1
|
Luo T, Wang B, Chen R, Qi Q, Wu R, Xie S, Chen H, Han J, Wu D, Cao S. Research progress of nitroxide radical-based MRI contrast agents: from structure design to application. J Mater Chem B 2025; 13:372-398. [PMID: 39565110 DOI: 10.1039/d4tb02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) remains a cornerstone of diagnostic imaging, offering unparalleled insights into anatomical structures and pathological conditions. Gadolinium-based contrast agents have long been the standard in MRI enhancement, yet concerns over nephrogenic systemic fibrosis have spurred interest in metal-free alternatives. Nitroxide radical-based MRI contrast agents (NO-CAs) have emerged as promising candidates, leveraging their biocompatibility and imaging capabilities. This review summaries the latest advancements in NO-CAs, focusing on synthesis methodologies, influencing effects of structures of NO-CAs on relaxation efficiency and their applications across various clinical contexts. Comprehensive discussions encompass small molecular, polymeric, and nano-sized NO-CAs, detailing their unique properties and potential clinical utilities. Despite challenges, NO-CAs represent a dynamic area of research poised to revolutionize MRI diagnostics. This review serves as a critical resource for researchers and practitioners seeking to navigate the evolving landscape of MRI contrast agents.
Collapse
Affiliation(s)
- Tao Luo
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Runxin Chen
- Shenzhen University General Hospital, Shenzhen, China
| | - Qi Qi
- Shenzhen University General Hospital, Shenzhen, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, China
| | - Shunzi Xie
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Hanbing Chen
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Shenzhen, China
| | | |
Collapse
|
2
|
Qi W, Nair SU, Pattison DI, Anderson RF. Redox factors in the antioxidant activity of nitroxides toward DNA guanyl and 2-deoxyribose-peroxyl radicals. Free Radic Res 2024; 58:677-685. [PMID: 39446041 DOI: 10.1080/10715762.2024.2417278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
A series of eight nitroxide compounds (four substituted piperidines, three pyrrolidines and one oxo-piperidine) are found to undergo electron transfer to 2'-deoxyribose-peroxyl and the guanyl radical. One-electron oxidation potentials of the nitroxides to oxoammonium cations (oxoammonium reduction potential), E0', have been measured against a common redox indicator, chlorpromazine, and found to span the range 751 ± 15 mV to 973 ± 15 mV. Fast chemical reduction of the 2'-deoxyribose-peroxyl radical to the hydroperoxide, generated by •OH radical attack on 2-deoxyribose, dR, in oxygenated aqueous solution, is a redox-dependent reaction, with rate constants of 0.8-3.5 x 107 M-1 s-1. The guanyl radicals, produced upon one-electron oxidation of 2'-deoxyguanosine monophosphate, dG, by the selenite radical, SeO3•-, react with the nitroxides in a redox-independent reaction with diffusion rate constants of 1-2 x 108 M-1 s-1. These findings represent a possible antioxidant role for nitroxides in the fast chemical repair of DNA radicals, which is supported by an in vitro strand break study using a plasmid.
Collapse
Affiliation(s)
- Wen Qi
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Smitha U Nair
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Usatov MS, Dobrynin SA, Polienko YF, Morozov DA, Glazachev YI, An’kov SV, Tolstikova TG, Gatilov YV, Bagryanskaya IY, Raizvikh AE, Bagryanskaya EG, Kirilyuk IA. Hydrophilic Reduction-Resistant Spin Labels of Pyrrolidine and Pyrroline Series from 3,4-Bis-hydroxymethyl-2,2,5,5-tetraethylpyrrolidine-1-oxyl. Int J Mol Sci 2024; 25:1550. [PMID: 38338825 PMCID: PMC10855552 DOI: 10.3390/ijms25031550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
Highly resistant to reduction nitroxides open new opportunities for structural studies of biological macromolecules in their native environment inside living cells and for functional imaging of pH and thiols, enzymatic activity and redox status in living animals. 3,4-Disubstituted nitroxides of 2,2,5,5-tetraethylpyrrolidine and pyrroline series with a functional group for binding to biomolecules and a polar moiety for higher solubility in water and for more rigid attachment via additional coordination to polar sites were designed and synthesized. The EPR spectra, lipophilicities, kinetics of the reduction in ascorbate-containing systems and the decay rates in liver homogenates were measured. The EPR spectra of all 3,4-disubstituted pyrrolidine nitroxides showed additional large splitting on methylene hydrogens of the ethyl groups, while the spectra of similar pyrroline nitroxides were represented with a simple triplet with narrow lines and hyperfine structure of the nitrogen manifolds resolved in oxygen-free conditions. Both pyrrolidine and pyrroline nitroxides demonstrated low rates of reduction with ascorbate, pyrrolidines being a bit more stable than similar pyrrolines. The decay of positively charged nitroxides in the rat liver homogenate was faster than that of neutral and negatively charged radicals, with lipophilicity, rate of reduction with ascorbate and the ring type playing minor role. The EPR spectra of N,N-dimethyl-3,4-bis-(aminomethyl)-2,2,5,5-tetraethylpyrrolidine-1-oxyl showed dependence on pH with pKa = 3, ΔaN = 0.055 mT and ΔaH = 0.075 mT.
Collapse
Affiliation(s)
- Mikhail S. Usatov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia
| | - Sergey A. Dobrynin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Yuliya F. Polienko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Denis A. Morozov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Yurii I. Glazachev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia;
| | - Sergey V. An’kov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Tatiana G. Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Yuri V. Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Arthur E. Raizvikh
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
- Department of Physics, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Igor A. Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| |
Collapse
|
4
|
Nowik-Boltyk EM, Junghoefer T, Glaser M, Giangrisostomi E, Ovsyannikov R, Zhang S, Shu C, Rajca A, Calzolari A, Casu MB. Long-Term Degradation Mechanisms in Application-Implemented Radical Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319383 DOI: 10.1021/acsami.3c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H2, N2, O2, H2O, and NH2) affects the chemical and magnetic properties of the thin films upon air exposure. Also, the radical-specific site, where the contaminant interaction takes place, plays a role. Atomic H and NH2 are detrimental to the magnetic properties of Blatter radicals, while the presence of molecular water influences more specifically the magnetic properties of the diradical thin films, and it is believed to be the major cause of the shorter diradical thin film lifetime in air.
Collapse
Affiliation(s)
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Mathias Glaser
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Erika Giangrisostomi
- Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, 12489 Berlin, Germany
| | - Ruslan Ovsyannikov
- Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, 12489 Berlin, Germany
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | | | - M Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
6
|
Mutlu H. Chemical design and synthesis of macromolecular profluorescent nitroxide systems as self-reporting probes. Polym Chem 2022. [DOI: 10.1039/d1py01645h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of this mini-review article is to highlight the importance of the chemical design towards the synthesis of polymeric profluorescent nitroxides applicable as self-reporting probes.
Collapse
Affiliation(s)
- Hatice Mutlu
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Matsumoto KI, Nakanishi I, Zhelev Z, Bakalova R, Aoki I. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging. Antioxid Redox Signal 2022; 36:95-121. [PMID: 34148403 PMCID: PMC8792502 DOI: 10.1089/ars.2021.0110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria.,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Bakalova
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ichio Aoki
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| |
Collapse
|
8
|
A Simple Method of Synthesis of 3-Carboxy-2,2,5,5-Tetraethylpyrrolidine-1-oxyl and Preparation of Reduction-Resistant Spin Labels and Probes of Pyrrolidine Series. Molecules 2021; 26:molecules26195761. [PMID: 34641310 PMCID: PMC8510269 DOI: 10.3390/molecules26195761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/31/2023] Open
Abstract
Stable free radicals are widely used as molecular probes and labels in various biophysical and biomedical research applications of magnetic resonance spectroscopy and imaging. Among these radicals, sterically shielded nitroxides of pyrrolidine series demonstrate the highest stability in biological systems. Here, we suggest new convenient procedure for preparation of 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl, a reduction-resistant analog of widely used carboxy-Proxyl, from cheap commercially available reagents with the yield exceeding the most optimistic literature data. Several new spin labels and probes of 2,2,5,5-tetraethylpyrrolidine-1-oxyl series were prepared and reduction of these radicals in ascorbate solutions, mice blood and tissue homogenates was studied.
Collapse
|
9
|
Matsumoto KI, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules 2021; 26:1614. [PMID: 33799481 PMCID: PMC8002164 DOI: 10.3390/molecules26061614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| |
Collapse
|
10
|
Das S, Homray M, Misra A. A New Approach to Design High Spin Organic Systems: Aromatic Stabilization with Exo‐cyclic π Electrons Plays Crucial Role. ChemistrySelect 2020. [DOI: 10.1002/slct.202003493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soumik Das
- Department of Chemistry University of North Bengal Darjeeling 734013 India
| | - Manoswita Homray
- Department of Chemistry University of North Bengal Darjeeling 734013 India
| | - Anirban Misra
- Department of Chemistry University of North Bengal Darjeeling 734013 India
| |
Collapse
|
11
|
Wang L, Wang Z, Cao Y, Lu W, Kuang L, Hua D. Strategy for Highly Efficient Radioprotection by a Selenium-Containing Polymeric Drug with Low Toxicity and Long Circulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44534-44540. [PMID: 32902946 DOI: 10.1021/acsami.0c14000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the rapid development and extensive use of nuclear technology, ionizing radiation has become a large threat to human health. Until now, there has been no practicable radioprotector for routine clinical application because of severe side effects, high toxicity, and short elimination half-life. Herein, we develop a highly efficient radioprotection strategy using a selenium-containing polymeric drug with low toxicity and long circulation by removing reactive oxygen species (ROSs). The selenium-containing polymeric drug is prepared by copolymerization of vinyl phenylselenides (VSe) and N-(2-hydroxyethyl) acrylamide (HEA). The in vitro radioprotective efficacy of the polymeric drug is increased by 40% with lower cytotoxicity compared with the small-molecular VSe monomer. Importantly, the radioprotection activity of the polymeric drug shows more remarkable effects both in cell culture and mice model compared to the commercially available drug ebselen and also exhibits a much longer retention time in blood (half-life ∼ 10 h). This work may unfold a new area for highly efficient radioprotection by polymeric drugs instead of small-molecular agents.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Yu Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Weihong Lu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Liangju Kuang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
12
|
Shah SA, Cui SX, Waters CD, Sano S, Wang Y, Doviak H, Leor J, Walsh K, French BA, Epstein FH. Nitroxide-enhanced MRI of cardiovascular oxidative stress. NMR IN BIOMEDICINE 2020; 33:e4359. [PMID: 32648316 PMCID: PMC7904044 DOI: 10.1002/nbm.4359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/08/2020] [Accepted: 06/03/2020] [Indexed: 06/07/2023]
Abstract
BACKGROUND In vivo imaging of oxidative stress can facilitate the understanding and treatment of cardiovascular diseases. We evaluated nitroxide-enhanced MRI with 3-carbamoyl-proxyl (3CP) for the detection of myocardial oxidative stress. METHODS Three mouse models of cardiac oxidative stress were imaged, namely angiotensin II (Ang II) infusion, myocardial infarction (MI), and high-fat high-sucrose (HFHS) diet-induced obesity (DIO). For the Ang II model, mice underwent MRI at baseline and after 7 days of Ang II (n = 8) or saline infusion (n = 8). For the MI model, mice underwent MRI at baseline (n = 10) and at 1 (n = 8), 4 (n = 9), and 21 (n = 8) days after MI. For the HFHS-DIO model, mice underwent MRI at baseline (n = 20) and 18 weeks (n = 13) after diet initiation. The 3CP reduction rate, Kred , computed using a tracer kinetic model, was used as a metric of oxidative stress. Dihydroethidium (DHE) staining of tissue sections was performed on Day 1 after MI. RESULTS For the Ang II model, Kred was higher after 7 days of Ang II versus other groups (p < 0.05). For the MI model, Kred , in the infarct region was significantly elevated on Days 1 and 4 after MI (p < 0.05), whereas Kred in the noninfarcted region did not change after MI. DHE confirmed elevated oxidative stress in the infarct zone on Day 1 after MI. After 18 weeks of HFHS diet, Kred was higher in mice after diet versus baseline (p < 0.05). CONCLUSIONS Nitroxide-enhanced MRI noninvasively quantifies tissue oxidative stress as one component of a multiparametric preclinical MRI examination. These methods may facilitate investigations of oxidative stress in cardiovascular disease and related therapies.
Collapse
Affiliation(s)
- Soham A Shah
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Sophia X Cui
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Jonathan Leor
- Neufield Cardiac Research Institute, Sheba Medical Center, Tel-Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Brent A French
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Frederick H Epstein
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Radiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Nakamura M, Yamasaki T, Ueno M, Shibata S, Ozawa Y, Kamada T, Nakanishi I, Yamada KI, Aoki I, Matsumoto KI. Radiation-induced redox alteration in the mouse brain. Free Radic Biol Med 2019; 143:412-421. [PMID: 31446055 DOI: 10.1016/j.freeradbiomed.2019.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Time courses of the redox status in the brains of mice after X-ray or carbon-ion beam irradiation were observed by magnetic resonance redox imaging (MRRI). The relationship between radiation-induced oxidative stress on the cerebral nervous system and the redox status in the brain was discussed. The mice were irradiated by 8-Gy X-ray or carbon-ion beam (C-beam) on their head under anesthesia. C-beam irradiation was performed at HIMAC (Heavy-Ion Medical Accelerator in Chiba, NIRS/QST, Chiba, Japan). MRRI measurements using a blood-brain-barrier-permeable nitroxyl contrast agent, MCP or TEMPOL, were performed using 7-T scanner at several different times, i.e., 5-10 h, 1, 2, 4, and 8 day(s) after irradiation. Decay rates of the nitroxyl-enhanced T1-weighted MR signals in the brains were estimated from MRRI data sets, and variation in the decay rates after irradiation was assessed. The variation in decay rates of MCP and TEMPOL after X-ray or C-beam irradiation was similar, but different variation patterns were observed between X-ray and C-beam. The apparent decay rate of both MCP and TEMPOL decreased due to the temporal reduction of blood flow in the brain several hours after X-ray and/or C-beam irradiation. After decreasing, the apparent decay rates of nitroxyl radicals in the brain gradually increased during the following days after X-ray irradiation or rapidly increased 1 day after C-beam irradiation. The sequential increase in nitroxyl decay rates may have been due to the oxidative atmosphere in the tissue due to ROS generation. X-ray and C-beam irradiation resulted in different redox responses, which may have been due to time-varying oxidative stress/injury, in the mouse brain. The C-beam irradiation effects were more acute and larger than those of X-ray irradiation.
Collapse
Affiliation(s)
- Mizuki Nakamura
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Sayaka Shibata
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshikazu Ozawa
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tadashi Kamada
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan; Research Center Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ichio Aoki
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
14
|
Jing Y, Cao Q, Hao L, Yang GG, Hu WL, Ji LN, Mao ZW. A self-assessed photosensitizer: inducing and dual-modal phosphorescence imaging of mitochondria oxidative stress. Chem Commun (Camb) 2018; 54:271-274. [DOI: 10.1039/c7cc07797a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria-targeted Ir(iii)–nitroxide conjugates act as self-assessed PDT agents by simultaneously inducing and dual-modal phosphorescence imaging of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yang Jing
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Gang-Gang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Wei-Liang Hu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
15
|
Stoneburner SJ, Shen J, Ajala AO, Piecuch P, Truhlar DG, Gagliardi L. Systematic design of active spaces for multi-reference calculations of singlet–triplet gaps of organic diradicals, with benchmarks against doubly electron-attached coupled-cluster data. J Chem Phys 2017; 147:164120. [DOI: 10.1063/1.4998256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Samuel J. Stoneburner
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Adeayo O. Ajala
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
16
|
Nguyen HVT, Chen Q, Paletta JT, Harvey P, Jiang Y, Zhang H, Boska MD, Ottaviani MF, Jasanoff A, Rajca A, Johnson JA. Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. ACS CENTRAL SCIENCE 2017; 3:800-811. [PMID: 28776023 PMCID: PMC5532724 DOI: 10.1021/acscentsci.7b00253] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 05/18/2023]
Abstract
Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques.
Collapse
Affiliation(s)
- Hung V.-T. Nguyen
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qixian Chen
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph T. Paletta
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Peter Harvey
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hui Zhang
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Michael D. Boska
- Department
of Radiology, University of Nebraska Medical
Center, Omaha, Nebraska 68198, United
States
| | | | - Alan Jasanoff
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrzej Rajca
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Jeremiah A. Johnson
- Department
of Chemistry, Department of Biological Engineering, Department of Brain
and Cognitive Sciences, and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Prescott C, Bottle SE. Biological Relevance of Free Radicals and Nitroxides. Cell Biochem Biophys 2017; 75:227-240. [PMID: 27709467 DOI: 10.1007/s12013-016-0759-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
Nitroxides are stable, kinetically-persistent free radicals which have been successfully used in the study and intervention of oxidative stress, a critical issue pertaining to cellular health which results from an imbalance in the levels of damaging free radicals and redox-active species in the cellular environment. This review gives an overview of some of the biological processes that produce radicals and other reactive oxygen species with relevance to oxidative stress, and then discusses interactions of nitroxides with these species in terms of the use of nitroxides as redox-sensitive probes and redox-active therapeutic agents.
Collapse
|
18
|
Khramtsov VV, Bobko AA, Tseytlin M, Driesschaert B. Exchange Phenomena in the Electron Paramagnetic Resonance Spectra of the Nitroxyl and Trityl Radicals: Multifunctional Spectroscopy and Imaging of Local Chemical Microenvironment. Anal Chem 2017; 89:4758-4771. [PMID: 28363027 PMCID: PMC5513151 DOI: 10.1021/acs.analchem.6b03796] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.
Collapse
Affiliation(s)
- Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Andrey A. Bobko
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| |
Collapse
|
19
|
Hu L, Wang Y, Cotrim AP, Zhu Z, Gao R, Zheng C, Goldsmith CM, Jin L, Zhang C, Mitchell JB, Baum BJ, Wang S. Effect of Tempol on the prevention of irradiation-induced mucositis in miniature pigs. Oral Dis 2017; 23:801-808. [PMID: 28326646 DOI: 10.1111/odi.12667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The goals of this study were to (i) establish a useful miniature pig (minipig) model for irradiation-induced oral mucositis and (ii) evaluate the effect of Tempol to prevent its development. METHODS AND MATERIALS Minipigs were irradiated with 6 Gy for five consecutive days targeting the entire oral cavity. To prevent radiation damage, minipigs were treated with 30 mg kg-1 Tempol 10 min before irradiation (n = 4), while the radiation-alone group was similarly injected with saline (n = 4). Lesions were graded using an oral mucositis score and visual inspection every 3 days, and biopsy of multiple sites was performed at day 18. Weight and chest and abdominal circumferences were measured every 3 days. RESULTS Lesions began about 12 days after the first irradiation fraction and healed about 30 days after irradiation. Epithelial thickness was calculated on the lingual and buccal mucosa on the 18th day after the first irradiation fraction. Tempol provided modest protection from ulceration after irradiation using this treatment strategy. CONCLUSIONS This study established a useful large animal model for irradiation-induced oral mucositis and showed modest beneficial effects of Tempol in limiting tissue damage. The latter finding may be potentially valuable in preventing oral mucositis in patients receiving irradiation for head and neck cancers.
Collapse
Affiliation(s)
- L Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Y Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - A P Cotrim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Z Zhu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - R Gao
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - C M Goldsmith
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - L Jin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - J B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - B J Baum
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - S Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Yang J, Cao Q, Hu WL, Ye RR, He L, Ji LN, Qin PZ, Mao ZW. Theranostic TEMPO-functionalized Ru(ii) complexes as photosensitizers and oxidative stress indicators. Dalton Trans 2017; 46:445-454. [DOI: 10.1039/c6dt04028d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New TEMPO-functionalized Ru(ii) polypyridyl complexes displayed greatly improved PDT efficacy, capable of simultaneously monitoring cellular oxidative stress during photodynamic therapy.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Wei-Liang Hu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Rui-Rong Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Liang He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Peter Z. Qin
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
21
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
22
|
Maulucci G, Bačić G, Bridal L, Schmidt HH, Tavitian B, Viel T, Utsumi H, Yalçın AS, De Spirito M. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems. Antioxid Redox Signal 2016; 24:939-58. [PMID: 27139586 PMCID: PMC4900226 DOI: 10.1089/ars.2015.6415] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. RECENT ADVANCES Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. CRITICAL ISSUES An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. FUTURE DIRECTIONS None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939-958.
Collapse
Affiliation(s)
- Giuseppe Maulucci
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| | - Goran Bačić
- 2 Faculty of Physical Chemistry, University of Belgrade , Belgrade, Serbia
| | - Lori Bridal
- 3 Laboratoire d'Imagerie Biomédicale, Sorbonne Universités and UPMC Univ Paris 06 and CNRS and INSERM , Paris, France
| | - Harald Hhw Schmidt
- 4 Department of Pharmacology and Personalised Medicine, CARIM, Faculty of Health, Medicine & Life Science, Maastricht University , Maastricht, the Netherlands
| | - Bertrand Tavitian
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Thomas Viel
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Hideo Utsumi
- 6 Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka, Japan
| | - A Süha Yalçın
- 7 Department of Biochemistry, School of Medicine, Marmara University , İstanbul, Turkey
| | - Marco De Spirito
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| |
Collapse
|
23
|
Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective Agents: Strategies and Translational Advances. Med Res Rev 2016; 36:461-93. [PMID: 26807693 DOI: 10.1002/med.21386] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023]
Abstract
Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed.
Collapse
Affiliation(s)
- Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Ranjan
- Kansas University of Medical Center, Kansas City, KS, 66160
| | - Navrinder Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
24
|
Martin OA, Yin X, Forrester HB, Sprung CN, Martin RF. Potential strategies to ameliorate risk of radiotherapy-induced second malignant neoplasms. Semin Cancer Biol 2015; 37-38:65-76. [PMID: 26721424 DOI: 10.1016/j.semcancer.2015.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Abstract
This review is aimed at the issue of radiation-induced second malignant neoplasms (SMN), which has become an important problem with the increasing success of modern cancer radiotherapy (RT). It is imperative to avoid compromising the therapeutic ratio while addressing the challenge of SMN. The dilemma is illustrated by the role of reactive oxygen species in both the mechanisms of tumor cell kill and of radiation-induced carcinogenesis. We explore the literature focusing on three potential routes of amelioration to address this challenge. An obvious approach to avoiding compromise of the tumor response is the use of radioprotectors or mitigators that are selective for normal tissues. We also explore the opportunities to avoid protection of the tumor by topical/regional radioprotection of normal tissues, although this strategy limits the scope of protection. Finally, we explore the role of the bystander/abscopal phenomenon in radiation carcinogenesis, in association with the inflammatory response. Targeted and non-targeted effects of radiation are both linked to SMN through induction of DNA damage, genome instability and mutagenesis, but differences in the mechanisms and kinetics between targeted and non-targeted effects may provide opportunities to lessen SMN. The agents that could be employed to pursue each of these strategies are briefly reviewed. In many cases, the same agent has potential utility for more than one strategy. Although the parallel problem of chemotherapy-induced SMN shares common features, this review focuses on RT associated SMN. Also, we avoid the burgeoning literature on the endeavor to suppress cancer incidence by use of antioxidants and vitamins either as dietary strategies or supplementation.
Collapse
Affiliation(s)
- Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Xiaoyu Yin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia.
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| | - Roger F Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
25
|
Bačić G, Pavićević A, Peyrot F. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques. Redox Biol 2015; 8:226-42. [PMID: 26827126 PMCID: PMC4753396 DOI: 10.1016/j.redox.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/25/2015] [Indexed: 12/22/2022] Open
Abstract
Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals - nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes.
Collapse
Affiliation(s)
- Goran Bačić
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Pavićević
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; ESPE of Paris, Paris Sorbonne Université, 75016 Paris, France
| |
Collapse
|
26
|
Matsumoto KI, Yamasaki T, Nakamura M, Ishikawa J, Ueno M, Nakanishi I, Sekita A, Ozawa Y, Kamada T, Aoki I, Yamada KI. Brain contrasting ability of blood-brain-barrier-permeable nitroxyl contrast agents for magnetic resonance redox imaging. Magn Reson Med 2015; 76:935-45. [PMID: 26414669 DOI: 10.1002/mrm.25918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE The detailed in vivo T1 -weighted contrasting abilities of nitroxyl contrast agents, which have been used as redox responsive contrast agents in several magnetic resonance-based imaging modalities, in mouse brain were investigated. METHODS Distribution and pharmacokinetics of five types of five-membered-ring nitroxyl radical compound were compared using T1 -weighted MRI. RESULTS The blood-brain barrier (BBB) -impermeable 3-carboxy-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CxP) could not be distributed in the brain. The slightly lipophilic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CmP) showed slight distribution only in the ventricle, but not in the medulla and cortex. The amphiphilic 3-methoxy-carbonyl-2,2,5,5-tetramethyl-pyrrolidine-N-oxyl (MCP) had good initial uniform distribution in the brain and showed typical 2-phase signal decay profiles. A brain-seeking nitroxyl probe, acetoxymethyl-2,2,5,5-tetramethyl-pyrrolidine-N-oxyl-3-carboxylate (CxP-AM), showed an accumulating phase, and then its accumulation was maintained in the medulla and ventricle regions, but not in the cortex. The lipophilic 4-(N-methyl piperidine)-2,2,5,5-tetramethylpyrroline-N-oxyl (23c) was well distributed in the cortex and medulla, but slightly in the ventricle, and showed relatively rapid linear signal decay. CONCLUSION Nitroxyl contrast agents equipped with a suitable lipophilic substitution group could be BBB-permeable functional contrast agents. MR redox imaging, which can estimate not only the redox characteristics but also the detailed distribution of the contrast agents, is a good candidate for a theranostic tool. Magn Reson Med 76:935-945, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Toshihide Yamasaki
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Mizuki Nakamura
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan.,Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Junji Ishikawa
- Translational Research Group, Health Science Research Center, FANCL Research Institute, Totsuka-ku, Yokohama, Japan
| | - Megumi Ueno
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Ikuo Nakanishi
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Aiko Sekita
- Multimodal Molecular Imaging Team, Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Yoshikazu Ozawa
- Multimodal Molecular Imaging Team, Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Tadashi Kamada
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan.,Research Center Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Ichio Aoki
- Multimodal Molecular Imaging Team, Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.,JST, PRESTO, Kawaguchi, Saitama, Japan
| |
Collapse
|
27
|
Olankitwanit A, Rajca S, Rajca A. Aza-m-Xylylene Diradical with Increased Steric Protection of the Aminyl Radicals. J Org Chem 2015; 80:5035-44. [DOI: 10.1021/acs.joc.5b00421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnon Olankitwanit
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
28
|
Affiliation(s)
- Nolan M. Gallagher
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Arnon Olankitwanit
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
29
|
Juetten MJ, Buck AT, Winter AH. A radical spin on viologen polymers: organic spin crossover materials in water. Chem Commun (Camb) 2015; 51:5516-9. [DOI: 10.1039/c4cc07119k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A polymer containing viologen radical cation monomer units is shown to reversibly switch between paramagnetic and diamagnetic statesvianon-covalent host–guest interactions or temperature control in water.
Collapse
|
30
|
Sowers MA, McCombs JR, Wang Y, Paletta JT, Morton SW, Dreaden EC, Boska MD, Ottaviani MF, Hammond PT, Rajca A, Johnson JA. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat Commun 2014; 5:5460. [PMID: 25403521 PMCID: PMC4269368 DOI: 10.1038/ncomms6460] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022] Open
Abstract
Stimuli-responsive multimodality imaging agents have broad potential in medical diagnostics. Herein, we report the development of a new class of branched-bottlebrush polymer dual-modality organic radical contrast agents--ORCAFluors--for combined magnetic resonance and near-infrared fluorescence imaging in vivo. These nitroxide radical-based nanostructures have longitudinal and transverse relaxation times that are on par with commonly used heavy-metal-based magnetic resonance imaging (MRI) contrast agents. Furthermore, these materials display a unique compensatory redox response: fluorescence is partially quenched by surrounding nitroxides in the native state; exposure to ascorbate or ascorbate/glutathione leads to nitroxide reduction and a concomitant 2- to 3.5-fold increase in fluorescence emission. This behaviour enables correlation of MRI contrast, fluorescence intensity and spin concentration with tissues known to possess high concentrations of ascorbate in mice. Our in vitro and in vivo results, along with our modular synthetic approach, make ORCAFluors a promising new platform for multimodality molecular imaging.
Collapse
Affiliation(s)
- Molly A Sowers
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Jessica R McCombs
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Ying Wang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Joseph T Paletta
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Stephen W Morton
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Erik C Dreaden
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - M Francesca Ottaviani
- Department of Earth, Life and Environmental Sciences, University of Urbino, Loc. Corcicchia, 61029 Urbino, Italy
| | - Paula T Hammond
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
31
|
Abstract
A number of agents are used clinically to enhance the efficacy of radiotherapy today, many of which are cytotoxic chemotherapies. Agents that enhance radiation induced tumor cell killing or protect normal tissues from the deleterious effects of ionizing radiation are collectively termed radiation modifiers. A significant effort in radiobiological research is geared towards describing and testing radiation modifiers with the intent of enhancing the therapeutic effects of radiation while minimizing normal tissue toxicity. In this review, we discuss the characteristics of these agents, the testing required to translate these agents into clinical trials, and highlight some challenges in these efforts.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch and Radiation Biology Branch of the National Cancer Institute, Bethesda, MD.
| | - James B Mitchell
- Radiation Oncology Branch and Radiation Biology Branch of the National Cancer Institute, Bethesda, MD
| |
Collapse
|
32
|
An efficient synthesis of 3-( N-piperidinemethyl)-2, 2, 5, 5-tetramethyl-1-oxy-3-pyrroline, a promising radioprotector for cancer radiotherapy. Tetrahedron Lett 2014; 55:5570-5571. [PMID: 25309004 DOI: 10.1016/j.tetlet.2014.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitroxides can ameliorate the toxic effects of radiation during cancer therapy. Nitroxides are paramagnetic and can be used in magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI) to monitor in vivo oxidative stress status. Compound 5 (3-(N-piperidinemethyl)-2, 2, 5, 5-tetramethyl-1-oxy-3-pyrroline) was found to be the most effective nitroxide radioprotector. An efficient synthesis for this promising radioprotector was developed.
Collapse
|
33
|
Olankitwanit A, Pink M, Rajca S, Rajca A. Synthesis of Aza-m-Xylylene Diradicals with Large Singlet–Triplet Energy Gap and Statistical Analyses of Their EPR Spectra. J Am Chem Soc 2014; 136:14277-88. [DOI: 10.1021/ja508119d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Arnon Olankitwanit
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
34
|
Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Lett 2014; 353:248-57. [PMID: 25069035 DOI: 10.1016/j.canlet.2014.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022]
Abstract
Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about two- to three fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies.
Collapse
|
35
|
Okić-Djordjević I, Trivanović D, Jovanović M, Ignjatović M, Šećerov B, Mojović M, Bugarski D, Bačić G, Andjus PR. Increased survival after irradiation followed by regeneration of bone marrow stromal cells with a novel thiol-based radioprotector. Croat Med J 2014; 55:45-9. [PMID: 24577826 PMCID: PMC3944417 DOI: 10.3325/cmj.2014.55.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim To investigate the survival of laboratory rats after irradiation and to study the cellularity of their bone marrow and the multipotential mesenchymal stem cells (BM-MSCs) in groups treated with or without a new thiol-based radioprotector (GM2011) Methods Animals were irradiated by a Cobalt gamma source at 6.7 Gy. Treated animals were given i.p. GM2011 30 minutes before and 3 and 7 hours after irradiation. Controls consisted of sham irradiated animals without treatment and animals treated without irradiation. After 30 days post-irradiation, animals were sacrificed and bone marrow cells were prepared from isolated femurs. A colony forming unit-fibroblast (CFU-F) assay was performed to obtain the number of BM-MSCs. Results In the treated group, 87% of animals survived, compared to only 30% in the non-treated irradiated group. Irradiation induced significant changes in the bone marrow of the treated rats (total bone marrow cellularity was reduced by ~ 60% – from 63 to 28 cells ×106/femur and the frequency of the CFU-F per femur by ~ 70% – from 357 to 97), however GL2011 almost completely prevented the suppressive effect observed on day 30 post-irradiation (71 cells ×106/femur and 230 CFU-F/femur). Conclusion Although the irradiation dosage was relatively high, GL2011 acted as a very effective new radioprotector. The recovery of the BN-MSCs and their counts support the effectiveness of the studied radioprotector.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pavle R Andjus
- Pavle R. Andjus, Faculty of Biology University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia,
| |
Collapse
|
36
|
Zhang Y, Martin SG. Redox proteins and radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:289-300. [PMID: 24581945 DOI: 10.1016/j.clon.2014.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
Abstract
Although conventional radiotherapy can directly damage DNA and other organic molecules within cells, most of the damage and the cytotoxicity of such ionising radiation, comes from the production of ions and free radicals produced via interactions with water. This 'indirect effect', a form of oxidative stress, can be modulated by a variety of systems within cells that are in place to, in normal situations, maintain homeostasis and redox balance. If cancer cells express high levels of antioxidant redox proteins, they may be more resistant to radiation and so targeting such systems may be a profitable strategy to increase therapeutic efficacy of conventional radiotherapy. An overview, with exemplars, of the main systems regulating redox homeostasis is supplied and discussed in relation to their use as prognostic and predictive biomarkers, and how targeting such proteins and systems may increase radiosensitivity and, potentially, improve the radiotherapeutic response.
Collapse
Affiliation(s)
- Y Zhang
- Academic Unit of Clinical Oncology, University of Nottingham, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - S G Martin
- Academic Unit of Clinical Oncology, University of Nottingham, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK.
| |
Collapse
|
37
|
Rajca A, Olankitwanit A, Wang Y, Boratyński PJ, Pink M, Rajca S. High-Spin S = 2 Ground State Aminyl Tetraradicals. J Am Chem Soc 2013; 135:18205-15. [DOI: 10.1021/ja409472f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrzej Rajca
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Arnon Olankitwanit
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Ying Wang
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | | | - Maren Pink
- IUMSC,
Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Suchada Rajca
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
38
|
Paletta JT, Pink M, Foley B, Rajca S, Rajca A. Synthesis and reduction kinetics of sterically shielded pyrrolidine nitroxides. Org Lett 2012; 14:5322-5. [PMID: 23050653 DOI: 10.1021/ol302506f] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of sterically shielded pyrrolidine nitroxides were synthesized, and their reduction by ascorbate (vitamin C) indicate that nitroxide 3, a tetraethyl derivative of 3-carboxy-PROXYL, is reduced at the slowest rate among known nitroxides, i.e., at a 60-fold slower rate than that for 3-carboxy-PROXYL.
Collapse
Affiliation(s)
- Joseph T Paletta
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | | | | | | | | |
Collapse
|
39
|
Rajca A, Wang Y, Boska M, Paletta JT, Olankitwanit A, Swanson MA, Mitchell DG, Eaton SS, Eaton GR, Rajca S. Organic radical contrast agents for magnetic resonance imaging. J Am Chem Soc 2012; 134:15724-7. [PMID: 22974177 DOI: 10.1021/ja3079829] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a molecular design that provides an intravenously injectable organic radical contrast agent (ORCA) for which the molecular (1)H water relaxivity (r(1)) is ca. 5 mM(-1) s(-1). The ORCA is based on spirocyclohexyl nitroxide radicals and poly(ethylene glycol) chains conjugated to a fourth-generation polypropylenimine dendrimer scaffold. The metal-free ORCA has a long shelf life and provides selectively enhanced magnetic resonance imaging in mice for over 1 h.
Collapse
Affiliation(s)
- Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|