882-5037 (P.-J.S.); +886-3-211-8800 (T.-L.H.); Fax: +886-8-882-5087 (P.-J.S.); +886-3-211-8506 (T.-L.H.)
| |
Collapse
|
15
|
Kuo PC, Wu YH, Hung HY, Lam SH, Ma GH, Kuo LM, Hwang TL, Kuo DH, Wu TS. Anti-inflammatory principles from Lindera aggregata. Bioorg Med Chem Lett 2020; 30:127224. [PMID: 32359855 DOI: 10.1016/j.bmcl.2020.127224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022]
Abstract
Four new sesquiterpenes (1-4), one new alkaloid (5), and one new benzenoid glycoside (6) were characterized from Lindera aggregata, and their structures were elucidated according to their spectrometric analytical data. Among these isolates, 3 and 4 were constructed as possessing unprecedented carbon skeletons from the natural source. Some of these purified constituents were examined for their anti-inflammatory bioactivity. Among the tested compounds, linderaggredin C (3), (+)-N-methyllaurotetanine, and (+)-isoboldine displayed the significant inhibition of superoxide anion generation in human neutrophils with IC50 values of 7.45 ± 0.74, 8.36 ± 0.11, and 5.81 ± 0.59 μM, respectively.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Hung Wu
- Hsinhua Forest Station, The Experimental Forest Management Office, National Chung-Hsing University, Taichung 402, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Guo-Hao Ma
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital at Chiayi, Chiayi 613, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Industry of Human Ecology, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
16
|
Isolation of Lobane and Prenyleudesmane Diterpenoids from the Soft Coral Lobophytum varium. Mar Drugs 2020; 18:md18040223. [PMID: 32331404 PMCID: PMC7230303 DOI: 10.3390/md18040223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Further chemical investigation of the EtOAc extract of the soft coral Lobophytum varium resulted in the discovery of eleven new diterpenoids lobovarols F–P (1–11) of lobane– and prenyleudesmane–types, along with two known metabolites (12 and 13). The structures of the new metabolites were established by spectroscopic analyses, including 2D NMR experiments. The absolute configuration of 1 was determined using Mosher’s method. The complete assignment of 1H and 13C NMR spectroscopic data of 12 and 13 and the identification of pyran-derived moieties in the prenyleudesmanes were reported for the first time. Anti-inflammatory activities of the isolated compounds in suppressing elastase release and superoxide anion generation in human neutrophils were disclosed for 1, 2, 4, 12, and 13. A stereospecific biosynthesis for lobanes and prenyleudesmanes from the related prenylgermacranes could explain the coexistence of lobanes and prenylgermacranes in L. varium.
Collapse
|
17
|
Yang SC, Wang YH, Tsai YF, Chang YW, Wu TS, Ho CM, Hwang TL. A synthesized heterocyclic chalcone inhibits neutrophilic inflammation through K + -dependent pH regulation. FASEB J 2020; 34:7127-7143. [PMID: 32275103 DOI: 10.1096/fj.201903123r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 12/28/2022]
Abstract
Human neutrophils have a vital role in host defense and inflammatory responses in innate immune systems. Growing evidence shows that the overproduction of reactive oxygen species and granular proteolytic enzymes from activated neutrophils is linked to the pathogenesis of acute inflammatory diseases. However, adequate therapeutic targets are still lacking to regulate neutrophil functions. Herein, we report that MVBR-28, synthesized from the Mannich bases of heterocyclic chalcone, has anti-neutrophilic inflammatory effects through regulation of intracellular pH. MVBR-28 modulates neutrophil functions by attenuating respiratory burst, degranulation, and migration. Conversely, MVBR-28 has no antioxidant effects and fails to alter elastase activity in cell-free systems. The anti-inflammatory effects of MVBR-28 are not seen through cAMP pathways. Significantly, MVBR-28 potently inhibits extracellular Ca2+ influx in N-formyl-methionyl-leucyl-phenylalanine (fMLF)- and thapsigargin-activated human neutrophils. Notably, MVBR-28 attenuates fMLF-induced intracellular alkalization in a K+ -dependent manner, which is upstream of Ca2+ pathways. Collectively, these findings provide new insight into Mannich bases of heterocyclic chalcone regarding the regulation of neutrophil functions and the potential for the development of MVBR-28 as a lead compound for treating neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Wen Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan.,School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
18
|
Yu HP, Liu FC, Lin CY, Umoro A, Trousil J, Hwang TL, Fang JY. Suppression of neutrophilic inflammation can be modulated by the droplet size of anti-inflammatory nanoemulsions. Nanomedicine (Lond) 2020; 15:773-791. [PMID: 32193978 DOI: 10.2217/nnm-2019-0407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: We aimed to develop nanoemulsions containing phosphodiesterase 4 inhibitor rolipram with different droplet sizes, to evaluate the anti-inflammatory effect against activated neutrophils and a related lung injury. Materials & methods: We prepared nanoemulsions of three different sizes, 68, 133 and 188 nm. Results: The nanoemulsion inhibited the superoxide anion but not elastase release in primary human neutrophils. The large-sized nanoemulsions were mostly internalized by neutrophils, resulting in the reduction of intracellular Ca2+ half-life. The peripheral organ distribution of near-infrared dye-tagged nanoemulsions increased, following the decrease in droplet diameter. Rolipram entrapment into intravenous nanoemulsions ameliorated pulmonary inflammation. The smallest droplet size showed improvement, compared with the largest size. Conclusion: We established a foundation for the development of nanoemulsions against inflamed lung disease.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Ani Umoro
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 11720, Czech Republic
| | - Tsong-Long Hwang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Research Center for Food & Cosmetic Safety & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan, 333, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Research Center for Food & Cosmetic Safety & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan, 333, Taiwan
| |
Collapse
|
19
|
Oleic acid-based nanosystems for mitigating acute respiratory distress syndrome in mice through neutrophil suppression: how the particulate size affects therapeutic efficiency. J Nanobiotechnology 2020; 18:25. [PMID: 32005196 PMCID: PMC6995149 DOI: 10.1186/s12951-020-0583-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Oleic acid (OA) is reported to show anti-inflammatory activity toward activated neutrophils. It is also an important material in nanoparticles for increased stability and cellular internalization. We aimed to evaluate the anti-inflammatory activity of injectable OA-based nanoparticles for treating lung injury. Different sizes of nanocarriers were prepared to explore the effect of nanoparticulate size on inflammation inhibition. Results The nanoparticles were fabricated with the mean diameters of 105, 153, and 225 nm. The nanocarriers were ingested by isolated human neutrophils during a 5-min period, with the smaller sizes exhibiting greater uptake. The size reduction led to the decrease of cell viability and the intracellular calcium level. The OA-loaded nanosystems dose-dependently suppressed the superoxide anion and elastase produced by the stimulated neutrophils. The inhibition level was comparable for the nanoparticles of different sizes. In the ex vivo biodistribution study, the pulmonary accumulation of nanoparticles increased following the increase of particle size. The nanocarriers were mainly excreted by the liver and bile clearance. Mice were exposed to intratracheal lipopolysaccharide (LPS) to induce acute respiratory distress syndrome (ARDS), like lung damage. The lipid-based nanocarriers mitigated myeloperoxidase (MPO) and cytokines more effectively as compared to OA solution. The larger nanoparticles displayed greater reduction on MPO, TNF-α, and IL-6 than the smaller ones. The histology confirmed the decreased pulmonary neutrophil recruitment and lung-architecture damage after intravenous administration of larger nanoparticles. Conclusions Nanoparticulate size, an essential property governing the anti-inflammatory effect and lung-injury therapy, had different effects on activated neutrophil inhibition and in vivo therapeutic efficacy.
Collapse
|
20
|
Chiang CC, Cheng WJ, Lin CY, Lai KH, Ju SC, Lee C, Yang SH, Hwang TL. Kan-Lu-Hsiao-Tu-Tan, a traditional Chinese medicine formula, inhibits human neutrophil activation and ameliorates imiquimod-induced psoriasis-like skin inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112246. [PMID: 31539577 DOI: 10.1016/j.jep.2019.112246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kan-Lu-Hsiao-Tu-Tan (KLHTT) is a popular traditional Chinese medicine for treating various inflammatory diseases. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory effects of KLHTT on human neutrophils and its therapeutic potential in treating imiquimod (IMQ)-induced psoriasis-like skin inflammation. MATERIALS AND METHODS Spectrophotometry, flow cytometry, and microscopy with immunohistochemical staining were used to evaluate superoxide anion generation, elastase release, CD11b expression, adhesion, and neutrophil extracellular trap (NET) formation in activated human neutrophils. Reactive oxygen species (ROS) and reactive nitrogen species in cell-free systems were measured using a multi-well fluorometer or a spectrophotometer. A psoriasis-like skin inflammation was induced in mice using the IMQ cream. RESULTS KLHTT suppressed superoxide anion generation, ROS production, CD11b expression, and adhesion in activated human neutrophils. In contrast, KLHTT failed to alter elastase release in activated human neutrophils. Additionally, KLHTT had an ROS-scavenging effect in the AAPH assay, but it did not scavenge superoxide anions directly in the xanthine/xanthine oxidase assay. Protein kinase C (PKC)-induced NET formation most commonly occurs through ROS-dependent mechanisms. KLHTT significantly inhibited phorbol 12-myristate 13-acetate, a PKC activator, inducing NET formation. Furthermore, topical KLHTT treatment reduced the area affected by psoriasis area and severity index (PASI) score and ameliorated neutrophil infiltration in IMQ-induced psoriasis-like skin inflammation in mice. CONCLUSIONS Our data show that KLHTT has anti-neutrophilic inflammatory effects in inhibiting ROS generation and cell adhesion. KLHTT also mitigated NET formation, mainly via an ROS-dependent pathway. In addition, KLHTT reduced neutrophil infiltration and improved the severity of IMQ-induced psoriasis-like skin inflammation in mice. Therefore, KLHTT may prove to be a safe and effective psoriasis therapy in the future.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Supervisory Board, Taoyuan Chinese Medicine Association, Taoyuan, 338, Taiwan; Puxin Fengze Chinese Medicine Clinic, Taoyuan, 326, Taiwan.
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Kuei-Hung Lai
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.
| | - Seanson-Chance Ju
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Chuan Lee
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Sien-Hung Yang
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
21
|
Zhang ZJ, Wang YH, Chen SR, Peng BR, Yang SN, Hu CC, Fang LS, Hwang TL, Sung PJ. Novel secoeunicellins produced by an octocoral Cladiella sp. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
New 11,20-Epoxybriaranes from the Gorgonian Coral Junceella fragilis (Ellisellidae). Molecules 2019; 24:molecules24132487. [PMID: 31284657 PMCID: PMC6659381 DOI: 10.3390/molecules24132487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 12/04/2022] Open
Abstract
Two new 11,20-epoxybriaranes, fragilides P (1) and Q (2), as well as two known analogues, robustolide F (3) and juncin Z (4), were obtained from the gorgonian coral Junceella fragilis. The structures, including the absolute configurations of briaranes 1 and 2, were elucidated by using spectroscopic methods and comparing the spectroscopic and rotation data with those of known related analogues. Briarane 4 decreased the generation of superoxide anions by human neutrophils. The propionate group in 1 is rarely found.
Collapse
|
23
|
Yao JW, Chi WC, Lee GH, Su JH, Hwang TL, Wu YJ, Su TR, Sheu JH, Sung PJ. 2-Acetoxybriaranes from Briareum violaceum. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Lam SH, Jian SD, Hwang TL, Chen PJ, Hung HY, Kuo PC, Wu TS. A new dimeric protoberberine alkaloid and other compounds from the tubers of Tinospora dentata. Nat Prod Res 2019; 35:17-24. [PMID: 31135226 DOI: 10.1080/14786419.2019.1611809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new dimeric quaternary protoberberine alkaloid, bispalmatrubine (1), and thirteen known compounds (2-14) were purified from the tubers of Tinospora dentata. Their structures were determined by spectroscopic and spectrometric analytical methods. Among the isolates, eight compounds were examined for their in vitro anti-inflammatory potential and several tested alkaloids displayed moderate inhibitory effects of N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation and elastase release.
Collapse
Affiliation(s)
- Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Duan Jian
- Chuang Song Zong Pharmaceutical Co., LTD, Kaohsiung City, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| |
Collapse
|
25
|
Lam SH, Li YC, Kuo PC, Hwang TL, Yang ML, Wang CC, Tzen JTC. Chemical Constituents of Vigna luteola and Their Anti-inflammatory Bioactivity. Molecules 2019; 24:molecules24071371. [PMID: 30965630 PMCID: PMC6479608 DOI: 10.3390/molecules24071371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
Seventy-three compounds were identified from the methanol extract of V. luteola, and among these, three new (1–3) were characterized by spectroscopic and mass spectrometric analyses. The isolated constituents were assessed for anti-inflammatory potential evaluation, and several purified principles exhibited significant superoxide anion and elastase inhibitory effects.
Collapse
Affiliation(s)
- Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yue-Chiun Li
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Mei-Lin Yang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chien-Chiao Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
26
|
|
27
|
Lin YC, Chao CH, Ahmed AF, Chen YY, Hwang TL, Liu HY, Sheu JH. Withanolides and 26-Hydroxylated Derivatives with Anti-Inflammatory Property from Solanum Capsicoide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- You-Cheng Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Atallah F. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yang-Yih Chen
- Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ho-Yih Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
28
|
Li C, Lo I, Hsueh Y, Chung Y, Wang S, Korinek M, Tsai Y, Cheng Y, Hwang T, Wang CCC, Chang F, Wu Y. Epigenetic Manipulation Induces the Production of Coumarin‐Type Secondary Metabolite from
Arthrobotrys foliicola. Isr J Chem 2019. [DOI: 10.1002/ijch.201800162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chi‐Ying Li
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Pharmacology and Pharmaceutical Sciences University of Southern CaliforniaSchool of Pharmacy Los Angeles CA 90089 USA
| | - I‐Wen Lo
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yen‐Ping Hsueh
- Institute of Molecular BiologyAcademia Sinica Taipei 11529 Taiwan
| | - Yu‐Ming Chung
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Shih‐Wei Wang
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of MedicineMackay Medical College New Taipei City 252 Taiwan
| | - Michal Korinek
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research CenterChang Gung University Taoyuan 33302 Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human EcologyChang Gung University of Science and Technology Taoyuan 33302 Taiwan
| | - Yi‐Hong Tsai
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yuan‐Bin Cheng
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Tsong‐Long Hwang
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research CenterChang Gung University Taoyuan 33302 Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human EcologyChang Gung University of Science and Technology Taoyuan 33302 Taiwan
- Department of AnesthesiologyChang Gung Memorial Hospital Taoyuan 33305 Taiwan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences University of Southern CaliforniaSchool of Pharmacy Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern CaliforniaCollege of Letters, Arts, and Sciences Los Angeles CA 90089 USA
| | - Fang‐Rong Chang
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- National Research Institute of Chinese Medicine Taipei 112 Taiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
- Research Center for Natural Products & Drug DevelopmentKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
29
|
Chemical Constituents of the Leaves of Peltophorum pterocarpum and Their Bioactivity. Molecules 2019; 24:molecules24020240. [PMID: 30634658 PMCID: PMC6359222 DOI: 10.3390/molecules24020240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/19/2023] Open
Abstract
Two new sesquiterpenoids peltopterins A and B (compounds 1 and 2) and fifty-two known compounds were isolated from the methanol extract of P. pterocarpum and their chemical structures were established through spectroscopic and mass spectrometric analyses. The isolates 40, 43, 44, 47, 48, 51 and 52 exhibited potential inhibitory effects of superoxide anion generation or elastase release.
Collapse
|
30
|
Chemical Constituents from the Stems of Tinospora sinensis and Their Bioactivity. Molecules 2018; 23:molecules23102541. [PMID: 30301176 PMCID: PMC6222598 DOI: 10.3390/molecules23102541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 11/23/2022] Open
Abstract
Fifty-seven compounds were purified from the stems of Tinospora sinensis, including three new compounds characterized as a lignan (1), a pyrrole alkaloid (11), and a benzenoid (17), respectively. Their structures were elucidated and established by various spectroscopic and spectrometric analytical methods. Among the isolates, fifteen compounds were examined for their anti-inflammatory potential in vitro. The results showed that several compounds displayed moderate inhibition of N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation and elastase release.
Collapse
|
31
|
New Cembranoids and a Biscembranoid Peroxide from the Soft Coral Sarcophyton cherbonnieri. Mar Drugs 2018; 16:md16080276. [PMID: 30082637 PMCID: PMC6117711 DOI: 10.3390/md16080276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Six new cembranoids, cherbonolides A−E (1–5) and bischerbolide peroxide (6), along with one known cembranoid, isosarcophine (7), were isolated from the Formosan soft coral Sarcophyton cherbonnieri. The structures of these compounds were elucidated by detailed spectroscopic analysis and chemical methods. Compound 6 was discovered to be the first example of a molecular skeleton formed from two cembranoids connected by a peroxide group. Compounds 1–7 were shown to have the ability of inhibiting the production of superoxide anions and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophils.
Collapse
|
32
|
Chang FR, Li PS, Huang Liu R, Hu HC, Hwang TL, Lee JC, Chen SL, Wu YC, Cheng YB. Bioactive Phenolic Components from the Twigs of Atalantia buxifolia. JOURNAL OF NATURAL PRODUCTS 2018; 81:1534-1539. [PMID: 29975532 DOI: 10.1021/acs.jnatprod.7b00938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Five new compounds named buxifoximes A-C (1-3), buxifobenzoate (4), and 7- O-(7'-peroxygeranyl) coumarin (5), together with 25 known compounds, were identified from the twigs of Atalantia buxifolia. Compounds 1-3 are unique secondary metabolites with the aldoxime functionality. The structures of the isolates were determined on the basis of spectroscopic data analyses, and the structure of 1 was confirmed by an X-ray single-crystallographic analysis. With respect to bioactivity, antidengue virus, anti-inflammatory, and cytotoxic activities of all purified compounds were tested and evaluated. Compound 1 showed a significant anti-inflammatory effect by inhibiting superoxide anion generation with an IC50 value of 4.8 ± 0.7 μM. Among the acridone alkaloids, 5-hydroxy- N-methylseverifoline (23) exhibited antidengue activity (IC50 = 5.3 ± 0.4 μM), and atalaphyllinine (20) demonstrated cytotoxicity (IC50 = 6.5 ± 0.0 μM) against the human liver cancer cell line, HepG2.
Collapse
Affiliation(s)
- Fang-Rong Chang
- National Research Institute of Chinese Medicine , Taipei 112 , Taiwan
| | | | - Rosa Huang Liu
- School of Nutrition, College of Health Care and Management , Chung Shan Medical University , Taichung 402 , Taiwan
| | | | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan
| | | | | | - Yang-Chang Wu
- Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| | - Yuan-Bin Cheng
- Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| |
Collapse
|
33
|
Abstract
Three new polyoxygenated steroids, michosterols A–C (1–3), and four known compounds (4–7) were isolated from the ethyl acetate (EtOAc) extract of the soft coral Lobophytum michaelae, collected off the coast of Taitung. The structures of the new compounds were elucidated on the basis of spectroscopic analyses and comparison of the nuclear magnetic resonance (NMR) data with related steroids. The cytotoxicity of compounds 1–3 against the proliferation of a limited panel of cancer cell lines was assayed. Compound 1 was found to display moderate cytotoxicity against adenocarcinomic human alveolar basal epithelial (A549) cancer cells. It also exhibited potent anti-inflammatory activity by suppressing superoxide anion generation and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-stimulated human neutrophils. Furthermore, 3 could effectively inhibit elastase release, as well.
Collapse
|
34
|
Sung PJ, Wen ZH, Hwang TL, Zheng LG, Chang YC, Chen JJ. (+)-12-epi-Fragilide G, a New Chlorinated Briarane from the Sea Whip Gorgonian Coral Junceella fragilis. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Anti-Inflammatory Lobane and Prenyleudesmane Diterpenoids from the Soft Coral Lobophytum varium. Mar Drugs 2017; 15:md15100300. [PMID: 28961211 PMCID: PMC5666408 DOI: 10.3390/md15100300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
New lobane-based diterpenoids lobovarols A–D (1–4) and a prenyleudesmane-type diterpenoid lobovarol E (5) along with seven known related diterpenoids (6–12) were isolated from the ethyl acetate extract of a Taiwanese soft coral Lobophytum varium. Their structures were identified on the basis of multiple spectroscopic analyses and spectral comparison. The absolute configuration at C-16 of the known compound 11 is reported herein for the first time. The anti-inflammatory activities of compounds 1–12 were assessed by measuring their inhibitory effect on N-formyl-methionyl-leucyl-phenyl-alanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation and elastase release in human neutrophils. Metabolites 2, 5, and 11 were found to show moderate inhibitory activity on the generation of superoxide anion, while compounds 5, 8, 11, and 12 could effectively suppress elastase release in fMLP/CB-stimulated human neutrophil cells at 10 μM. All of the isolated diterpenoids did not exhibit cytotoxic activity (IC50 > 50 μM) towards a limited panel of cancer cell lines.
Collapse
|
36
|
Bioactive Steroids with Methyl Ester Group in the Side Chain from a Reef Soft Coral Sinularia brassica Cultured in a Tank. Mar Drugs 2017; 15:md15090280. [PMID: 28862648 PMCID: PMC5618419 DOI: 10.3390/md15090280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
A continuing chemical investigation of the ethyl acetate (EtOAc) extract of a reef soft coral Sinularia brassica, which was cultured in a tank, afforded four new steroids with methyl ester groups, sinubrasones A–D (1–4) for the first time. In particular, 1 possesses a β-d-xylopyranose. The structures of the new compounds were elucidated on the basis of spectroscopic analyses. The cytotoxicities of compounds 1–4 against the proliferation of a limited panel of cancer cell lines were assayed. The anti-inflammatory activities of these new compounds 1–4 were also evaluated by measuring their ability to suppress superoxide anion generation and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils. Compounds 2 and 3 were shown to exhibit significant cytotoxicity, and compounds 3 and 4 were also found to display attracting anti-inflammatory activities.
Collapse
|
37
|
Chan YY, Hwang TL, Kuo PC, Hung HY, Wu TS. Constituents of the Fruits of Citrus medica L. var. sarcodactylis and the Effect of 6,7-Dimethoxy-coumarin on Superoxide Anion Formation and Elastase Release. Molecules 2017; 22:molecules22091454. [PMID: 28862688 PMCID: PMC6151612 DOI: 10.3390/molecules22091454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023] Open
Abstract
Investigation of the chemical constituents from the fruits of Citrus medica L. var. sarcodactylis Swingle has led to the characterization of a new sesquiterpene 1 along with thirty-two known compounds. The structure of 1 was established on the basis of 2D NMR spectroscopic and mass spectrometric analyses, and the known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. In addition, most of the isolated compounds were evaluated for the activity assayed by the in vitro inhibition of superoxide anion generation and elastase release by human neutrophils. The results showed that only 6,7-dimethoxycoumarin (5) exhibited significant inhibition of superoxide anion generation, with IC50 value of 3.8 ± 1.4 μM.
Collapse
Affiliation(s)
- Yu-Yi Chan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
38
|
Whuang TY, Tsai HC, Su YD, Hwang TL, Sung PJ. Sterols from the Octocoral Nephthea columnaris. Mar Drugs 2017; 15:md15070212. [PMID: 28677628 PMCID: PMC5532654 DOI: 10.3390/md15070212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 01/24/2023] Open
Abstract
Two new sterols, columnaristerols B (1) and C (2), along with two known analogues, 5,6-epoxylitosterol (3) and litosterol (4), were obtained from the octocoral Nephthea columnaris. The structures of new sterols 1 and 2 were elucidated by using spectroscopic methods and comparing the spectroscopic data with those of known related metabolites. Sterol 3 was found to suppress superoxide anion production and elastase secretion by human neutrophils.
Collapse
Affiliation(s)
- Ta-Yuan Whuang
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Hong-Chieh Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Yin-Di Su
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
39
|
Kuo PC, Liao YR, Hung HY, Chuang CW, Hwang TL, Huang SC, Shiao YJ, Kuo DH, Wu TS. Anti-Inflammatory and Neuroprotective Constituents from the Peels of Citrus grandis. Molecules 2017; 22:molecules22060967. [PMID: 28598384 PMCID: PMC6152662 DOI: 10.3390/molecules22060967] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
A series of chromatographic separations performed on the ethanol extracts of the peels of Citrus grandis has led to the characterization of forty compounds, including seventeen coumarins, eight flavonoids, two triterpenoids, four benzenoids, two steroids, one lignan, one amide, and five other compounds, respectively. The chemical structures of the purified constituents were identified on the basis of spectroscopic elucidation, including 1D- and 2D-NMR, UV, IR, and mass spectrometric analysis. Most of the isolated compounds were examined for their inhibition of superoxide anion generation and elastase release by human neutrophils. Among the isolates, isomeranzin (3), 17,18-dihydroxybergamottin (12), epoxybergamottin (13), rhoifolin (19), vitexicarpin (22) and 4-hydroxybenzaldehyde (29) displayed the most significant inhibition of superoxide anion generation and elastase release with IC50 values ranged from 0.54 to 7.57 μM, and 0.43 to 4.33 μM, respectively. In addition, 7-hydroxy-8-(2′-hydroxy-3′-methylbut-3′-enyl)coumarin (8) and 17,18-dihydroxybergamottin (12) also exhibited the protection of neurons against Aβ-mediated neurotoxicity at 50 μM.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yu-Ren Liao
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chia-Wei Chuang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Shiow-Chyn Huang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Young-Ji Shiao
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan.
| | - Daih-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
40
|
Yang SC, Chang SH, Hsieh PW, Huang YT, Ho CM, Tsai YF, Hwang TL. Dipeptide HCH6-1 inhibits neutrophil activation and protects against acute lung injury by blocking FPR1. Free Radic Biol Med 2017; 106:254-269. [PMID: 28232203 DOI: 10.1016/j.freeradbiomed.2017.02.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Formyl peptide receptor 1 (FPR1) is an emerging therapeutic target for the discovery of drugs to treat neutrophilic inflammatory diseases. However, development of FPR1 antagonists for clinical use is still inadequate. The purpose of this study was to identify a synthetic dipeptide N-(N-benzoyl-L-tryptophanyl)-D-phenylanlanine methyl ester (HCH6-1) as a FPR1 inhibitor and to investigate its protective effects against acute lung injury (ALI). HCH6-1 inhibited superoxide anion generation, elastase release, and chemotaxis in human neutrophils specifically activated by formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF), an FPR1 agonist. HCH6-1 produced right shifts in the concentration-response curves of fMLF, suggesting that HCH6-1 was a competitive antagonist of FPR1. Indeed, HCH6-1 bound to FPR1 in human neutrophils and neutrophil-like THP-1 as well as hFPR1-transfected HEK293 cells. Also, the FPR1 downstream signaling pathways were competitively inhibited by HCH6-1. Furthermore, HCH6-1 prevented pulmonary neutrophil infiltration and edema along with alveolar damage in LPS-induced ALI in mice. Our findings suggest that HCH6-1, a FPR1 antagonist, may have potential as a new therapeutic agent for treating FPR1-involved inflammatory lung diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yin-Ting Huang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| |
Collapse
|
41
|
Tsai YF, Chu TC, Chang WY, Wu YC, Chang FR, Yang SC, Wu TY, Hsu YM, Chen CY, Chang SH, Hwang TL. 6-Hydroxy-5,7-dimethoxy-flavone suppresses the neutrophil respiratory burst via selective PDE4 inhibition to ameliorate acute lung injury. Free Radic Biol Med 2017; 106:379-392. [PMID: 28263828 DOI: 10.1016/j.freeradbiomed.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/26/2017] [Accepted: 03/01/2017] [Indexed: 01/11/2023]
Abstract
Over-activated neutrophils produce enormous oxidative stress and play a key role in the development of acute and chronic inflammatory diseases. 6-Hydroxy-5,7-dimethoxy-flavone (UFM24), a flavone isolated from the Annonaceae Uvaria flexuosa, showed inhibitory effects on human neutrophil activation and salutary effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. UFM24 potently inhibited superoxide anion (O2•-) generation, reactive oxidants, and CD11b expression, but not elastase release, in N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-activated human neutrophils. However, UFM24 failed to scavenge O2•- and inhibit the activity of subcellular NADPH oxidase. fMLF-induced phosphorylation of protein kinase B (Akt) was inhibited by UFM24. Noticeably, UFM24 increased cyclic adenosine monophosphate (cAMP) concentration and protein kinase (PK) A activity in activated human neutrophils. PKA inhibitors significantly reversed the inhibitory effects of UFM24, suggesting that the effects of UFM24 were through cAMP/PKA-dependent inhibition of Akt activation. Additionally, activity of cAMP-related phosphodiesterase (PDE)4, but not PDE3 or PDE7, was significantly reduced by UFM24. Furthermore, UFM24 attenuated neutrophil infiltration, myeloperoxidase activity, and pulmonary edema in LPS-induced ALI in mice. In conclusion, our data demonstrated that UFM24 inhibits oxidative burst in human neutrophils through inhibition of PDE4 activity. UFM24 also exhibited significant protection against endotoxin-induced ALI in mice. UFM24 has potential as an anti-inflammatory agent for treating neutrophilic lung damage.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tzu-Chi Chu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan; Chinese Medicine Research and Development Center and Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, 807 Taiwan
| | - Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Tung-Ying Wu
- Chinese Medicine Research and Development Center and Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
42
|
Kuo PC, Hung HY, Hwang TL, Du WK, Ku HC, Lee EJ, Tai SH, Chen FA, Wu TS. Anti-inflammatory Flavan-3-ol-dihydroretrochalcones from Daemonorops draco. JOURNAL OF NATURAL PRODUCTS 2017; 80:783-789. [PMID: 28398735 DOI: 10.1021/acs.jnatprod.7b00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four A-type flavan-3-ol-dihydroretrochalcone dimers, dragonins A-D (1-4), were characterized from the traditional Chinese medicine Sanguis Draconis. The structures of 1-4 were elucidated by spectroscopic and spectrometric analyses. Compounds 1 and 2 exhibited significant inhibition of fMLP/CB-induced superoxide anion and elastase. The signaling pathways accounting for the inhibitory effects of compound 2 were also elucidated. These purified A-type flavan-3-ol-dihydroretrochalcones are new potential leads for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University ; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wen-Ke Du
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Hsiang-Chih Ku
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University ; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - E-Jian Lee
- Department of Surgery and Anesthesiology, and Institute of Biomedical Engineering, National Cheng Kung University, Medical Center and Medical School , Tainan 701, Taiwan
| | - Shih-Huang Tai
- Department of Surgery and Anesthesiology, and Institute of Biomedical Engineering, National Cheng Kung University, Medical Center and Medical School , Tainan 701, Taiwan
| | - Fu-An Chen
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University , Pingtung 907, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University , Pingtung 907, Taiwan
| |
Collapse
|
43
|
Kuo PC, Hung HY, Nian CW, Hwang TL, Cheng JC, Kuo DH, Lee EJ, Tai SH, Wu TS. Chemical Constituents and Anti-inflammatory Principles from the Fruits of Forsythia suspensa. JOURNAL OF NATURAL PRODUCTS 2017; 80:1055-1064. [PMID: 28218000 DOI: 10.1021/acs.jnatprod.6b01141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fifty compounds were isolated from the fruits of Forsythia suspensa, including 13 new compounds characterized as eight new diterpenoids (1-8), three new lignans (9-11), a new iridoid (12), and a new triterpenoid (13). Their structures were established on the basis of spectroscopic and spectrometric analysis. Most of the isolated compounds were examined for their anti-inflammatory activity in vitro. The results showed that several compounds displayed significant inhibition of fMLP/CB-induced superoxide anion generation and elastase release, with IC50 values ranging from 0.6 ± 0.1 to 8.6 ± 0.8 μg/mL and from 0.8 ± 0.3 to 7.3 ± 1.1 μg/mL, respectively.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Chi-Wei Nian
- Department of Chemistry, National Cheng Kung University , Tainan 701, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology; and Department of Anesthesiology, Chang Gung Memorial Hospital , Taoyuan 333, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University , Taichung 404, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University , Pingtung 907, Taiwan
| | - E-Jian Lee
- Department of Surgery and Anesthesiology and Institute of Biomedical Engineering, National Cheng Kung University, Medical Center and Medical School , Tainan 701, Taiwan
| | - Shih-Huang Tai
- Department of Surgery and Anesthesiology and Institute of Biomedical Engineering, National Cheng Kung University, Medical Center and Medical School , Tainan 701, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University , Pingtung 907, Taiwan
| |
Collapse
|
44
|
Briarenols C-E, New Polyoxygenated Briaranes from the Octocoral Briareum excavatum. Molecules 2017; 22:molecules22030475. [PMID: 28304345 PMCID: PMC6155408 DOI: 10.3390/molecules22030475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
Three new polyoxygenated briarane diterpenoids, briarenols C–E (1–3), were isolated from the octocoral Briareum excavatum. The structures of briaranes 1–3 were elucidated by interpretation of spectroscopic data, and the methylenecyclohexane ring in 1 was found to exist in a twisted boat conformation. Briarenol D (2) displayed an inhibitory effect on the release of elastase by human neutrophils with an IC50 value of 4.65 μM. Briarenol E (3) was found to inhibit the protein expression of pro-inflammatory inducible nitric oxide synthase (iNOS) in a murine macrophage-like cell line, RAW 264.7, stimulated with lipopolysaccharides (LPS).
Collapse
|
45
|
Li CY, Lo IW, Wang SW, Hwang TL, Chung YM, Cheng YB, Tseng SP, Liu YH, Hsu YM, Chen SR, Hu HC, Chang FR, Wu YC. Novel 11-norbetaenone isolated from an entomopathogenic fungus Lecanicillium antillanum. Bioorg Med Chem Lett 2017; 27:1978-1982. [PMID: 28336142 DOI: 10.1016/j.bmcl.2017.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 11/27/2022]
Abstract
A novel nor-betaenone compound, 11-norbetaenone (1), was isolated from the culture broth of an entomopathogenic fungus Lecanicillium antillanum. The structure was determined on the basis of 1D and 2D NMR spectroscopic data. The absolute stereochemistry of 1 was further confirmed by X-ray single crystallography analysis. It is the first secondary metabolite reported from the species Lecanicillium antillanum. And it is also the first time that a betaenone-type compound was isolated from the genus Lecanicillium. Furthermore, 11-norbetaenone (1) displayed significant anti-angiogenic effect by suppressing tube formation.
Collapse
Affiliation(s)
- Chi-Ying Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Wen Lo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yu-Ming Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Hung Liu
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Rong Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Chinese Herbal Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
46
|
Chang YC, Hwang TL, Chao CH, Sung PJ. New Marine Sterols from a Gorgonian Pinnigorgia sp. Molecules 2017; 22:molecules22030393. [PMID: 28273821 PMCID: PMC6155433 DOI: 10.3390/molecules22030393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
Continuous chemical investigation of the gorgonian coral Pinnigorgia sp. resulted in the isolation of two new sterols, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1) and (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2). The structures of sterols 1 and 2 were elucidated using spectroscopic methods. Sterol 1 displayed inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils with IC50 values of 8.65 and 5.86 μM, respectively. The structure of a known metabolite, pubinernoid A (3), is revised as (+)-loliolide (4).
Collapse
Affiliation(s)
- Yu-Chia Chang
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University & Academia Sinica, Kaohsiung 804, Taiwan.
- Greenhouse Systems Technology Center, Central Region Campus, Industrial Technology Research Institute, Nantou 540, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
47
|
Pinnisterols D-J, New 11-Acetoxy-9,11-secosterols with a 1,4-Quinone Moiety from Formosan Gorgonian Coral Pinnigorgia sp. (Gorgoniidae). Mar Drugs 2017; 15:md15010011. [PMID: 28067822 PMCID: PMC5295231 DOI: 10.3390/md15010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/11/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022] Open
Abstract
Seven new marine 11-acetoxy-9,11-secosterols, pinnisterols D-J (1-7), with a 1,4-quinone moiety, were discovered from the gorgonian coral Pinnigorgia sp. In this study, the structures of secosterols 1-7 were revealed by spectroscopic analysis. Bioactivity study showed that secosterol 1 treatment inhibited cell viability in a hepatic stellate cell line, HSC-T6, with an IC50 value of 3.93 μM; and secosterols 2, 5, and 7 reduced elastase enzyme release, and 3, 5, and 7 decreased the production of superoxide anions from human neutrophils.
Collapse
|
48
|
Chang YC, Hwang TL, Sheu JH, Wu YC, Sung PJ. New Anti-Inflammatory 9,11-Secosterols with a Rare Tricyclo[5,2,1,1]decane Ring from a Formosan Gorgonian Pinnigorgia sp. Mar Drugs 2016; 14:md14120218. [PMID: 27898026 PMCID: PMC5192455 DOI: 10.3390/md14120218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022] Open
Abstract
Pinnigorgiols D (1) and E (2), two new 9,11-secosterols with a rearranged carbon skeleton, were isolated from a Taiwan gorgonian Pinnigorgia sp. The structures of these two compounds were elucidated on the basis of spectroscopic methods and were proven to possess a tricyclo[5,2,1,1]decane ring. The new secosterols 1 and 2 displayed significant inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils.
Collapse
Affiliation(s)
- Yu-Chia Chang
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine and Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
| |
Collapse
|
49
|
Chang FR, Huang ST, Liaw CC, Yen MH, Hwang TL, Chen CY, Hou MF, Yuan SS, Cheng YB, Wu YC. Diterpenes from Grangea maderaspatana. PHYTOCHEMISTRY 2016; 131:124-129. [PMID: 27567453 DOI: 10.1016/j.phytochem.2016.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/06/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Phytochemical investigation of the ethanolic extract of Grangea maderaspatana led to isolation of gramaderins A-D, together with thirteen known compounds. All isolates were assayed for their anti-inflammatory activities. Consequently, 5,7-dihydroxy-3,6,3',4',5'-pentamethoxyflavone and 5,3'-dihydroxy-3,6,7,4',5'-pentamethoxyflavone showed significant bioactivities by inhibiting superoxide anion generation. 8-Acetoxy-pentadeca-1,9Z,14-trien-4,6-diyne-3-ol also demonstrated potent inhibition on elastase release. The gramaderins A/C (β-alkyl linked γ-lactone) and gramaderins B/D (α-alkyl linked γ-lactone) co-exist in this plant material, of which the latter derivatives are few in nature. Gramaderins C/D possess a special linear dilactone diterpene skeleton, which never been reported.
Collapse
Affiliation(s)
- Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shih-Ting Huang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Immunology Consortium, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ching-Yeu Chen
- Department of Physical Therapy, Tzu-Hui Institute of Technology, Pingtung 926, Taiwan
| | - Ming-Feng Hou
- Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shyng-Shiou Yuan
- Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Chinese Herbal Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
50
|
Constituents from the leaves of Clausena lansium and their anti-inflammatory activity. J Nat Med 2016; 71:96-104. [PMID: 27539584 DOI: 10.1007/s11418-016-1033-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
Abstract
Five new acyclic amides, clausenalansamides C-G (1-5), clausenaline G (6) and (±)-5-(4-methylphenyl)-γ-valerolactone (7) reported from the natural source for the first time, were characterized from the leaves of Clausena lansium. Their structures were established by spectroscopic and spectrometric methods, and the absolute configurations of new compounds 1-5 were determined by electronic circular dichroism and single-crystal X-ray diffraction analyses. Eighteen compounds were evaluated for their anti-inflammatory activity and only imperatorin (11) and wampetin (12) displayed significant inhibition of fMLP/CB-induced superoxide anion generation with IC50 values of 1.7 ± 0.3 and 6.8 ± 1.1 μM, respectively.
Collapse
|